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ABSTRACT
Many researchers of different fields are interested in building re-
silient systems that can absorb shocks and recover from damages
caused by unexpected large-scale events; however, no common
agreement on the definition of resilience exists. In this paper, we set
out to establish a new challenging research discipline that we call
“systems resilience”, which provides a set of unified design princi-
ples for building resilient systems. We define a dynamic constraint-
based agent model called SR-model, whose resilience can be eval-
uated through a range of properties.
Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization; I.2.11 [Distri-
buted Artificial Intelligence]: Intelligent agents
Keywords
Systems resilience, Dynamic system

1. INTRODUCTION
In recent years, many researchers of different fields have recog-

nized the importance of a new research discipline concerning the
resilience of complex agent systems, which can be informally de-
fined as the ability “to maintain its core purpose and integrity in the
face of dramatically changed circumstances” [4, 2, 7]. The reason
for this is that unexpected events in terms of time and scale (such as
the 3.11 earthquake in Japan, the global economic crisis, or a new
strain of virus) may cause irreversible damages to the core func-
tionality of these agent systems. The goal of resilience research is
to provide a set of general principles for building resilient systems
in various domains, such that the systems are resistant from large-
scale perturbations caused by unexpected events and changes, and
if their functionality is lost temporarily due to outside forces, the
systems can recover gracefully and quickly to restore their func-
tionality in the long run.

The concept of resilience has appeared in various disciplines
such as environmental science, materials science, sociology, and
∗This work is supported in part by the “Systems Resilient” project
of Transdisciplinary Research Integration Center.

so on. Holling [4] first introduced the concept of resilience in ecol-
ogy, and defined the resilience as the capacity of an ecosystem to
respond to a perturbation or disturbance by resisting damage and
recovering quickly. Bruneau’s [2] definition of seismic resilience
for disaster prevention elaborates the concept of the resilience by
introducing quantitative measures, which compute the "triangular"
area of the degradation of the functionality of the system over time.
In Artificial Intelligence, similar concepts to resilience, such as sta-
bilizability [6] and maintainability [1] have also been proposed by
other researchers within the structure of Discrete Event Systems.

However, while we have seen many examples of seemingly re-
silient systems in various fields, researchers have not agreed on
a common definition on resilience among the different domains
yet. The challenging research topic that we call here “systems re-
silience” is to provide a set of unified design principles for building
resilient systems. Our first step is to define a novel system model,
which we will call the SR-model.

The significant aspects of our SR-model are as follows. The def-
inition of the SR-model allows the system to change dynamically
over time, such that the variables, domains, constraints, and config-
urations of the system can evolve based on the decisions made by
agents and/or outside environmental events. The flexibility of our
SR-model allows the modeling of the dynamicity of systems that is
required in many domains. In comparison, Constraint Satisfaction
Problems (CSPs) have been applied traditionally in closed-world
scenarios, where all choices and constraints are known from the
beginning and fixed. A notion of Open CSP (OCSP) was investi-
gated in [3]. In OCSP, the set of variables is closed but the domains
are open, that is, extra values can be added to variable domains.
However, it is more appropriate for handling dynamic real-world
problems that all possible changes to a CSP can be expressed, i.e.,
add/remove constraints, domains and variables.

Then, given a configuration trajectory (i.e., a chain of assign-
ments of values over the variables of a dynamic system over time),
our SR-model enables us to measure four important properties that
are central to the idea of resilience:
• Resistance: The ability to maintain some underlying costs un-
der a certain “threshold”, such that the system satisfies certain hard
constraints and does not suffer from irreversible damages.
• Recoverability: The ability to recover to a baseline of acceptable
quality as quickly and inexpensively as possible.
• Functionality: The ability to provide a guaranteed average degree
of quality for a period of time.
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• Stabilizability: The ability to avoid undergoing changes that
are associated with high transitional costs.

A dynamic system is resistant, recoverable, functional, or stabi-
lizable if one can find a “strategy” and a configuration trajectory
within this strategy that is resistant, recoverable, functional, or sta-
bilizable. Following the concept of resilience in most related litera-
ture, for our SR-model we define a resilient dynamic system as one
that satisfies all properties of resistance, recoverability, functional-
ity, and stabilizability1.

