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ABSTRACT
The majority of the methods proposed for the problem of
push-manipulation planning and execution deal with objects
that have quasi-static properties and primitive geometric
shapes, yet they usually use complex physics modeling for
the manipulated objects as well as the manipulator. We pro-
pose an experience-based approach, where the mobile robot
experiments with pushable complex real world objects to
observe and memorize their motion characteristics together
with the associated uncertainty in response to its various
pushing actions. Our approach uses this incrementally-built
experience to construct push plans based solely on the ob-
jects’ predicted future trajectories without a need for object-
specific physics or contact modeling. We modify the RRT
algorithm in such a way to use the recalled robot and object
trajectories as building blocks to generate achievable and
collision-free push plans that reliably transport the object
to a desired 3 DoF pose. We test our method in a realistic
3D simulation environment as well as in a real-world setup,
where a variety of pushable objects with freely rolling caster
wheels need to be navigated among obstacles to reach their
desired final poses. Our experiments demonstrate safe trans-
portation and successful placement of the objects.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics

Keywords
Mobile push-manipulation planning

1. INTRODUCTION
There are many ways to perform robotic manipulation,

which are determined by the requirements of the task and
the constraints imposed by the physical properties of both
the object and the robot. Prehensile manipulation is the
most straightforward one, where the object is first grasped
and then carried to the desired destination. On the other
hand, it may be possible, or even necessary to relocate the
object without grasping it first in cases where either the ob-

Figure 1: Realistically simulated passive mobile ob-
jects on freely-rolling caster wheels and our omni-
directional mobile robot used as the pusher.

ject is too large or heavy, the robot is not equipped with
a manipulator arm, or the utilization of some properties of
the object makes its transportation more efficient and con-
venient that way. This type of manipulation is referred to as
non-prehensile manipulation [12], examples of which include
sliding, rolling, throwing, and pushing.

This paper focuses on the problem of push manipulation,
the objective of which is to come up with and execute a
sequence of pushing actions to maneuver an object inca-
pable of moving by itself from an initial configuration to a
goal configuration. Our problem setup consists of an omni-
directional mobile robot without a manipulator arm [16, 2],
and a set of passive mobile objects that are scattered in
an environment cluttered with obstacles. The robot is ex-
pected to push-manipulate these objects in such a way to
transport them to their desired poses while avoiding colli-
sions. What makes our problem particularly challenging is
that, in our experiments, we use real world objects moving
on freely rolling caster wheels and their realistically simu-
lated models. Caster wheels make the objects keep moving
for some time even after pushing is terminated and they
introduce some uncertainty into the objects’ motions. Ob-
jects with this kind of uncontrolled motion properties are
inherently more difficult to manipulate compared to objects
sliding quasi-statically on surfaces with high friction.

We would like our robot to be able to manipulate a va-
riety of such objects with different physical characteristics.
Some of these objects are illustrated in Fig. 1. Our omni-
directional mobile robot shown in front of the objects has
a basket sticking out. Even though this basket makes con-
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tact with the objects most of the time during pushing, due
to the robot’s and the objects’ complex 3D shapes, some
other parts of the robot may also be involved in the con-
tact based on the pushing direction. Therefore, trying to
model potential contacts becomes complex and infeasible.
Under these circumstances, the robot needs a way to gener-
ate achievable, collision-free plans and execute them reliably
as it is supposed to perform push-manipulation in a large
environment cluttered with several objects and obstacles.

As a potential solution to these problems, we contribute
an algorithm that does not require any explicit mathemat-
ical models for either the objects or the robot. Instead,
following a case-based planning approach [18], the observed
effects of previously experimented and memorized pushing
moves, represented as sequences of state-action pairs, are
utilized to generate push plans for manipulating passive mo-
bile objects. A sampling-based planning algorithm is taken
as basis and modified in such a way to construct complete
plans by using the safe and achievable object trajectories
as building blocks. The constructed plan is then executed
by letting the robot replay the pushing motions of the cor-
responding sequences one after another. Due to the noise
in actuation during plan execution and imprecision in the
repeatability of the past observed object trajectories, the
object may diverge from its expected pose along the fore-
seen path. If the divergence is significant, then a new plan
is constructed to prevent potential collisions of the object
and the robot with the obstacles in the environment. Us-
ing this method yields more successful executions compared
to planning that does not take the achievability of the plan
into account from both the robot’s and the object’s perspec-
tives. Also, the robot more consistently starts generating
plans that require less number of pushes as the variety of
the memorized sequences increases.

