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ABSTRACT
Computing equilibria of games is a central task in computer
science. A large number of results are known for Nash equi-
librium (NE). However, these can be adopted only when
coalitions are not an issue. When instead agents can form
coalitions, NE is inadequate and an appropriate solution
concept is strong Nash equilibrium (SNE). Few computa-
tional results are known about SNE. In this paper, we first
study the problem of verifying whether a strategy profile is
an SNE, showing that the problem is in P . We then design
a spatial branch–and–bound algorithm to find an SNE, and
we experimentally evaluate the algorithm.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non–cooperative)

1. INTRODUCTION
Finding solutions of strategic–form games is a central task

in computer science. The most studied solution concept is
Nash equilibrium (NE) [23]. It is appropriate when agents
play a game without any form of a priori communication,
describing a stable state in which no agent can gain more
by unilaterally changing her strategy. Any game has at
least a mixed–strategy NE, but searching for it is PPAD–
complete [9] even with two agents [7]. It is known that
PPAD ⊆ NP (PPAD /⊆ NP–complete unlessNP = co–NP)
and it is generally believed that PPAD ≠ P . Thus the
worst–case complexity of finding an NE is exponential in
the size of the game. Various methods have been adopted to
compute NEs, e.g., two–agent games can be solved by linear
complementarity mathematical programming (LCP) [18], sup-
port enumeration (PNS) [20], or mixed–integer linear pro-
gramming (MILP) [22].

The NE concept is inadequate when agents can a priori
communicate, being in a position to form coalitions and de-
viate multilaterally in a coordinated way. The strong Nash
equilibrium (SNE) concept strengthens the NE concept by
requiring the strategy profile to be resilient also to multilat-
eral deviations, including the grand coalition [2]. However,
differently from NE, an SNE may not exist. It is known
that searching for an SNE is NP–hard, but, except for the
case of two–agent symmetric games, it is not known whether
the problem is in NP [8]. Furthermore, to the best of our
knowledge, there is no algorithm to find an SNE in general
games. The algorithms known in the literature search only
for pure–strategy SNEs with specific classes of games, e.g.,
congestion games [17, 16, 21], connection games [10], and
maxcut games [14].

In this paper, we provide a study of verifying and com-
puting an SNE. Our main contributions are as follows.

● Verification. We show that verifying whether a strat-
egy profile in an n–agent game is weakly Pareto effi-
cient is in P . We do this by reducing it to the multi–
agent minmax problem where the number of actions
of the agent whose minmax value is to be computed
is bounded [15]. Thus, verifying whether a strategy
profile is an SNE is in P and finding an SNE is in NP.
The same holds for approximate SNEs.

● Computation. We exploit the verification problem to
design an algorithm to search for an SNE. For sim-
plicity, we focus on two–agent games (in principle, our
algorithm can be extended to games with more agents)
and we design a spatial branch–and–bound algorithm
that iterates between the computation of an NE by an
oracle and the verification of an SNE. In addition, we
show how our algorithm can be improved when the ora-
cle used to find an NE is MIP Nash [22] (extending this
algorithm to polymatrix games is straightforward).

● Experimental evaluation. We show that the ubiqui-
tous benchmark testbed for NE, GAMUT [19], is not
a suitable testbed for SNE because all the instances are
easy: if they admit SNEs, then there is always a pure–
strategy SNE. Thus, we design a generator whose in-
stances admit only mixed–strategy SNEs. With these
instances we experimentally evaluate our algorithms.

● Mixed–strategy multilateral deviations. We show that,
differently from what happens with NE, we cannot for-
mulate the conditions of an SNE by a finite set of con-
straints, one for each pure–strategy uni/multi–lateral
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deviation. Rather, mixed–strategy multilateral devi-
ations must be taken into account. This opens the
question, left open in this paper, whether or not it
is possible to formulate the (necessary and sufficient)
conditions of an SNE as a finite set of constraints.

2. GAME–THEORETIC PRELIMINARIES
A strategic–form game is a tuple (N,A,U) where [23]:

● N = {1, . . . , n} is the set of agents (we denote by i a
generic agent),

● A = {A1, . . . ,An} is the set of agents’ actions and Ai is
the set of agent i’s actions (we denote a generic action
by a, and by mi the number of actions in Ai),

● U = {U1 . . . ,Un} is the set of agents’ utility arrays
where Ui(a1, . . . , an) is agent i’s utility when the agents
play actions a1, . . . , an.

Without loss of generality, maxa1,...,an{Ui(a1, . . . , an)} = 1
and mina1,...,an{Ui(a1, . . . , an)} = 0 for every i ∈ N . We de-
note by xi the strategy (vector of probabilities) of agent i
and by xi,a the probability with which agent i plays ac-
tion a ∈ Ai. We denote by ∆i the space of strategies over
Ai, i.e., vectors xi where the probabilities sum to 1.

The central solution concept in game theory is NE. A
strategy profile x = (x1, . . . ,xn) is an NE if, for each i ∈ N ,
xT

i Ui∏j≠i x−j ≥ x′Ti Ui∏j≠i x−j for every x′i ∈ ∆i. Every
finite game admits at least an NE in mixed strategies. The
problem of finding an NE can be expressed as an NLCP:

xi ≥ 0 ∀i ∈ N (1)

1vi −Ui ⋅ ∏
j≠i

xj ≥ 0 ∀i ∈ N (2)

x
T
i ⋅ (1vi −Ui ⋅ ∏

j≠i

xj) = 0 ∀i ∈ N (3)

1
T ⋅ xi = 1 ∀i ∈ N (4)

Here vi is the expected utility of agent i. Constraints (1)
and (4) state that every xi ∈ ∆i. Constraints (2) state that
no pure strategy of agent i gives expected utility greater
than vi. Constraints (3) state that each agent plays only
optimal actions. We denote by suppi the support of the
strategy of agent i, i.e., the set of actions played with strictly
positive probability by i, while supp denotes the support
profile of all the agents. An approximate NE, called ǫ–NE,
is a strategy profile x in which no agent can improve its
utility more than ε > 0 by unilaterally deviating.