Next we will define our SR-model, and show an example of how
it can be used to evaluate the robustness of a system, and afterwards
discuss open questions that are important for future research.

2. SR-MODEL
In the following, we are given a finite set of variables X =

{x1, x2, . . . } and a finite domain D.

DEFINITION 1 (SYSTEM, CONFIGURATION). A system S is
a tuple ⟨X, dom, c⟩ where X ⊆ X is the set of variables of S,
dom is a domain function, that is a mapping associating every
variable xi ∈ X with its domain dom(xi) ⊆ D, and c is a
cost function, that is a mapping from Ω(S) to R+ ∪ {+∞}, where
Ω(S) =

∏
{dom(xi) | xi ∈ X}.

An element of Ω(S) is called a configuration of S. Given a con-
figuration α of S, for every variable xi ∈ X we denote α(xi) the
value of xi in α. A configuration α of S is said to be optimal if
it minimizes the cost function, i.e., if for every configuration α′ of
S, c(α) ≤ c(α′). S denotes the set of all possible systems. Ω
denotes the set of all configurations of all possible systems, i.e.,
Ω =

∪
{Ω(S) | S ∈ S}.

The definition of a system above is similar to the one of a Dis-
tributed Constraint Optimization Problem (DCOP [5]), a funda-
mental problem that can formalize various applications related to
multi-agent cooperation. A DCOP consists of a set of agents, each
of which needs to decide the value assignment of its variables so
that the sum of the resulting costs is minimized.

EXAMPLE 1. We represent the economic situation of country
J which is composed of three inhabited islands. Let SJ be the sys-
tem ⟨X, dom, c⟩ representing the country. X = {x1, x2, x3} rep-
resents the set of the three islands. We set dom(x1) = dom(x2)
= dom(x3) = {Low,Medium,High} the domain of each vari-
able, where each one of these values represents the level of expen-
ditures the country invests for each island. For the sake of simplic-
ity, we represent a configuration of SJ as a chain of three letters
among {L,M,H}; for instance, α = MML represents the fact
that the country spends a normal amount of money for the two first
islands, while a low amount of money is invested in the third is-
land. We define a reference cost function cref for every configura-
tion α of Ω as cref (α) =

∑3
i=1 localcref (α(xi)), where for every

xi ∈ X , localcref (α(xi)) = 0 if α(xi) = L, 1 if α(xi) = M , 3
if α(xi) = H . Then, cref represents the global amount of money
spent by the country for the group of the three islands. For instance,
cref (MML) = 2. Now, assume that our system is ruled by the
fact that at least “normal” expenses have to be invested in at least
two islands among the group. Then, the cost function c of SJ is
defined as follows, for every xi ∈ X ,

c(α) =

{
+∞ if |{α(xi) = L, xi ∈ X}| ≥ 2},
cref (α) otherwise.

1In [7] the concept of resilience is also captured through a set of
properties, though the properties we introduce here are slightly dif-
ferent and more adapted to our SR-model.

We now define the notions of dynamic system and strategy within
a dynamic system.

DEFINITION 2 (DYNAMIC SYSTEM). A dynamic system DS
is a tuple ⟨S0,A, poss,ΦA⟩, where:
• S0, where S0 ∈ S , is the “initial” system, which represents the
specifications of the current system.
• A is a non-empty set of actions (or moves),
• poss is a mapping from S to 2A which gives a set of possible
moves for each system, and such that for every system S ∈ S,
poss(S) ̸= ∅,
• ΦA is a partial function from S × A to 2S such that for every
system S ∈ S, for every move a ∈ poss(S), ΦA(S, a) relates to
some non-empty subset of systems from 2S . ΦA specifies how a
given system may change in response to some moves.

A dynamic system can be represented as a graph where each
vertex represents a system and each edge represents the (potential)
consequence of some move that would transform the current system
into another one (e.g., add/remove some variables or change the
cost function.) Remark that ΦA is a non-deterministic function, in
the sense that from a specific move taken in a given system, one
may fall into several possible systems at the next step. This non-
determinism is due to the presence of exogenous events that may
alter the result of a move2.