2. RELATED WORK
Pushing enables complex manipulation tasks to be per-

formed with simple mechanics in cases where the object is
too bulky or heavy to lift, or the robot simply lacks a ma-
nipulator arm. As a result of being one of the most in-
teresting methods used within the non-prehensile manipula-
tion domain [12, 6], push-manipulation has attracted several
robotics researchers. An early work by Salganicoff et al. [17]
presents a very simple, one nearest-neighbor based approx-
imation method for the forward model of an object being
pushed from a single rotational contact point in an obstacle-
free environment by controlling only one degree of freedom.
Agarwal et al. [1] propose an algorithm for computing a
contact-preserving push plan for a point-sized pusher and a
disk-shaped object using discrete angles at which the pusher
can push the object and a finite number of potential interme-
diate positions for the object. They assume that their pusher
can place itself at any position around the object since it
does not occupy any space; however, this approach cannot
be used when real robots are considered as they have non-
zero dimensions that can collide with the obstacles in the en-
vironment. Nieuwenhuisen et al. [14, 15] utilize compliance
of the manipulated object against the obstacles rather than
trying to avoid them, and make use of the obstacles with lin-
ear surfaces in the environment to guide the object’s motion
by allowing the object to slide along the boundaries. Berg
and Gerrits [4] computationally improve this approach and
present both a contact preserving and an unrestricted push

planning method in which the the pusher can occasionally let
go of the object. Similar to the potential field based motion
planners [7], Igarashi et al. [5] propose a method that com-
putes dipole-like vector fields around the object that guide
the motion of the robot to get behind the object and push it
towards the target. Relatively slow robot motions and high
friction for the objects are assumed, and robots with circular
bumpers are used to push circular and rectangular objects
of various sizes in single and multi-robot scenarios. As a
promising step towards handling objects with more complex
shapes, Lau et al. [9] achieve pushing of irregular-shaped ob-
jects with a circular robot by collecting hundreds of samples
on how the object moves when pushed from different points
in different directions, and using a non-parametric regres-
sion method to build the corresponding mapping, similar to
the approach of Walker and Salisbury [19]. Their approach
is similar to ours in the sense that they also utilize the obser-
vations of the object’s motion in response to various pushing
actions. Even though they use irregular-shaped objects in
their experiments, their objects have quasi-static properties
and they ignore the final orientation, which further simpli-
fies the problem. Zito et al. [21] present an algorithm that
combines a global sampling-based planner with a local ran-
domized push planner to explore various configurations of
the manipulated object and come up with a series of manip-
ulator actions that will move the object to the intermediate
global plan states. Their experiment setup consists of a sim-
ulated model of a tabletop robot manipulator with a single
rigid spherical fingertip and an L-shaped object (a polyflap)
to be manipulated. The setup is obstacle-free and the state
space is limited to the robot arm’s reach, which is relatively
small, as they are using a stationary tabletop manipulator.
The randomized local planner utilizes a realistic physics en-
gine to predict the object’s pose after a certain pushing ac-
tion, which requires explicit object modeling. Kopicki et
al. [8] use the same problem setup and present an algo-
rithm for learning through interaction the behavior of the
manipulated object that moves quasi-statically in response
to various pushes. However, the learned object behavior is
not used for push planning in their work. Another recent
study by Dogar and Srinivasa [13] uses push-manipulation
in a tabletop manipulation scenario as a way to reduce un-
certainty prior to grasping by utilizing the funneling effect
of pushing.

