
A Synergistic and Extensible Framework for Multi-Agent
System Verification.

Josie Hunter
Oregon State University
Corvallis, Oregon, USA

josie@snowgoose.com

Franco Raimondi
MiddleSex University

London, UK
f.raimondi@mdx.ac.uk

Neha Rungta
NASA Ames Research Center

Moffett Field, CA, USA
neha.s.rungta@nasa.gov

Richard Stocker
University of Liverpool

Liverpool, Merseyside, UK
r.s.stocker@liverpool.ac.uk

ABSTRACT
Recently there has been a proliferation of tools and lan-
guages for modeling multi-agent systems (MAS). Verifica-
tion tools, correspondingly, have been developed to check
properties of these systems. Most MAS verification tools,
however, have their own input language and often specialize
in one verification technology, or only support checking a
specific type of property.

In this work we present an extensible framework that
leverages mainstream verification tools to successfully rea-
son about various types of properties. We describe the ver-
ification of models specified in the Brahms agent modeling
language to demonstrate the feasibility of our approach. We
chose Brahms because it is used to model real instances of
interactions between pilots, air-traffic controllers, and au-
tomated systems at NASA. Our framework takes as input
a Brahms model along with a Java implementation of its
semantics. We then use Java PathFinder to explore all pos-
sible behaviors of the model and, also, produce a general-
ized intermediate representation that encodes these behav-
iors. The intermediate representation is automatically trans-
formed to the input language of mainstream model checkers,
including PRISM, SPIN, and NuSMV allowing us to check
different types of properties. We validate our approach on a
model that contains key elements from the Air France Flight
447 accident.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; D.2.4 [Software/Program Verification]: Model
Checking

General Terms
Verification, Multi-Agent Systems

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Framework, Brahms, model checking, Java PathFinder

1. INTRODUCTION
In the past two decades multi-agent systems (MAS) have

been employed successfully in modeling various applications,
ranging from economic and financial markets to flight con-
trollers. There is a growing demand for verification tech-
niques that guarantee safety in a large number of these do-
mains. Correspondingly, a number of tools and techniques
have been developed to support agent-based development
(e.g., using JADE [1]), agent-based simulation (e.g., using
MASON [11] or Swarm [18]), and multi-agent systems ver-
ification (e.g. using the AIL/AJPF toolkit [4], or a ded-
icated model checker such as MCK [5], MCMAS [10], or
Verics [9]). Verification of multi-agent systems is also per-
formed by translating or encoding languages for multi-agent
systems into traditional temporal-only model checkers such
as SPIN [6] and NuSMV [2]. Current MAS verification tech-
niques, however, do not include the advancements in the dif-
ferent mainstream verification tools and technologies within
a single cohesive framework. Also, most MAS verification
tools are designed for a specific input language and do not
support analysis of different MAS formalisms. We believe
that a framework that can support analysis of multiple MAS
formalisms and can be integrated with existing verification
tools easily can play a key role in further advancing MAS
verification technology. To this end, we present an extensi-
ble framework that is not restricted to a single MAS input
format and can leverage the capability of mainstream veri-
fication tools to enable the verification of different specifica-
tions and properties.

In this paper we present details of our framework using
as an example the Brahms multi-agent simulation system
and models [3, 14]. In the Brahms input language the vari-
ous agents, objects, geography, facts and beliefs are modeled
explicitly. Brahms also provides mechanisms to model inter-
actions between agents and work processes. Brahms is cur-
rently used to model interactions between humans and au-
tomated systems in the context of aviation safety at NASA.
The input to our framework is a Brahms model and an im-
plementation of the Brahms semantics [15]. We then gener-
ate an intermediate representation that encodes all possible
behaviors of the model by extending the Java PathFinder

869



(JPF) model checker [8]. The intermediate representation is
automatically transformed into input formats to other veri-
fication tools such as PRISM, SPIN, and NuSMV. This au-
tomatic transformation allows us to reason about temporal
properties and agent-specific modalities including the capa-
bility of reasoning about probabilities and time bounds.