In [2], Aumann introduced the concept of SNE. An SNE
strengthens the NE concept requiring the strategy profile to
be resilient also to multilateral deviations by any coalition
of agents. That is, in an SNE no coalition of agents can
deviate in a way that strictly increases the expected utility
of each member of the coalition, again keeping the strategies
of the agents outside the coalition fixed. An SNE is an NE
and it is weakly Pareto efficient for each possible coalition.
Differently from NE, SNE is not assured to exist (even in
mixed strategies), as shown in the following example.

Example 2.1. Consider the game in Fig. 1: we report the
bimatrix (left) and the Pareto frontier (right). The unique
NE is (a2, a4), but it is strictly Pareto dominated by (a1, a3).

Finally, an approximate SNE, called ε–SNE, is a strategy
profile x in which no agent can gain more than ε > 0 by uni-
laterally or multilaterally deviating, where the only allowed
multilateral deviations are those in which all the members
of the coalition strictly improve their utility [11].

agent 2

a
g
e
n
t

1 a3 a4

a1 3,3 0,5

a2 5,0 1,1

0

1

2

3

4

5

0 1 2 3 4 5

b NE

E[U1]

E
[U

2
]

Figure 1: Example of game (prisoner’s dilemma)
without any SNE (left) and Pareto frontier (right).

3. SNE VERIFICATION
Verifying whether a given solution x is an NE is easy for

two reasons:

1. the conditions for a strategy profile to be an NE can be
formulated as a set of finite constraints, i.e., (1)–(4);

2. once the strategy variables x in (1)–(4) have been as-
signed values of x, the constraints are linear in vari-
ables v1 and v2 and then they are easily solvable.

With SNEs it is not clear whether the two above points
hold. Although the NE concept requires that a strategy
must be the best w.r.t all the mixed strategies, it is suffi-
cient to require that a strategy is the best w.r.t. all the
pure strategies. We show that in the case of SNE, this is
not sufficient. For clarity, we focus on two–agent games. In
an SNE, in addition to the NE constraints, we need to as-
sure that the agents cannot strictly improve their expected
utilities by multilaterally deviating. Limiting the multilat-
eral deviations to pure–strategy deviations is equivalent to
requiring that there is no pure outcome that provides both
agents with strictly better utilities. We show in the following
example that this condition is not sufficient for SNE.

Example 3.1. Consider the game in Fig. 2. There are
three NEs: one pure, (a3, a6), and two mixed, ( 1

2
a1+

1

2
a2,

1

2
a4+

1

2
a5) and ( 1

7
a1 +

1

7
a2 +

5

7
a3,

1

7
a4 +

1

7
a5 +

5

7
a6). Focus on

(a3, a6): there is no outcome achievable by pure–strategy
multilateral deviations providing both agents a utility strictly
greater than 1. For instance, (a1, a4) is better for agent 1
than (a3, a6), but it is not for agent 2. With (a2, a4) we
have the reverse. However, (a3, a6) is not weakly Pareto ef-
ficient, as shown by the Pareto frontier in the figure. Indeed,
( 1

2
a1+

1

2
a2,

1

2
a4+

1

2
a5) strictly Pareto dominates (a3, a6). In-

stead, the former being on the Pareto frontier, it is an SNE.
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Figure 2: Example of two–agent game (left) and its
Pareto frontier (right).

We show that formulating the SNE constraints on the ba-
sis of only pure–strategy multilateral deviations is not sat-
isfactory even taking into account the sum of the agents’
utilities. (The same holds when a generic function of the
agents’ utilities is employed in place of the sum.)
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Example 3.2. Consider the game in Fig. 3, where ρ is
an arbitrarily small positive value. There is a unique NE,
(a3, a6), and this NE is weakly Pareto efficient being on the
Pareto frontier. Notice that the sum of the agents’ utilities
at (a3, a6) is strictly smaller than the sum at (a1, a4).

agent 2

a4 a5 a6

a
g
e
n
t

1 a1 5,0 0,0 0, ρ

a2 0,0 0,5 0, ρ

a3 ρ,0 ρ,0 2,2

0

1

2

3

4

5

0 1 2 3 4 5

b SNE

E[U1]

E
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2
]

Figure 3: Example of two–agent game (left) and its
Pareto frontier (right).

The above examples show the need for taking into account
multilateral deviations in mixed strategies. This could pre-
vent one from formulating the SNE conditions as a finite set
of constraints where each constraint is related to a pure–
strategy (unilateral/multilateral) deviation, and argues for
considering the entire Pareto frontier. Finite constraints ex-
pressing the membership of a solution to the Pareto frontier
can be derived by using Karush–Kuhn–Tucker conditions [5],
but, in the case of non–linear non–convex objective functions
as is the case with SNE, the set of constraints is only neces-
sary and not sufficient (and therefore we have no guarantee
that a strategy is on the Pareto frontier). Nevertheless, al-
though it is not clear whether one can formulate the SNE
problem with a set of finite constraints as in the case of NE,
we can show that the SNE verification problem is tractable.

We first study the problem of verifying whether a given
solution is weakly Pareto efficient.