According to our survey of the literature, the most com-
mon scenario seems to be pushing of objects with primi-
tive geometric shapes using circular or point-sized robots, or
rigid fingertips on a surface with relatively high friction that
makes the object stop immediately when the pushing motion
is ceased. Even then relatively complex mathematical mod-
els are used for contact modeling and motion estimation, or
physics engines of simulators are utilized for these purposes.
Our approach differs from many of these proposed ones in
the sense that

• we deal with complex 3D real world objects (some of
which are shown in Fig. 1) that may contact the com-
plex shaped robot on several points,

• the manipulated objects are not moving quasi-statically;
rather, they continue moving freely for a while after
the push, and their caster wheels contribute to their
motion uncertainty,
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• mobile manipulation is performed in a large environ-
ment cluttered with obstacles, requiring construction
of safe and achievable plans,

• no explicit mathematical model is constructed or learn-
ing based mapping is built; only the pushing motions
performed in the past and their corresponding observed
effects along with the associated variances are used for
planning and execution.

3. PLANNING THE FUTURE USING THE
PAST

Our algorithm consists of the following components:

• A set of sequences composed of robot motions for push-
ing an object from various directions for varying dura-
tions, and the object’s corresponding motions,

• A generative planner that makes use of the past push-
ing experiences stored as sequences to construct achiev-
able and collision-free push plans,

• An execution monitoring module to trigger re-planning
when there is a significant discrepancy between the
expected and the actual outcomes of the manipulation
actions during push-plan execution.

We elaborate on each of these components in the rest of
this section.

3.1 Sequences
It is neither trivial nor efficient to try to manually define

accurate mathematical models that will capture the com-
plexity of the potential interactions between the robot, the
objects, and the floor surface as well as the resulting motion
characteristics in a push-manipulation scenario. Therefore,
we make the robot memorize a small number of its push-
ing experiences from various directions as it interacts with
the objects either through self-exploration or demonstration
provided via joysticking the robot. These experiences are
represented as sequences of pose-action pairs for the robot
and the corresponding trajectory followed by the object. We
make use of several frames of reference for constructing these
sequences. A static global frame of reference, ϕG, is attached
to the environment. The robot and the object of interest
carry their own reference frames, denoted as ϕR and ϕO ,
respectively, that define their poses within ϕG. In addition,
we define an auxiliary frame of reference, ϕS , to indicate
the last stationary pose of the object before it starts being
pushed. Fig. 2(a) illustrates these frames of reference used
for recording and executing the sequences. Invariance to the
object’s global pose (ϕO w.r.t. ϕG) is achieved by recording
the pose of the robot relative to the object (ϕR w.r.t. ϕO)
together with the corresponding motion commands, and the
trajectory followed by the object relative to its stationary
pose right before it starts being pushed (ϕO w.r.t. ϕS).
Therefore, a sequence takes the form

(℘R1, a1, ℘O1), (℘R2, a2, ℘O2), ..., (℘Rn, an, ℘On)

where ℘Ri is the pose of the robot relative to the object
(ϕR w.r.t. ϕO) denoted as 〈x, y, θ〉, ai is the action associ-
ated with ℘Ri, denoted as 〈vx, vy, vθ〉 indicating the omni-
directional motion command composed of the translational
and rotational velocities of the robot, and ℘Oi is the pose of

(a) (b)

Figure 2: (a) Various reference frames used during
sequence recording and replay depicted before (t =
ts) and after (t = te) a push. (b) Visualization that
corresponds to the scene shown in the upper left
corner of the image (best viewed in color).

the object relative to its last stationary pose before it starts
moving (ϕO w.r.t. ϕS), also denoted as 〈x, y, θ〉.

Fig. 2(b) shows the visualization of the robot and object
trajectories within the stored sequences. Yellow arrows in-
dicate pose orientations, the smaller blue cylinders repre-
sent the initial pose of the robot relative to the object be-
fore the push starts, and the green cubes represent the ob-
served mean final poses of the manipulated object after the
corresponding push. The robot trajectory (indicated with
blue curves) and the object trajectory (indicated with green
curves) that belong to the same sequence are marked with
the same ID value. Final object pose uncertainty is depicted
with the red ellipses drawn around the mean final poses.