DEFINITION 3 (STRATEGY). Given a dynamic system DS =
⟨S0,A, poss,ΦA⟩, a strategy within DS is a dynamic system
⟨S0,A, strat,ΦA⟩ such that for every system S ∈ S, strat(S) ⊆
poss(S) and |strat(S)| = 1.

Here, strat describes a specific “control policy” that is adopted
by agents, i.e., which specific move is planned within each system.

EXAMPLE 1 (CONTINUED). We denote DSJ as a dynamic
system that represents all possible scenarios about the evolution of
country J . Assume that the system SJ represents the current sys-
tem, i.e., S0 = SJ . ΦA is derived from a study of the potential
consequences of some possible exogenous events that could occur
in the country at any time step (e.g., a tsunami in one of the is-
lands, a major strike among the employees working in one of these
islands, or some new norms set by the government), given the de-
cision taken by the agents. These moves (captured in A) depend
on the given states of the dynamic system (i.e., on each system),
since the corresponding moves could represent some restructuring
plans that are conducted regarding some “costly” systems resulting
from an exogenous event (e.g., when a disaster occured in one of
the islands and the country has to invest more money to repair the
related damages.)

We now introduce the notions of system trajectory and configu-
ration trajectory.

DEFINITION 4 (SYSTEM TRAJECTORY). Given a dynamic
system DS = ⟨S0,A, poss,ΦA⟩, a system trajectory ST of DS
is a (possibly infinite) sequence of systems (S0, S1, . . . ) of S, such
that for every i ∈ {1, 2, . . . }, there is a move a ∈ poss(Si−1) such
that Si ∈ ΦA(Si−1, a).

Accordingly, a system trajectory ST = (S0, . . . ) of a dynamic
system ⟨S0,A, poss,ΦA⟩ represents one possible scenario where
every St ∈ ST represents a “system snapshot” at time step t. Every
time step could represent a day, a month, or any other frame of time
depending on the application. At each time step t ∈ {1, . . . }, St

is the system resulting from one of the possible consequences of a
move performed in the system St−1 (i.e., at time step t− 1.)
2In our definition the exogenous events are not explicitely repre-
sented, but their possible consequences lie in the non-determinism
of ΦA in which they take a fundamental part.
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DEFINITION 5 (CONFIGURATION TRAJECTORY). Given a
system trajectory ST = (S0, S1, . . . ), a configuration trajectory
CT of ST is a sequence (α0, α1, . . . ) such that for every i ∈
{0, 1, . . . }, αi is a configuration of Si. A subtrajectory CT ′ of
CT is a subsequence (αa, . . . , αb) of CT , with a ≤ b.

EXAMPLE 1 (CONTINUED). Suppose that in our dynamic
system DSJ , the image of ΦA is a set of systems that consider the
same set of variables X and the same domain function dom (only
the cost function may change), i.e., the country will never refine
the possible values of expenditures {Low,Medium,High}, and
no island will be added to or removed from the country. Then, the
sequence (HHH,HMM,HLM,LLM, MLM) is an example
of a configuration trajectory of any system trajectory of DSJ .

We are now ready to introduce the properties that we believe
are relevant for the characterization of resilient dynamic systems.
We first introduce the properties on configuration trajectories, then
extend these properties to the structures of system trajectory and
dynamic system. In the following definitions, we suppose that we
are given a configuration trajectory CT of a system trajectory ST .

DEFINITION 6 (RESISTANCE). Given a non-negative integer
l, CT is said to be l-resistant if for each i ∈ {0, 1, . . . }, ci(αi) ≤ l.

Intuitively, a configuration trajectory is l-resistant if the cost of each
one of its configurations is kept under the threshold l.

EXAMPLE 1 (CONTINUED). Let l = 7 be the threshold above
which the country does not have the capability to handle the situa-
tion due to lack of money. Figure 1 depicts a configuration trajec-
tory that is not 7-resistant. It represents for instance the scenario
where a big disaster (e.g., a tsunami) occured in the three islands at
time step 0, such that it strongly constrains the system S1 so that
no configuration of it can be found with a cost below 7.
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Figure 1: A configuration trajectory that is not 7-resistant.