Theorem 3.3. Given an n–player game with rational pay-
offs and a strategy profile x = (x1, . . . ,xn) with rational prob-
abilities, the problem of verifying whether x is weakly Pareto
efficient is in P when n is constant.

Proof. Recall that x is weakly Pareto efficient if

/∃ x
′ = (x′1, . . . ,x′n),x′i ∈∆i, /∃ φ > 0 ∶

∀i ∈ N,x′i ⋅Ui ⋅ ∏
j≠i

x
′
j −xi ⋅Ui ⋅ ∏

j≠i

xj ≥ φ (5)

The structure of the proof of theorem is the following:

● (Step 1 ) we show that the problem of verifying whether
x is weakly Pareto efficient is equivalent to the problem
of verifying whether the minmax value of a fictitious
agent vs. the set N of agents is non–negative;

● (Step 2 ) we show that the problem of verifying whether
the minmax value of a fictitious agent vs. the set N of
agents is non–negative is in P .

Next we discuss these two steps in detail.
Step 1. Focus on xi ⋅ Ui ⋅∏j≠i xj : it is a rational value

expressing the expected utility of agent i given strategy pro-
file x. Call Ũi = M1 ⋅ (xi ⋅ Ui ⋅∏j≠i xj) − Ui, where M1 is a
multidimensional array of ones. We can show that

x
′
i ⋅ Ũi ⋅ ∏

j≠i

x
′
j = x

′
i ⋅M1 ⋅ (xi ⋅Ui ⋅ ∏

j≠i

xj) ⋅∏
j≠i

x
′
j − x

′
i ⋅Ui ⋅ ∏

j≠i

x
′
j

= (xi ⋅Ui ⋅ ∏
j≠i

xj) ⋅ x
′
i ⋅M1 ⋅ ∏

j≠i

x
′
j − x

′
i ⋅Ui ⋅ ∏

j≠i

x
′
j

= xi ⋅Ui ⋅ ∏
j≠i

xj −x
′
i ⋅Ui ⋅ ∏

j≠i

x
′
j

given that x′i ⋅M1 ⋅∏j≠i x
′
j = 1 because it is a (non–convex)

combination of ones. Thus, we can write the condition x′i ⋅
Ui ⋅∏j≠i x

′
j −xi ⋅Ui ⋅∏j≠i xj ≥ φ in (5) as x′i ⋅ Ũi ⋅∏j≠i x

′
j ≤ −φ.

Now, we consider the following optimization problem

min
γ,x′

i
i∈N

γ (6)

γ ≥ x
′
i ⋅ Ũi ⋅ ∏

j≠i

x
′
j ∀i ∈ N (7)

1
T ⋅ x′i = 1 ∀i ∈ N (8)

x
′
i ≥ 0 ∀i ∈ N (9)

This minimizes the value of γ subject to the constraint that
γ cannot be smaller than x′i ⋅ Ũi ⋅∏j≠i x

′
j for every i ∈ N .

If the optimal value γ∗ is strictly smaller than zero, then
x′i ⋅ Ũi ⋅∏j≠i x

′
j < 0 for every i ∈ N and therefore there exists

φ > 0 such that x′i ⋅ Ũi ⋅∏j≠i x
′
j ≤ −φ. That is, if γ∗ < 0, then

x is strongly Pareto dominated. Instead, if γ∗ = 0 (it can be
observed that γ∗ is never strictly positive), we cannot find
such a φ and therefore x is weakly Pareto efficient.

Problem (6)–(9) can be interpreted as the minmax prob-
lem in which all the agents i ∈ N minimize (without cor-
relation) the maximum value of a fictitious agent if (the
n + 1–th): the fictitious agent if has n actions and each

action i provides an expected utility of x′i ⋅ Ũi ⋅∏j≠i x
′
j .

Step 2. Here we consider the problem of verifying whether
the minmax value of an agent with n available actions against
n opponents, each agent i with mi =m actions, is (strictly)
smaller than a value (in our case zero) when n is given.
In [15], the authors show that such a problem can be solved

in time LO(1)
⋅ k

O(k1⋅k2)
1

⋅ k
k1 ⋅k2
3

where:

● L is the bit complexity of the game;

● k1 is the total number of agents (in our case, k1 = n+1);

● k2 is the number of actions available to the agent whose
minmax value is to be computed (in our case, k2 = n);

● k3 is the number of actions available to the other agents
(in our case, k3 =m).

As a result, we have LO(1)
⋅ (n+ 1)O(n

2)
⋅mn2+n. Given that

in our problem k1 = k2 = n and n is fixed, the computa-
tional complexity is polynomial in the size of the game. To
complete the proof of the theorem, we need to show even
when each agent i ∈ N has a potentially different number of
actions mi, the computational complexity stays polynomial.
Let m =maxi∈N{mi} be the maximum number of actions a
(non–fictitious) agent can have, and let i = argmaxi∈N{mi}.
For each agent i ∈ N, i ≠ i, we can add m − mi fictitious
actions and we can associate each outcomes induced by fic-
titious actions with 1 for the fictitious agent (recall from
Section 2 that the maximum utility of each agent is 1). In
this way, each agent i ∈ N has the same number m of actions
and the extra actions do not affect the computation of the
minmax value, agents never playing the extra ones. ◻

The algorithm for verifying whether strategy profile x is
weakly Pareto efficient can be obtained by adapting the al-
gorithm presented in [15] to our problem. It is reported in
Algorithm 1 where
ψ(N,x, supp) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋀i∈N (∑a1∈supp1
. . .∑an∈suppn

(Ũi(a1, . . . , an) ⋅ ∏k∈N x
′
k,ak

< 0)) ∧
⋀i∈N (∑ai∈suppi

x′i,ai
= 1) ∧

⋀i∈N,ai∈suppi
(x′i,ai

≥ 0)
The algorithm enumerates (by means of enumerate) all the
possible joint supports of size n, because, as shown in [15],
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there always exists a minmax strategy for the problem (6)–
(9) in which all the agents i ∈ N randomize over at most
a number of actions equal to the number of actions of the
agent whose minmax value is to be computed (in our case,
n). Thus we need to enumerate ∏i∈N (

mi

n
) different joint

supports of size n. For each joint support, we need to eval-
uate formula ψ and we can do that by using the algorithm
presented in [4]. If ψ is true, then there is a strategy profile
x′ that Pareto dominates the input x.