The sequences are recorded at each step of the robot’s
perception cycle, in our case at a frequency of 30Hz. As the
number and the length of the recorded sequences increase,
such high recording rates may cause problems in terms of
efficient processing and scalability. To address this issue,
we use a sparsified sequence representation, and only check
the keyframes defined at every kth frame of the sequence
for faster collision detection along the trajectories both for
the robot and the object. The value of k can be adjusted
according to the dimensions of the objects being pushed;
that is, if the objects are too small, then it is better to check
for collisions more frequently along the trajectories.

3.2 Learning How Objects Behave
Humans learn and further sharpen their manipulation and

corresponding prediction-based planning skills through in-
teractions with their environment. Ideally, robots should
also learn from their experiences instead of being provided
with detailed mathematical models of each and every ob-
ject they are expected to interact with, and physics engines
to compute the outcomes of these interactions, since such
an approach quickly becomes infeasible with the increasing
number and variety of objects that the robot is expected to
be able to handle. Also, it is almost impossible to provide ac-
curate mathematical models for the real world objects with
complex physical properties and motion characteristics that
we want our robot to push-manipulate. For these reasons,
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we make our robot interact with the actual pushable objects
to observe how they behave in response to various pushing
actions for future use in the planning process.

There are two challenges to be addressed in our problem.

1. The first challenge is the uncontrolled motion of the
object after the push is ceased. As a result of moving
on freely-rolling caster wheels, the pushable objects
used in our experiments do not stop immediately after
the robot stops pushing, and the exact poses of the ob-
jects after they come to rest vary between the pushing
attempts even from the same direction for the same
duration.

2. The second challenge is the effect of the initial, station-
ary orientations of the object’s wheels on the trajec-
tory that the object follows when being pushed. The
wheels do not immediately align with the pushing di-
rection after the push starts, which introduces addi-
tional uncertainty to the motion of the object and its
final observed pose.

Since these two problems are partially related, we try to
address them simultaneously by having the robot build its
experience incrementally over several trials instead of relying
on a single observation.

When the robot is given a new object to be manipu-
lated, it picks m random push initiation poses immediately
around the object that are oriented towards random points
along the edges of the object together with the correspond-
ing random pushing durations ranging from 1 to 3 seconds.
We name these pose-duration tuples push configurations,
ς = {ς1, . . . , ςm}. Informed experience in addition to purely
random experimentation can be transferred to the robot by
providing some of these configurations through demonstra-
tion via joysticking it. As distinct pushes cause different final
wheel orientations, the robot alternates between ςi in order
to make sure that it experiments with each ςi for varying
initial caster wheel orientations. We ensure the coverage of
all ςi by picking m to be a prime number and iterating over ς
by using a set of increments ι = {ι0 = 1, . . . , ιj = m−1} in a
way similar to a hash collision resolution strategy. Starting
with ι0, the robot alternates between ςi using i = ((i + ιj)
mod m) until each of them are covered. Then it picks an-
other increment ιj with j = ((j+1) mod (m−1)) and con-
tinues its experimentation. This process is repeated until the
robot collects n samples from each of the m push configura-
tions. The first trials for each of the random push configu-
rations are saved as new sequences, and the additional trials
are used to replay these sequences to update their statistical
parameters. That is, the robot, in a sense, tests how reliably
and consistently it can reproduce the expected observation
when a particular pushing motion is replayed.

Assuming that the observed final object poses will be nor-
mally distributed, the robot tries to capture the final object
pose uncertainties by incrementally updating the parame-
ters of these distributions after observing the outcome of
each of the n trials of for each ςi as shown in Eq. (1) and
Eq. (2).

℘̄On = ℘̄On−1 +
℘On − ℘̄On−1

n− 1
(1)

Σ℘On
=

(n− 2)Σ℘On−1
+ (℘On − ℘̄On)(℘On − ℘̄On−1)

T

n− 1
(2)

In these equations, ℘̄On denotes the mean of the observed
object pose after the nth trial for a specific ςi, and Σ℘On

is
the corresponding covariance, which in our case is a 3 × 3
matrix. This compact representation eliminates the need
for storing all of the previously observed individual poses.
Fig. 2(b) depicts the pose uncertainty as red ellipses around
the final projected object poses.