To demonstrate the feasibility of our approach, we present
a case study where we verify a Brahms model containing
key conditions on board of the Air France AF447 flight that
crashed in the equatorial Atlantic on June 1, 2009. One of
the goals of the model is to provide validation to the claim
in the accident report that the crash was due to pilot er-
ror and not to the weather conditions or hardware failures.
Using the model we can successfully verify that even with
incorrect airspeed readings from the Pitot tubes, a model of
an experienced pilot can use other information available to
recover from a stall and avoid the crash. We also compare
our framework with a previous approach for Brahms verifi-
cation described in [15] on a common example involving a
domestic-health care scenario, showing that we can achieve
a 5x speedup.

2. A MAS VERIFICATION FRAMEWORK
In this section we provide an overview of our framework,

background on Brahms and JPF, and details of the MAS
verification process within our framework. We provide de-
scriptions of the key elements that allow our framework to be
extensible and synergistic. We use a representative example
to demonstrate the potential extensibility of our approach
and discuss how we can leverage state of the art mainstream
verification technologies efficiently.

2.1 Framework Overview
Fig. 1 presents a high level overview of our framework.

The input to our framework is a MAS model and its cor-
responding semantics. In our work the input is a Brahms
model along with an implementation of its execution seman-
tics (Brahms simulator).

The MAS connector shown in Fig. 1 generates an inter-
mediate representation of the MAS. The intermediate rep-
resentation encodes all the relevant interactions between the
agents in the MAS model. The MAS connector could be de-
signed and implemented in several different ways. A probe
that is injected into an execution environment such as MA-
SON or Swarm is an example of a potential lightweight MAS
connector. In our work, we implement the connector by ex-
tending the Java Pathfinder (JPF) model checker to control
the execution of the Brahms simulator. The implementa-
tion, however, is designed to ensure that connectors within
our JPF extension are configurable and reusable for other
MAS systems. The use of extensible plug-ins in JPF such
as creating customized choices for a given model allows the
efficient generation of the interactions of interest for a given
MAS model. Furthermore, the configurable nature of JPF
provides end-users the ability to select the granularity of
the interactions that should be encoded in the intermediate
representation of the model.

The intermediate representation is an encoding of the dif-
ferent interactions between the agents in the MAS model;
in our implementation, this is a graph that encodes all rele-
vant interactions in a Brahms model as shown in Fig. 1. The
nodes contain values for the facts and beliefs of the various
agents in a Brahms model, while the edges represent condi-

tions that lead to the update of the facts and beliefs. The
MAS connector is used to gather and store additional infor-
mation such as update probabilities, temporal and epistemic
relations between different nodes, and labels for edges.

Different search and exploration strategies could be imple-
mented in the MAS connector to further reduce the size of
the behavior space of the MAS, e.g., abstraction techniques,
symbolic representation using OBDDs, and customized state-
matching algorithms. The intermediate representation is
fully re-usable for different input MAS models and output
formats. Furthermore, as the behavior space of the MAS
model is generated, our framework allows on-the-fly verifi-
cation of safety properties.

We have developed a set of automated translators to con-
vert the intermediate representation into input formats for
mainstream verification tools. We currently have transla-
tors for model checkers such as SPIN, NuSMV and PRISM,
thereby enabling the verification of LTL/CTL properties,
probabilities, time bounds and cost. We are currently de-
veloping a translator for MCMAS to reason about strategies.

2.2 Brahms
Brahms is a simulation and development environment orig-

inally designed to model the contextual situated activity be-
havior of groups of people in a real world context [3, 14].
Brahms has now evolved to model humans, robots, auto-
mated systems, agents, and interactions between humans
and automated systems.

Brahms follows a rational agent approach: rational agents
are autonomous, react to changes in circumstance and choose
their actions based on their own agenda. Brahms has simi-
larities to BDI (beliefs-desires-intentions) architectures [12,
13], which are used for modeling rational agents. BDI mod-
els describe the goals the agent has and the choices it makes,
all based on a certain set of beliefs.

2.2.1 Brahms Models
A Brahms model contains a set of Objects and Agents

that are used to model humans and automated system in
a real-world context. Brahms is able to represent artifacts,
data, and concepts in the form of classes and objects. A
geography model is used to locate agents and objects and
provides an additional context to activities.