Algorithm 1 verifyPareto(N,{Ui}i∈N ,x)
1: E ←Ð enumerate(supp1, . . . , suppn ∶ ∀i, ∣suppi∣ = n)
2: for all elements of E do

3: if ∃(x′1, . . . ,x′n) ∈ R
n2

∶ [ψ(N,x, supp)] then

4: return (false,x′)

5: return (true,∅)

We leverage Theorem 3.3 to state the following.

Theorem 3.4. Given an n–player game with rational pay-
offs and a strategy profile x = (x1, . . . ,xn) with rational prob-
abilities, verifying whether x is an SNE is in P when n is
constant.

Proof. Strategy profile x is an SNE if:
● (Condition 1 ) it is an NE,

● (Condition 2 ) for every N ′ ⊆ N , (xi ∶ i ∈ N
′) is weakly

Pareto efficient once the strategies xj of all the other
agents j ∈ N ∖N ′ are fixed.

Checking Condition 1 is easy; it is checking whether or not
a polynomial number of constraints is satisfied. Checking
Condition 2 requires one to verify whether O(2n) strategy
profiles are weakly Pareto efficient where n is given. Check-
ing weak Pareto efficiency is easy as Theorem 3.3 shows and
the number of verification problems is a constant in the size
of the problem, n being fixed. ◻

The algorithm to verify whether (x1, . . . ,xn) is an SNE
is reported in Algorithm 2. It enumerates all the possible
coalitions of agents (except the empty coalition), and for
each coalition it verifies whether the coalition strategy is
weakly Pareto efficient. If it is not, the algorithm returns
the coalition N ′ for which a multilateral deviation is possible
and a strongly Pareto dominant coalition strategy x′ (notice
that x′ is not assured to be weakly Pareto efficient).

Algorithm 2 verifySNE(x)
1: E ←Ð enumerate(N ′ ⊆ N ∶N ≠ ∅)
2: for all element of E do

3: x
′′ = (xi)i∈N ′

4: (ϑ,x′) ←Ð verifyPareto(N ′, {Ui∏j/∈N ′ xj}i∈N ′ ,x
′′)

5: if ¬ϑ then

6: return (false,N ′,x′)

7: return (true,∅,∅)

From Theorem 3.4, we can state the following.

Corollary 3.5. Given an n–player game, the problem
of finding an SNE is in NP when n is constant.

Combining Corollary 3.5 with the hardness result presented
in Corollary 5 of [8], we can state the following.

Corollary 3.6. Given an n–player game, the problem
of finding an SNE is NP–complete when n is constant.

Corollary 3.6 pushes (unless P = NP) for the case in which
the size of the smallest support of the SNEs rises in mini{mi};
otherwise the existence of an SNE could be verified by enu-
merating a number of supports that is polynomial in the size
of the game, thus requiring polynomial time. However, the
corollary can be proven regardless of whether P = NP:

Corollary 3.7. It is possible to construct n–agent game
instances with (m1, . . . ,mn) actions s.t. the size of the small-
est support of the SNEs is Ω(mini{mi}).

Proof. It is possible to find instances in which the unique

SNE has a support per agent with size mini{mi}

2
, see [1]. ◻

The above results can be easily extended to the case of
ε–SNE. In order to verify whether a strategy profile x is
weakly ε–Pareto efficient, it is enough to substitute < 0 with
< ε in the first row of ψ. The verification of an ε–SNE is the
same of SNE except that we need to verify weak ε–Pareto
efficiency instead of weak Pareto efficiency. Thus, the same
results in Theorems 3.3 and 3.4 and Corollaries 3.5, 3.6, 3.7
stated for SNE hold also for ε–SNE.

4. SNE FINDING WITH 2 AGENTS
With non–degenerate games, a simple algorithm to find an

SNE is to enumerate the NEs and to verify whether there
is an SNE. However, NE enumeration is #P–hard [8], while
SNE finding is NP–complete. Thus it should likely be pos-
sible to design more efficient algorithms. Here we explore
alternative better approaches that also work when there is
a continuum of equilibria.

4.1 Basic algorithm
Given the difficulties in deriving a finite set of (necessary

and sufficient) constraints for the membership of a strategy
to be in the Pareto frontier, we propose an algorithm that
iterates between the computation of an NE and the verifi-
cation of an SNE. Basically, the algorithm will compute an
NE and verify whether or not it is an SNE. If not, it will
compute a new NE excluding the space of strategies that are
dominated by strategy profile found during the SNE verifi-
cation. This process repeats until an SNE is found or it is
proven that none exists. Our idea is supported by the ex-
perimental evaluation presented in [22], where the authors
show that the compute time to find an NE (even optimal)
is negligible w.r.t. the compute time to enumerate all the
NEs, so calling an NE–finding oracle a number of times can
be faster than enumerating all the NEs.