As previously mentioned, these distributions are also good
indicators of how reliable and consistent individual push se-
quences are. Since the objects move in an uncontrolled man-
ner after the pushing is ceased, we do not want them to end
up in unforeseen poses which may happen to collide with
the obstacles in the environment, or cause the next push-
ing motion to be unachievable due to the obstruction of the
corresponding initial robot pose. Therefore, we eliminate
the sequences with variances exceeding predefined thresh-
olds to improve the safety and reliability of the plans gener-
ated using these sequences, potentially reducing the number
of re-plans needed along the way during plan execution.

In addition to testing how reliably the sequences can be
replayed, we also test how helpful they are in constructing
plans that transport the object to desired placements. After
experiencing a new batch of m sequences, we pick several
random goals in the task environment and let the robot try
to generate plans for each of these goals multiple times using
the available sequences to see how the number of problems
solved and the consistency of the solutions change with the
increasing number and variety of the available sequences.
The results of these tests are presented in Section 4.

3.3 Achievable Plan Generation
Having memorized the motion primitives for the push-

able objects and the corresponding robot motions (i.e. se-
quences), now the robot needs to use them to construct plans
that are collision-free and achievable for both the object and
the robot itself. Rapidly-exploring Random Trees (RRT)
[11, 10] is one of the most commonly used planning algo-
rithms due to its simplicity, practicality, and probabilistic
completeness property. Starting from the initial configu-
ration, the RRT algorithm incrementally builds a tree by
uniformly sampling points from the state space and growing
the tree in the direction of the sample by extending the clos-
est node of the tree towards the sample. It is also possible
to bias the tree growth towards the goal and to reuse past
experience [3].

Instead of extending the tree towards the sample along
the straight line that connects the closest tree node to the
sample, our proposed planning algorithm uses the previously
observed object trajectories as building blocks for extending
the tree towards the sample. In other words, we build the
tree out of the memorized object trajectories that can be
regenerated by the robot without either the robot’s or the
object’s projected poses being in collision with the obstacles.
This is the key point in ensuring achievability from both
the robot’s and the object’s perspective; that is, we can-
not guarantee a straight extension towards the sample to be
achievable with the available sequences, but we can indeed
guarantee that an extension made with the most suitable
non-colliding sequence is achievable as the robot has already
experienced that particular object motion.
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Figure 3: Illustration of the experience-based RRT construction process.

At each iteration, we sample a random pose with proba-
bility p or use the goal as the sample with probability 1− p.
The closest node of the tree to the new sample is the one
that gives the maximum similarity value according to the
similarity function defined in Eq. 3,

sim(p1, p2) =
dmax

dist(p1, p2)
cosSim(p̂1, p̂2) (3)

where dmax is the maximum possible distance that can be
obtained in the task environment, dist(p1, p2) is the Eu-
clidean distance between the locations of the poses, and
cosSim(p̂1, p̂2) is the cosine similarity between the two poses
assuming that they are unit vectors coinciding at the origin.
Projecting the object on to the pose of the selected closest
node, the mean final poses of the sequences originating from
that pose are checked against the sample according the simi-
larity function defined in Eq. 3. The tree is extended towards
the sample by using the mean final projected object pose of
the sequence that gives the highest similarity value and is
collision-free for both the object and the robot. This pro-
cess continues until the projected object pose aligns with
the goal pose with a certain error tolerance. Fig. 3 illus-
trates two steps of the tree construction process. The ob-
ject trajectory components of the sequences are illustrated
as dashed curves and the projected mean final object poses
resulting from these trajectories are depicted as little black
squares with attached sequence IDs. At each iteration, the
projected object pose that gives the highest similarity value
to the sample (in this particular example the sample is as-
sumed to be the goal itself) is selected (highlighted in green),
and the object is imagined to be pushed to that pose.