The key aspects of Brahms are:

1. attributes: properties of agents/objects/locations,

2. activities: actions an agent performs, typically con-
sume simulation time,

3. beliefs: each agent’s own personal perception of all the
attributes in the model,

4. facts: actual values of the attributes,

5. detectables: detection of facts, bringing facts into an
agent’s belief base and determining the response,

6. workframes: guarded plans which denote a sequence
of events required to complete a task, including belief
updates and actions,

7. thoughtframes: guarded plans for belief revisions made
due to the situated context of the agent/object, and

8. time: forms the time-line output presented by Brahms
to describe the simulation.

870



Figure 1: An extensible architecture that leverages state of the art technologies to verify MAS models.

2.2.2 Brahms Semantics
The flow chart in Fig. 2 presents an overview of the Brahms

semantics and depicts how the agents advance in time and
update the values of their facts and beliefs. Formal oper-
ational semantics for Brahms are detailed in [17, 16]. In
this work, we use a Brahms Simulator implemented in Java
that follows the high-level flow described in Fig. 2. The flow
through the Brahms semantics starts with the box labeled
S1 in Fig. 2. A Brahms scheduler here initializes the system,
the agents, objects and geography. The scheduler instanti-
ates all the agents as shown in A1, where they initialize their
facts and beliefs. After initialization, the scheduler moves to
S2 and instructs all agents to process their thoughtframes
(box A2). In A2, the agents generate a set of active thought-
frames and then proceed to A3. In A3 the scheduler selects
the active thoughtframe with the highest priority. If, how-
ever, there is more than one active thoughtframes with the
same priority, an active thoughtframe is randomly selected
from the set. The box is shaded to represent a possible non-
deterministic choice. The process is repeated until there
are no more active thoughtframes after which the scheduler
moves to S3. After executing S3 the scheduler instructs the
agents to move to A4 to generate their set of active work-
frames. Agents then proceed to A5 to select a workframe.

Workframes contain activities (represented by A7) and
conclude statements (A8). If the event is an activity, the
scheduler randomly selects a duration of the activity be-
tween the minimum and maximum durations specified for
the activity, then inform S4 of this duration. If the event
is a conclude then the value of a belief may be updated
depending on the belief condition; the belief condition is a
percentage representing the chance the belief update will oc-
cur. The agent cycles between A6 and A8 until it finds an
activity (A7) or until the workframe finishes. The scheduler
waits in S4 until all activity durations have been received,
if an agent has no active workframes then a duration of 0
is sent (from A4 to S4). The scheduler then calculates the
shortest duration in S4 and moves the clock forward by this
amount. If the duration is 0 (i.e. all agents have no active
workframes) then the system terminates in S6. If the dura-
tion is not 0, then agents are informed to deduct the value
from their activity duration in A9. The cycle then returns to
S2 and continues until all agents have no active workframes.

Figure 2: Overview of Brahms Semantics

871



The simulator can be used as a stand-alone tool to perform
simulation. In our case, we employ it in conjunction with
our MAS connector based on Java Pathfinder.

2.3 Java PathFinder: a Configurable JVM
We have implemented our MAS connector for Brahms us-

ing Java Pathfinder. Java Pathfinder (JPF) [8] is an ex-
tensible Java Virtual Machine (JVM) that enables analysis,
execution, and verification of Java bytecode. JPF was orig-
inally developed as a concrete-value, explicit-state software
model checker for concurrent programs. In the past few
years, however, JPF has evolved into a extensible Java anal-
ysis framework for developing and exploring different veri-
fication techniques and application domains. Furthermore,
there are several JPF extensions based on symbolic execu-
tion, BDD-based analysis, parallel search, and abstraction-
based techniques. Some of these extensions are fairly mature
prototypes that have been used to make verification of Java
program tractable and have the potential to be used in MAS
verification as well for better scalability.

The inputs to JPF are a set of class files for the system
being analyzed, a set of configuration files that specify the
desired JPF execution mode, program properties to verify,
and artifacts to generate. JPF supports search with back-
tracking, state matching, and non-determinism in both data
and scheduling decisions. JPF constructs the program state
space on-the-fly during the execution of the program in a
customized virtual machine. In this work, the input to JPF
are the class files for the Brahms simulator and the Brahms
model and the output is graph for the intermediate repre-
sentation.