The algorithm we propose is essentially a spatial branch–
and–bound algorithm. For simplicity, we focus on the case
with two agents. A state is denoted by s and the set of states
by S. Each state s is associated with a convex subspace Vs

of the solution space of the problem (1)–(4). Specifically, Vs

is defined by box constraints over v1 and v2: v1,s ≤ v1 ≤ v1,s

and v
2,s ≤ v2 ≤ v2,s (where vi and vi are the upper and lower

bounds respectively of the box). We denote by s0 the state
in which vi = U i and vi = U i for every i ∈ N , where U i and

U i are respectively the minimum and maximum entries of
Ui. Any SNE, if exists, is in Vs0 .

Algorithm 3 findingSNE

1: S ←Ð initialize
2: repeat

3: s ←Ð remove(S)
4: (ϑ,x)←Ð findNE(s)
5: if ϑ = true then

6: (ϑ, ⋅,x′) ←Ð verifySNE(x)
7: if ϑ = true then

8: return x

9: S = S ∪ branch(s,x′)
10: S ←Ð filter(S)
11: until S is empty

12: return false
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The algorithm is reported in Algorithm 3 and works as
follows. At Step 1, set S is populated with the initial states.
Then the algorithm repeats Steps 3–10 while S is not empty.
At Step 3 a state s is removed from S and at Step 4 an oracle
is called to find an NE in subspace Vs. If there is such an NE
x, at Step 6 the algorithm verifies whether x is an SNE and,
in the affirmative case, x is returned. In the negative case
in which x is Pareto dominated by x′, at Step 9 new states
are generated from the current state s in which the subspace
dominated by x′ is excluded. At Step 10, redundant states
in S are pruned. We now discuss the subroutines that the
algorithm calls in more detail.
S ←Ð initialize: Generates the initial set S of states. We

consider two possible initializations. In the first (init1 ),
we assign S = {s0}. In the second (init2 ), we compute all
the pure–strategy profiles that are resilient to pure–strategy
multilateral deviations. This can be done in polynomial
time by comparing agents’ utilities provided by each out-
come w.r.t. the agents’ utilities provided by all the other
outcomes. Call X the set of pairs (v̂1,h, v̂2,h) of the agents’
expected utilities given by these strategy profiles. We gen-
erate a number of states to exclude the subspace dominated
by the elements in X. Order the elements of X in increasing
order of v̂1,h and call h the number of elements in X. The

following states s are generated: for every h ∈ {1, . . . , h − 1}
a state s is generated with Vs = [v̂1,h, v̂1,h+1] × [v̂2,h+1,U2];
two additional states with zero–measure Vs are generated,
the first with Vs = [U1

, v̂1,1] × [v̂2,1, v̂2,1], the second with
Vs = [v̂1,h

, v̂
1,h
] × [U

2
, v̂

2,h
]. With respect to init1, init2 ex-

cludes some dominated subspaces avoiding the algorithm to
search for an NE in such subspaces, but, on the other hand,
it can introduce a large number of states requiring the algo-
rithm to call the NE–finding oracle many more times.

Example 4.1. Consider the game reported in Fig. 4. We
show the composition of X when init2 is used. X is com-
posed by four elements ω1, ω2, ω3, ω4. The generated states
s1, s2, s3 are reported in the figure as boxes delimited by dashed
lines: Vs1 = [3,3.4] × [3.4,5], Vs2 = [3.4,5] × [3,5], Vs3 =
[5,10] × [0,5] (for simplicity we omit the states with zero–
measure Vs in what follows).

s ←Ð remove(S): Receives the set of states S as input,
removes a state s from S according to some given strategy
(e.g., depth first, breadth first, random), and returns s.
(ϑ,x) ←Ð findNE(s): Receives a state s as input, searches

for an NE in the subspace bounded by Vs, and returns
ϑ = true and an NE x, if there is an NE where agents’ utilities
are in Vs, and ϑ = false, otherwise. The introduction of con-
straints Vs makes some algorithms available in the literature
to find an NE not to be applicable, e.g., the Lemke–Howson.
NE–finding oracles can be: PNS, LS–PNS [6], MIP Nash.

Example 4.2. In Fig. 4: findNE(s1) would return the NE
with v1 = v2 = 3.4; findNE(s2) could return either the NE re-
turned with s1 or the mixed NE with v1 = v2 = 4; findNE(s3)
would return the NE with v1 = 8.2 and v2 = 0; findNE(s)
with s ∈ {s4, s5, s6} would return no NE; findNE(s7) would
return the mixed NE with v1 = v2 = 4.

S′ ←Ð branch(s,x): Receives a state s and a strategy pro-
file x and returns a number of new states in which the sub-
space dominated by x is excluded. The generation of the new
states is as follows. Call v̂1,s and v̂2,s the expected utilities of
agents 1 and 2 respectively provided by x given as input. A
new state s′ is generated with Vs′ = [v1,s,min{v1,s, v̂1,s}] ×

[v̂2,s, v2,s] and, if min{v1,s, v̂1,s} ≠ v1,s, a new state s′′ is
generated with Vs′′ = [min{v1,s, v̂1,s}, v1,s] × [v2,s, v2,s].

Example 4.3. In Fig. 4: branch(s3,xω5) produces two
states, s4 and s5, where Vs4 = [5,8.2] × [0.4,5] (dark gray)
and Vs5 = [8.2,10] × [0,5] (light gray); branch(s2,xω6) pro-
duces two states, s6 and s7, where Vs6 = [3.4,3.7] × [3.6,5]
(dark gray) and Vs7 = [3.7,5]×[3,5] (light gray). (xωj

is the
strategy profile associated with ωj.)