During tree construction, the achievability of a sequence
is determined by checking each keyframe for collisions along
the robot and object trajectories within the sequence. Specif-
ically, collision check for the expected final object pose is
performed using the associated distribution representing the
pose uncertainty rather than a single pose. For this purpose,
we derive 2L + 1 sigma points representing the extremes
of the distribution from the mean and the covariance using
Eq. (4)-(6), where L is the dimensionality of the state space.
In our case L = 3 as we are dealing with 3 DoF poses.

χ0 = ℘̄O (4)

χi = ℘̄O + ζ(
√

Σ℘On
)i, i = 1, . . . , L (5)

χi = ℘̄O − ζ(
√

Σ℘On
)i, i = L+ 1, . . . , 2L (6)

In these equations, ℘̄O is the mean of the final object poses
observed so far for a particular sequence, (

√
Σ℘On

)i is the

ith column of the matrix-square-root of the covariance ma-
trix Σ℘On

, and ζ is the scalar scaling factor that determines
the spread of the sigma points around ℘̄O . Increasing ζ
increases the conservativeness of the planner. In our ex-
periments, we used ζ = 3. Each of these extreme poses
are checked for collision and the sequence is marked as un-
achievable and not used for extending the tree in case any of
these poses are in collision with the objects in the environ-
ment. A separate regular RRT planner is used for planning
a collision free path for the robot that will take it to the
starting pose ℘R1 of the selected pushing sequences during
plan execution.

3.4 Plan Execution and Monitoring
The constructed plan is executed by replaying one after

another the robot trajectories of the chain of sequences that
transports the object to the desired goal. Even though the
plan is constructed by taking into account the uncertainties
in the expected final object poses, the object inevitably di-
gresses from its foreseen path, especially when it needs to be
transported for a long distance. During plan execution, re-
planning may be triggered depending on whether the actual
observed final pose of the object after a push falls within the
tolerance region of the expected pose distribution, which is
computed using Eq. (7)

(℘Oo − ℘̄O)
TΣ−1

℘O
(℘Oo − ℘̄O) ≤ χ2

k(p) (7)

where ℘Oo is the observed final pose of the object, ℘̄O is
the expected final pose, Σ℘O is the expected final pose co-
variance, and χ2

k(p) is the quantile function for probability
p of the chi-squared distribution with k degrees of freedom.
In our case k = 3 and we use p = 0.05 to make sure that
the observation is statistically significantly different from the
expectation in order for the robot to re-plan.

Additionally, in order to relax the planning process a little,
we use a heuristic that dynamically alters the desired final
pose accuracy depending on the distance of the object from
the goal. Eq. (8)-(9) define this heuristic

δ = (dist(℘Oo , ℘Og)/dmax) + δmax (8)
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ω = π· (dist(℘Oo , ℘Og)/dmax) + ωmax (9)

where ℘Og is the goal pose, δ and ω are the distance and ori-
entation difference thresholds, respectively, δmax and ωmax

are the maximum allowed final distance and orientation dif-
ference thresholds, respectively. This heuristic helps the
robot to come up with a “rough” plan quickly when the ob-
ject is far away from the goal, and forces it to generate more
accurate plans each time it has to re-plan as the objects gets
closer to the goal.

4. EXPERIMENTAL EVALUATION
We performed the majority of our experiments in the We-

bots mobile robot simulation environment [20], which en-
abled us to realistically simulate the pushable real world ob-
jects and their motions on freely rolling caster wheels. The
final placement of an object was considered successful if the
distance of the object to the desired goal was below 0.2m
(i.e. δmax = 0.2 in Eq. 8) and the orientation difference was
below π/9 radians (i.e. ωmax = π/9 in Eq. 9). Considering
the dimensions of the objects that our robot is manipulat-
ing, such as a 0.8m× 0.45m serving tray and a 1.9m× 0.9m
stretcher, these constraints are quite tight.