DEFINITION 7 (RECOVERABILITY). Given two non-negative
integers p and q, CT is said to be ⟨p, q⟩-recoverable if for each one
of its subtrajectory (αa, . . . , αb) such that for every i ∈ {a, . . . , b},
ci(αi) > p, we have

∑b
i=a ci(αi) ≤ q.

Intuitively, q represents the total amount of extra cost (i.e., costs
above p) that is necessary for a ⟨p, q⟩-recoverable configuration tra-
jectory to get back to a “safe” state. This cumulative extra cost
is similar to the “triangular” area of the degradation of the func-
tionality of the system over time in Bruneau’s definition of seismic
resilience [2].

EXAMPLE 1 (CONTINUED). Figure 2 shows an example of
a ⟨3, 6⟩-recoverable configuration trajectory. It represents for in-
stance the scenario where a major disaster affects two islands (the
second and the third one) at time step 0. At time step 1, the second
island recovers from the damages and changes its state to “Medi-
um”, and at time step 2 the third island recovers as well in the same
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Figure 2: A ⟨3, 6⟩-recoverable configuration trajectory.
way. In this scenario the configuration got back to a cost of 3 by
accumulating a total extra cost which does not exceed 6, therefore
this configuration trajectory is ⟨3, 6⟩-recoverable.

Figure 3 depicts a configuration trajectory that is not ⟨3, 6⟩-
recoverable. This scenario is the same as the one depicted in Fig-
ure 2 until time step 2, when at the same time the third island of
the group recovers from the damages, and there is a new disaster
in the first island. The state of the first island changes to the value
“High”, so that the cost of the configuration is 5. In this scenario
the country needs one more time step to recover to a cost of 3. The
cumulated extra cost is 8 in this scenario, i.e., it exceeds 6, there-
fore such configuration trajectory is not ⟨3, 6⟩-recoverable.
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Figure 3: A configuration trajectory that is not ⟨3, 6⟩-
recoverable.

Let us stress the fact that the parameters p and l play different
roles in the definition of resilience. Indeed, a configuration whose
cost is below p will be considered as being a “safe” state of the
system; between p and l, it will fall into an “unsafe” state, an ac-
ceptable situation that still needs to be “recovered”; above l, the
situation is considered to be “unacceptable” for the current system.
We now introduce the notions of functionality and stabilizability.

DEFINITION 8 (FUNCTIONALITY). Given two non-negative
integers f and k, assuming CT has a size of at least k, then CT is
said to be f -functional over k if

∑k
i=0

ci(αi)
k+1

≤ f .

The notion of functionality is important in the sense that it pro-
vides a guaranteed average degree of “quality” for the configura-
tion trajectory. Indeed, stating that a configuration trajectory is f -
functional over k means that its average cost is kept under f from
the initial step until k time steps.

EXAMPLE 1 (CONTINUED). The configuration trajectory de-
picted in Figure 2 is 4-functional over 5, while the one depicted in
Figure 1 is 8-functional over 5.

We now assume that the set Ω is together with a premetric de-
noted d, that is, d is a mapping from Ω × Ω to R+ such that for
every α ∈ Ω, d(α, α) = 0. d allows us to represent a cost that
stands for passing from a configuration to another one. d is said to
be a transitional cost function on Ω.
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DEFINITION 9 (STABILIZABILITY). Given a non-negative
integer s, CT is said to be s-stabilizable w.r.t. CT if for every
i ∈ {1, 2, . . . }, d(αi−1, αi) ≤ s.

EXAMPLE 1 (CONTINUED). Assume that some specific con-
figuration transitions lead to some extra amount of costs (to vary-
ing degrees) for DSJ , such as when the country cuts its invest-
ment in an island (i.e., when a variable changes its value to “Low”)
or when the country invests a high amount of money in another
island during two consecutive time steps. Therefore, we define
d as follows, for every configuration α, α′ ∈ Ω as d(α, α′) =∑3

i=1 locald(α(xi), α
′(xi)), where for every xi ∈ X ,

locald(α(xi), α
′(xi)) =


6 if (α(xi), α

′(xi)) = (H,L),
4 if (α(xi), α

′(xi)) ∈ {(M,L),
(H,H)},

2 if (α(xi), α
′(xi) = (L,L),

0 otherwise.