S′ ←Ð filter(S): Receives the set of states S as input
and returns a set S′ subset of S after having pruned states.
If there is a pair of states s, s′ with s′ ≠ s and such that
v
1,s ≤ v1,s′ and v

2,s ≤ v2,s′ , then we can remove s and s′ and

add a new state s′′ with Vs′′ = [v1,s, v1,s′ ] × [v2,s′ , v2,s′ ].

Example 4.4. In Fig. 4: suppose S = {s1, s4, s5, s6, s7}.
States s1 and s6 can be removed and state s8 with Vs8 =
[3,3.7] × [3.6,5] can be added.

Theorem 4.5. Algorithm 3 is sound and complete.

Soundness is by definition of findNE and of verifySNE. Com-
pleteness is due to filter and branch removing only Pareto-
dominated solution subspaces. When NEs are finite, Algo-
rithm 3 terminates in finite time. In the next section, we
propose a variation able to deal also with games admitting
a continuum of NEs (however, while Algorithm 3 can be, in
principle, extended to the case with more than two agents,
it is not clear whether the algorithm described in the next
section can be extended to such case).

4.2 Iterated MIP 2StrongNash
By exploiting MILP tools we can avoid having to spatially

branch the solution space into subspaces. We call this new
algorithm iterated MIP 2StrongNash, given that it exploits
iteratively a slightly modified version of MIP Nash for SNE.
It is reported in Algorithm 4. With this algorithm, we have a
unique state at each iteration and, instead of generating ad-
ditional states, we add non–convex constraints. The branch
and bound process per state is relegated to the MILP solver.

Algorithm 4 Iterated MIP 2StrongNash

1: initialize
2: while true do

3: (ϑ,x)←Ð findNE
4: if ϑ = false then

5: return false
6: (ϑ, ⋅,x′) ←Ð verifySNE(x)
7: if ϑ = true then

8: return x

9: branch

10: filter

The core of this algorithm is the MIP Nash formulation [22]
for the computation of an NE (findNE):

constraints (1), (2), (4)

1vi −Ui ⋅ x−i ≤ Ui ⋅ (1 − bi) ∀i ∈ N (10)

xi ≤ bi ∀i ∈ N (11)

bi ∈ {0, 1}mi ∀i ∈ N (12)

Given that the above program is a MILP, integer and/or
linear constraints can be easily added. We now describe the
subroutines employed in the algorithm.

initialize. In the case of init1, no additional constraint is
added. In the case of init2, after having found X, we add
three constraints for each element (v̂1,k, v̂2,k):

727



agent 2
a8 a9 a10 a11 a12 a13 a14

a
g
e
n
t

1

a1 5, 0 5, 3 3, 5 −10,−10 −10,−10 −10,−10 −10,−10
a2 0, 0 3, 5 5, 3 −10,−10 −10,−10 −10,−10 −10,−10
a3 10, 0 5, 0 0, 1 −10, 1 −10,−10 −10,−10 −10,−10
a4 −10,−10 −10,−10 −10,−10 8.2, 0 −10,−10 −10,−10 −10,−10
a5 −10,−10 −10,−10 −10,−10 −10,−10 2, 2 −10,−10 −10,−10
a6 −10,−10 −10,−10 −10,−10 −10,−10 −10,−10 2, 4 −10,−10
a7 −10,−10 −10,−10 −10,−10 −10,−10 −10,−10 −10,−10 3.4, 3.4
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Figure 4: Example of two–agent game (left) and its Pareto frontier (right).

v1 ≥ v̂1,k + (U1
−U1) ⋅ zk (13)

v2 ≥ v̂2,k + (U2
−U2) ⋅ (1 − zk) (14)

zk ∈ {0, 1} (15)

where constraints (13) and (14) exclude that both v1 and v2
are simultaneously smaller than v̂1,k and v̂2,k, respectively.
A different binary variable zk is introduced for each k.

branch. After having found an NE x that is Pareto domi-
nated by x′ with agents’ utilities (v̂1, v̂2), constraints (13)–
(14) are added with a new binary variable zk and v̂1,k = v̂1
and v̂2,k = v̂2.

filter. If there are two variables zk, zk′ with zk ≠ zk′ and
such that v̂1,k ≤ v̂1,k′ and v̂2,k ≤ v̂2,k′ then variable zk and
the three constraints associated with zk can be removed.

It is easy to add features to the algorithm. Here we discuss
some relevant examples of that.

Social welfare maximization. A way to find Pareto efficient
solutions is to maximize the cumulative utility of the agents.
We can do it by adding an objective function:

max v1 + v2 (16)

By employing this feature, Iterated MIP 2Strong–Nash re-
turns an optimal SNE. This feature allows the algorithm to
terminate within finite time even on degenerate games that
admit a continuum of NEs. This is because, although a con-
tinuum of NEs contains infinitely many NEs, there is only
one NE of the continuum that maximizes social welfare (in a
NE continuum, the utility of only one agent can vary). Thus,
either such an NE is an SNE and the algorithm terminates
or all the NEs of the continuum are Pareto dominated and
therefore they are all discarded in one iteration.

Upper bound over social welfare. We can exploit the social
welfare maximization also to add constraints over the solu-
tion space. Specifically, call v∗ the value of the objective
function at iteration k. We can add the constraint

v1 + v2 ≤ sw (17)

at iteration k + 1 where sw = v∗. Therefore, sw decreases
monotonically at each iteration.

Lower bound over social welfare. We can find a linear
lower bound over the social welfare as follows. We order all
the constraints (13)–(15) in increasing order of v̂1,k. Let k
to be the number of constraints (13)–(15). We define sw =
min

k∈{1,...,k−1}{v̂1,k, v̂2,k+1}. It is the lower bound on social

welfare. If sw > sw, then there is no SNE. Otherwise, we
can call findNE with an additional constraint

v1 + v2 ≥ sw (18)

Constraints (17) and (18) are redundant. However, they can
be used by the MILP solver to speed up the compute time.