As briefly mentioned in Section 3.2, the first step in our
experiments is to select the reliable set of sequences to be
used for planning. We do this by eliminating the ones that
cannot be replayed consistently; that is, the ones that have
high variances in the final observed object pose. We deter-
mined the maximum allowed position and orientation vari-
ances to have the same values as δmax and ωmax. After
this elimination, we evaluate the remaining set of sequences
for their proficiency on generating solutions for randomly
picked goals to see how good these solutions are in terms
of the path length (i.e. the lowest the number of pushes re-
quired to transport the object, the better the solution is) and
having consistently similar path lengths. In its evaluation
mode, the robot picks a number of random, collision-free
goals, and starts evaluating the proficiency of the available
sequences by adding them to its library of sequences one
batch at a time, and checking the number of goals that can
be reached consistently with the available sequences. When
it starts reaching more than a certain percentage of the ran-
dom goals, it stops adding new sequences to its library. It
is always possible for the robot to learn some additional se-
quences for an object in case it encounters a problem that
it cannot solve with the currently available set of sequences.
On the other hand, it is also important to keep the num-
ber of stored sequences per object as low as possible due to
storage efficiency concerns.

The batch size used in our experiments was m = 7, and
planning used during the sequence library evaluation process
did not utilize the distance and orientation difference thresh-
old relaxation heuristic we defined in Equations 8 and 9.
During the evaluation and the actual planning processes, we
consider a planning attempt unsuccessful if the total number
of RRT nodes allowed is exceeded. In our experiments, we
determined the maximum number of RRT nodes to be 33750
as we require 0.2m distance accuracy with at most +/−π/9
radians orientation difference in a 15m× 15m environment.

Fig. 4 illustrates the results obtained by following the se-
quence library evaluation procedure for the pushable chair
object and 20 randomly picked collision-free goals. Since the
robot is essentially using a random sampling-based planner,

it makes 10 plan construction attempts for each of the 20
goals, so that that we can analyze the planning performance
more reliably. Fig. 4(a) shows how the mean path length
computed over all 20 goals changes with the changing num-
ber and variety of the sequences in our library. It can easily
be seen from the figure that the mean path length decreases
with the increasing number of available sequences for a while
and then settles around a certain mean path length value.
Fig. 4(b) shows how the standard deviation of the mean path
length changes with the increasing number of available se-
quences, which is a measure of how consistent the solutions
are in terms of path length. Similarly, we can see from the
figure that the robot starts finding solutions that have con-
sistently lower path lengths as the variety of the available
sequences increases. These figures are good indicators for
the robot to understand when it has learned enough variety
of sequences to solve a decent number of push manipulation
problems for a specific object.

(a) Change of the mean path length with the increasing
variety of sequences computed over 10 trials for each
of the 20 goals.

(b) Change of the standard deviation of the mean path
length with the increasing variety of sequences com-
puted over 10 trials for each of the 20 goals.

Figure 4: Evaluation results of the increasing num-
ber of available sequences for the chair object. An
increasing variety of available sequences results in
consistently generated shorter paths.

Separate sets of sequences are learned and stored for each
of our pushable objects. Fig. 5 demonstrates the generated
achievable and collision-free plans from initial (S) to goal (G)
poses for three of those objects, namely a chair, a food tray,
and a pushable serving tray, by using their corresponding
sequences as building blocks. As it can be seen from these
screenshots, our experiment environment is much bigger and
much more cluttered compared to the problem setups used in
many of the related studies surveyed in Section 2. Consider-
ing the long distances that the robot is expected to navigate
the object for, it is inevitable to have the object digress from
its foreseen path during plan execution and for the robot to

76



(a) (b) (c)

(d) (e) (f)

Figure 5: Generated plans (visualized as blue ghost figures over the pink path) using past experience for
different pushable objects, namely a chair ((a) and (d)), a food tray ((b) and (e)), and a pushable serving
tray ((c) and (f)) in very challenging environments cluttered with obstacles and other objects. The object
of interests are pointed with red arrows and desired goal are pointed with green arrows in (a), (b), and (c).
The robot’s path to reach the next sequence to replay is depicted in blue (best viewed in color).

re-plan to guarantee the safe transportation of the object.
In these three particular instances shown in Fig. 5, the robot
had to re-plan for 4.33 times on the average.

It must be noted that we did not provide any explicit
mathematical models or make use of physics engines for
neither the pushable objects nor the robot. Our proposed
method is able to handle any pushable object after the robot
experiments with them to learn how they move in response
to various pushes.