We get for instance, d(HML,HLL) = 0 + 4 + 2 = 6.
Figure 4 represents two configuration trajectories: α = (MLL,

HMH,MLH,HLL,MMM) and α′ = (MLL,HMH,
MMH,HMM,MMM). The transitional costs are given be-
tween each pair of successive configurations. One can see that α′

is 4-stabilizable while α is not. This example shows that the con-
cepts of stabilizability and recoverability are independent, since α
is ⟨3, 6⟩-recoverable while α′ is not.
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Figure 4: Two configuration trajectories that are not 3-
stabilizable.

We are now ready to extend the properties introduced above to
system trajectories and dynamic systems:

DEFINITION 10. Let P a subset of properties from {l-resistant,
⟨p, q⟩-recoverable, f -functional over k, s-stabilizable}. A system
trajectory ST satisfies the set P of properties if there is a con-
figuration trajectory of ST that satisfies all properties from P . A
dynamic system DS satisfies the set P of properties if there is a
strategy of DS whose all system trajectories satisfy the set P of
properties.

Note that if a dynamic system satisfies two disjoint subsets P1,
P2 of properties from P , it does not necessarily satisfy their union
P1 ∪ P2. This is due to the fact that the properties from P1 on
the one hand, from P2 on the other hand could be satisfied by two
different strategies of the dynamic system. Similarly, a system tra-
jectory may satisfy the sets P1 and P2 of properties independently
and may not satisfy the set P1 ∪ P2. Therefore, a dynamic sys-
tem satisfying the full set of properties P = {l-resistant, ⟨p, q⟩-
recoverable, f -functional over k, s-stabilizable} is more “robust”
than a dynamic system satisfying each singleton subset of P sep-
arately. We are now ready to provide our definition of a resilient
dynamic system:

DEFINITION 11 (RESILIENT DYNAMIC SYSTEM). Given
non-negative integers l, p, q, f, k, s, a dynamic system is said to be
⟨l, p, q, f, k, s⟩-resilient if it satisfies the full set of properties {l-
resistant, ⟨p, q⟩-recoverable, f -functional over k, s-stabilizable}.

3. OPEN QUESTIONS
In this paper, we introduced the topic of systems resilience, and

defined a new model called SR-model, which can be used to rep-
resent a dynamic constraint-based agent model. We captured the
notion of resilience for dynamic systems using several factors, re-
sistance, recoverability, functionality and stabilizability. We be-
lieve that our SR-model can provide a unified design principle for
building resilient systems across different domains.

We now present open questions that are important for the fu-
ture extension of our SR-model. First, we can associate a decision
problem on dynamic systems for every subset P of properties intro-
duced above, though our main interest lies in the design of resilient
dynamics systems: Given a dynamic system DS and non-negative
integers l, p, q, f, k, s, is DS ⟨l, p, q, f, k, s⟩-resilient? It is a
novel and challenging problem. While solving a DCOP [5] consists
of finding an optimal configuration that minimizes the cost function
(an NP-hard problem in general), evaluating the resilience of a dy-
namic system is a more subtle problem. Indeed, some non-optimal
configuration trajectories would satisfy all the properties we intro-
duced while some optimal ones would not.

Another set of important problems for our SR-model is optimiza-
tion problems. For example: (i) If our dynamic system must satisfy
{l-resistant} and we are now given a cost threshold p, what is the
minimum q such that we can guarantee the dynamic system to sat-
isfy {l-resistant, ⟨p, q⟩-recoverable}? (ii) If our dynamic system
must satisfy {f -functional over k, s-stabilizable} how “resilient”
can it be, i.e., what are the minimal values of l, p, q such that the
system is ⟨l, p, q, f, k, s⟩-resilient? These questions are important
for the design of resilient dynamic systems when we must make
tradeoffs between some properties.

As a future work, we will investigate the connections between
the properties that feed our SR-model and other theories such as
classical control theory and modal logics. Moreover, in the cur-
rent version of our SR-model, we assume that we have a complete
knowledge on all past and current configurations in the dynamic
system. In reality, we may only have uncertain information on
some of these configurations. Therefore, models for the probabilis-
tic reasoning on dynamic systems, similar to those such as hidden
Markov models and dynamic Bayesian networks, may need to be
incorporated into our SR-model.
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