5. EXPERIMENTAL EVALUATION
We experimentally evaluate the various configurations of

Iterated MIP 2StrongNash, and subsequently, due to lim-
ited space, we report our experimental observations obtained
from a preliminary comparison of such an algorithm w.r.t.
Algorithm 3 and w.r.t. a simple algorithm that combines NE
enumeration with SNE verification. We considered four con-
figurations of Iterated MIP 2StrongNash: mode 0 in which
init1 is used and no additional features are active, mode 1
in which init1 is used with the social welfare maximization
and the upper bound over the social welfare, mode 2 is as
mode 1 plus init2, and mode 3 is as mode 2 without social
welfare maximization. Although we showed that it is possi-
ble to produce instances such that each configuration is the
best and instances in which each configuration is the worst
(omitted here due to reasons of space), it is interesting to
evaluate them in the average case. We implemented the
SNE verification in the C programming language and the
NE–finding oracle in AMPL with CPLEX. We used an Intel
2.20GHz processor and Linux kernel 2.6.32.

GAMUT and SNEs. Turns out that the ubiquitous
benchmark testbed for NE, GAMUT [19], is not a suitable
testbed for SNE finding. We generated 20 instances of 2–
agent games per GAMUT game class with a number of ac-
tions per agent in {25,50}. We report in Tab. 1 the follow-
ing data for 50 actions per agent: percentage of instances
admitting an SNE (‘Y’), percentage of instances admitting
mixed–strategy SNEs (‘mY’), percentage of instances admit-
ting only mixed–strategy SNEs (‘omY’), average compute
time of Iterated MIP 2StrongNash with mode 0 (‘time’), av-
erage compute time when there is an SNE (‘time|Y’), and
average compute time where there is no SNE (‘time|N’).

Only TravellerDilemma and BertrandOlygopoly instances
never admit SNEs, whereas, with the other classes, the per-
centage of instances admitting an SNE is high on average
(with many classes, all the generated instances admit SNEs).
Interestingly, only WarOfAttrition instances admit mixed–
strategy SNEs, but no instance admits only mixed–strategy
SNEs. The results with 25 actions per agent are similar [1].
Therefore, with all the generated GAMUT instances an SNE
can be found quickly by enumerating all the pure–strategy
NEs and employing SNE verification. The time spent by
Iterated MIP 2Strong Nash to find an SNE is much longer
than the time spent by MIP Nash to find an NE, see, e.g.,
[22]. (Computing an SNE requires about 100 times the time
needed to find an NE.) As in the case of NE finding, the
hardest classes are the Covariant, Graphical, Polymatrix,
and Random. Finally, finding an SNE when it exists is sig-
nificantly faster than certifying that it does not exist.
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Novel ad hoc game instances. We design a game
generator, named mixed–strategy SNE instance generator
(MISSING), able to produce instances admitting only mixed–
strategy SNEs (see [1]). The parameters of the generator
are: number of actions per agent, SNE existence or non–
existence (in the case of existence, we have only one SNE),
size of the support of the SNE (per agent), number of non–
strong NEs (generated randomly with a social welfare that
can be larger or smaller than the SNE’s one). We gener-
ated 20 instances per combination of the following parame-
ters: m1 = m2 = m from 10 to 100, ∣supp∣ ∈ {0,2,4,6,8,10}
where ∣supp∣ = 0 means that there is no SNE, other NEs
∈ {0,2,4,6,8,10, 12}. We solved these instances with Iter-
ated MIP 2StrongNash. The main results are in Figs. 5
and 6, complete results are in [1]: the black solid line is with
no other NEs, the black dashed line is with 6 non–strong
NEs, the gray line is with 12 non–strong NEs.

Initially, we evaluate the different features of the algo-
rithm. We observed that the social welfare maximization
leads to a significant reduction of the iterations number
(about 3–4 times), but it strongly negatively affect the com-
pute time per iteration spent by the NE–finding oracle (up
to 24 times). Interestingly, we observed that the largest
increase in NE–finding compute time is in the iteration in
which the SNE is returned, while with the other iterations
the increase is smaller. This is because the SNE presents a
large support and it results harder to be found, instead the
other non–strong NEs present a small support. We observed
that the lower bound over the social welfare does not pro-
vide significant improvements with the used instances. We
observed that init2 reduces the iterations number without
increasing significantly the compute time per iteration of the
NE–finding oracle. Thus, we focus on mode 2 and mode 3,
being the most significative configurations.

It can be observed in the figures that mode 3 has the best
compute time (4 times better at m = 100). Differently from
mode 2, mode 3 does not present an exponential growth
around m = 100. Surprisingly, as the number of non–strong
NEs increases, the compute time does not increase signif-
icantly. There are two main reasons. First, a large por-
tion of time is devoted to the verification (50%–80% with
mode 3 and 10%–30% with mode 2) and almost all the ver-
ification time is spent on the verification of the SNE (this
time is the same for all the instances and modes), while the
verification of the NEs that are not SNEs requires much
less time. Second, the NE–finding oracle rapidly finds the
NEs that are not SNEs (because they have a small support
of 1 or 2), while finding the SNE (that has a much larger
support) is much harder. Thus the presence of additional
small–supported non–strong NEs produces non–significative
effects. Instead, compute time rises exponentially in ∣supp∣
of SNE. This shows the need for developing techniques to
speed up the SNE verification algorithm. It shows also that
in the average case mode 3 is the best and this is because
with mode 2 the NE–finding oracle is much more expensive.
We believe that it would be interesting to develop new game
classes combining hard GAMUT classes with MISSING in-
stances to evaluate for what classes mode 3 would still be
best and for what classes welfare maximizing is useful.