4.1 Moving to the Real World
In addition to the detailed study we did in simulation, we

also ran some preliminary tests in a physical setup where our
CoBot robot [16, 2] was asked to arrange a set of chairs in a
predefined seating formation around a round table, some of
which were already in place. Fig. 6 shows a snapshot from
the physical setup in which we tested our proposed method.

There are a number of challenges that need to be ad-
dressed when switching from the simulated environment to
the physical one. The first one is the construction of the
world model. In simulation, we get the global pose infor-
mation of all the objects in the environment directly from
the simulator. However, in the physical setup, the robot’s
global pose information comes from the localization mod-
ule, which can be quite noisy compared to the perfect in-
formation received in simulation. The pose of the chair is
computed relative to the robot; hence, the calculated global
pose of the chair is affected by the noise in the localization
estimation of the robot. In order to make it easier to detect
the chair visually, we placed Augmented reality (AR) tags
on both sides of the back of the chair (Fig. 6), which are
visible most of the time from almost all directions. How-
ever, perception is not perfect either; therefore, additional
noise comes from the perception of the AR tags. The sec-
ond challenge is the maintenance of a reliable world model

at all times. Since the Kinect sensor is placed at a certain
location on the robot with a certain angle to satisfy multiple
requirements, and the field of view of the camera is limited,
the AR tags cannot be seen anymore when the robot gets
very close to the object to push it. Those cases need to be
covered by a good tracker so that the robot can still have
an idea of where the object is even if it is not visible within
the robot’s field of view.

Figure 6: A snapshot from one of the real world ex-
periments, where the task of the robot is to arrange
the chairs around the round table. Visualization of
the setup in simulation is provided on the top left
corner of the image.

During our preliminary tests, the robot was, in general,
able to construct a decent world model by combining its
perception with its localization information to generate and
execute push-manipulation plans. Even though we have not
performed detailed experiments in this setup, we observed
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that there was an overall increase in the frequency of re-
planning due to the increased uncertainty in both perception
and action in real world.

5. CONCLUSION AND FUTURE WORK
Push-manipulation is one of the most interesting robotic

manipulation modalities that has attracted many researchers.
However, many of the proposed methods handle objects
with quasi-static properties and primitive geometric shapes,
yet they usually make use of complex mathematical mod-
els or utilize specialized physics engines to predict the out-
comes of various pushes. On the other hand, we propose
an experience-based approach that does not require any ex-
plicit mathematical model or the help of a physics engine.
Our mobile robot simply experiments with pushable com-
plex 3D real world objects to observe and memorize their
motion characteristics together with the associated uncer-
tainties in response to various pushing actions. It then uses
this incrementally built experience as building blocks of a
sampling based planner to construct push plans that are
safe and achievable. In contrast to the proposed approaches
in the literature, in our contribution,

• we handle real world objects with complex 3D shapes
that may contact the robot on more than one point,

• the manipulated objects move on freely-rolling caster
wheels and do not stop immediately after the pushing
is ceased,

• the experiment environment is cluttered with obsta-
cles; hence, achievable and collision-free plans should
be constructed and manipulation should to be per-
formed delicately,

• we do not use any explicit mathematical models or
learn a mapping between the trajectories of the robot
and the object; we only utilize the experimented and
observed effects of the past pushing motions to antici-
pate the future, plan, and act accordingly.

We extensively tested our method in a realistic 3D sim-
ulation environment and performed some preliminary tests
in a physical setup, where a variety of pushable objects with
freely rolling caster wheels need to be navigated among ob-
stacles to reach their desired final poses. Our experiments
demonstrate safe transportation and successful placement of
several pushable objects in simulation and promising results
for the task of chair arrangement in real world.

Future work includes extensive testing and detailed exper-
imentation in the physical setup, partially repairing plans
instead of complete re-planning, performing subset selection
among the reliable sequences to find the minimum set of
useful ones, expanding the skill set of the robot by accumu-
lating new experiences over time, and transferring learned
manipulation sequences among objects with similar proper-
ties.
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