Comparison to other algorithms. We used MISSING
instances in the following comparisons.

We compared Iterated MIP 2StrongNash and Algorithm 3
when MIP Nash is the NE–finding oracle in terms of the

class Y mY omY time time|Y time|N

BertrandOlygopoly 0% 0% 0% 1963.6 s – 1963.6 s

BidirectionalLEG–RG 95% 0% 0% 29.6 s 29.6 s 8.6 s

CovariantGame–Rand 55% 0% 0% 17,701.5 s 53.9 s 39,270.9 s

CovariantGame–Zero 40% 0% 0% 3,734.1 s 1,184.2 s 5,434.1 s

GraphicalGame–Road 35% 0% 0% 15,247.7 s 495.0 s 23,191.4 s

GraphicalGame–SG 60% 0% 0% 10,217.3 s 4,029.5 s 19,498.9 s

MinimumEffortGame 100% 0% 0% 22.3 s 22.3 s –

PolymatrixGame–CG 45% 0% 0% 3,860.0 s 892.9 s 6,287.6 s

PolymatrixGame–SW 25% 0% 0% 6,950.3 s 3,478.7 s 8,107.5 s

RandomGame 45% 0% 0% 6,998.0 s 6,229.9 s 7,628.2 s

TravelersDilemma 0% 0% 0% 101.7 s – 101.7 s

UniformLEG–CG 75% 0% 0% 33.2 s 35.9 s 25.2 s

UniformLEG–SG 100% 0% 0% 8.5 s 8.5 s –

WarOfAttrition 100% 35% 0% 13.8 s 13.8 s –

Table 1: Results with 50x50 GAMUT instances:
instances that admit at least one SNE (Y), in-
stances that admit at least one mixed–strategy SNE
(mY), instances that admit only mixed–strategy
SNE (omY), compute time (time), compute time
when there is an SNE (time|Y), compute time when
there is no SNE (time|N).

compute time. Iterated 2StrongNash dramatically outper-
forms Algorithm 3—by more than one order of magnitude.
The main reason is that Algorithm 3 solves each NE–finding
subproblem on Vs independently from the others and there
is no a clear heuristic to select the next subproblem to solve.
It is interesting to observe that the relationship between It-
erated MIP 2StrongNash and Algorithm 3 with MIP Nash
as the NE–finding oracle is close to the relationship between
MIP Nash and PNS. MIP Nash deals with all the supports
together, while PNS works with each support separately.
PNS adopts a specific heuristic, scanning the supports from
smallest to largest (this holds in almost all the GAMUT in-
stances). When there is no NE with small support, PNS
is dramatically worse than MIP Nash. In our case, we did
not find a good heuristic for Algorithm 3 because for each
heuristic it is possible to design a worst–case game instance
in which the number of calls to the NE–finding oracle is
equal to the number of NEs. Thus, we selected randomly
the next state s to which apply the NE–finding oracle.

The adoption of PNS as the NE–finding oracle in Algo-
rithm 3 is not satisfactory. It beats Iterated MIP 2Strong-
Nash only when Algorithm 3 finds an SNEs by a sequence of
NE–finding subproblems, each admitting an NE with small
support. Otherwise, if some subproblem does not admit any
NE or admits one with large support, PNS must enumerate
a very large number of supports, making it slow.

Finally, we report experimental results on the employment
of SNE verification with an NE enumeration algorithm [3]
that is stopped every time an NE is found and then veri-
fied. Enumerating all the NEs, necessary when an SNE does
not exist, requires more than 300 s with 20x20 games and
does not terminate in one day with 50x50 games, while Iter-
ated MIP 2StrongNash terminates within 150 s with 100x100
games. Even when an SNE exists, we did not observe any
termination in one day with 100x100 games.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the verification (with n agents)

and computation (with two agents) of a strong Nash equilib-
rium (SNE). A number of results for Nash equilibrium (NE)
are known, but that concept is inappropriate when coalitions
are an issue. Unlike in NE finding, here mixed–strategy de-
viations must be taken into account, which makes the prob-
lem significantly more difficult. We showed that the verifica-
tion problem is nevertheless in P given an arbitrary n–agent
game, and therefore the problem of finding an SNE is inNP.
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Then, we exploited our algorithm for SNE verification to de-
sign an algorithm for finding an SNE. It is based on spatial
branch–and–bound and iterates between a NE–finding or-
acle and the verification algorithm. Finally, we experimen-
tally evaluated our algorithm. We showed that the instances
from the ubiquitous NE benchmark testbed, GAMUT, are
not suitable for testing SNE–finding algorithms because all
the instances either admit pure SNEs or do not admit any
SNE. Then we compared different configurations of our al-
gorithm using a new instance generator to identify the best
one. With these instances, it turns out that (our algorithm
for) SNE finding takes about 100 times as long as NE find-
ing. In addition, our algorithm dramatically outperforms
the approach of enumerating NEs and verifying them for
SNE; therefore it is the current state of the art for finding
mixed–strategy SNEs even when NEs are finite.

Remaining open questions include the following:

Question 6.1. How can Algorithms 3 and 4 be extended
to the case with an arbitrary number of agents [12]?

Question 6.2. Given a game with two agents and with
m actions per agent, what is the worst case number of calls
to the NE–finding oracle?

Question 6.3. Given a game with an arbitrary number
of agents, is it possible to formulate the SNE–finding problem
with a finite set of (necessary and sufficient) constraints?

Question 6.4. What is the smoothed complexity of find-
ing an SNE [13]?
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