JPF uses a generic model of the program state space
consisting of States, Choices and Transitions. States are
restorable snapshots of a program execution along a partic-
ular path. The snapshot contains the heap of the program,
its current program location, and the current operand stack.
Choices are the mechanism to differentiate between differ-
ent possible executions leading out of a state, for example,
different possible data values that can be assigned to input
variable by a user or by a random variable. A transition is
a sequence of bytecode instructions where the first and last
instruction in the sequence represents a non-deterministic
choice. At every transition boundary, JPF saves the current
JVM state (the program state) in a serialized form for the
purpose of backtracking and state matching.

2.4 Efficient & Extensible Choice Generation
The MAS controller in our framework systematically ex-

plores all possible (non-deterministic) choices that occur in
the input MAS model. We leverage the choice generation
mechanism within JPF to interact with the Brahms simula-
tor and generate all possible choices. The ability of JPF to
configure the granularity of choices is a key element for our
ability to deal with real-life scenarios. Indeed, most model
checkers do not provide user-configurable options to manage
different types of non-determinism.

This section describes how different types of choices are
created and explored in JPF. When JPF analyses a Brahms
model along with its semantics, a new state is only gener-
ated when the search within JPF encounters a point of non-
determinism. The three main points of non-determinism in
the Brahms semantics shown by shaded boxes in Fig. 2 are:
1) A8 : Fact and Belief updates

2) A7 : Activity Durations
3) A3, A5 : Workframe and ThoughtFrame choices

A new JPF state may be generated at A3; however, be-
fore another state is generated at A7, millions of bytecode
instructions could be executed. Customized choice genera-
tors in JPF systematically explore all the possible choices
at only points of non-determinism relevant to Brahms se-
mantics, and turn off all other points of non-determinism
that may exist in a general Java program. This allows us to
generate a behavior space that is customized, based on the
requirements of the MAS being analyzed.

2.4.1 Fact and Belief Updates
The updates to facts and beliefs of agents and objects are

made using conclude statements in a Brahms model. An
example of a conclude statement is:
conclude((Pilot.checkStall = false), bc : 70, fc : 70);
This states that the belief and fact checkStall in the Pilot

agent will be updated to false with a probability of 70%.
Here bc represents belief certainty while fc represents fact
certainty. Intuitively, it is the certainty with which the up-
dates to the beliefs and facts occur. When the simulation in
Brahms encounters a conclude statement (the parent of A8
in Fig. 2), it checks next whether the belief and fact should
be updated. The simulation in Brahms flips a weighted coin
to decide whether the fact and belief are updated or not. The
code in the simulator implementation for the A8 in Fig. 2 is
as follows:

Random rgen = new Random();

public boolean update (int certainty) {

if(certainty == 100) return true;

if(certainty == 0) return false;

int random = rgen.nextInt(98)+1;

if(certainty >= random)

return true;

return false;

}

The update method gets as input a belief certainty or a
fact certainty as input. When the certainty is less than 100
and greater than 0, a random number in the range 1 and
99 is generated. If the certainty is greater than equal to
the random number the method returns true, otherwise it
returns false. There is support for generating choices in
JPF where a random number is generated and used in a
Java program. Note that when the certainty is 0 or 100 the
method returns and no choices nor states are generated by
JPF; however, for all other values of certainty, a data choice
generator in JPF creates 99 choices. For each one of the
99 choices, a new JPF state is created where the variable,
random, is respectively assigned a value in the range [1 . . . 99].
Based on the value assigned to random the method returns
either true or false. As a result, we know that for a conclude

construct in Brahms there are only two main branches of
interest. One, when an update is made to belief and fact in
the conclude statement; two, when there is no update to the
belief and fact in conclude statement.

We configure JPF to use a custom choice generator in lieu
of its standard data choice generator to efficiently explore
choices with respect to the MAS analysis. We have imple-
mented a new custom choice generator that (a) creates a

872



single choice when the certainty is 100 and the method re-
turns true (b) creates a single choice when the certainty is 0
and the method returns false (c) creates two choices for cer-
tainty values in the range 1 and 99 where the method returns
true and false respectively. In our MAS connector we moni-
tor the execution of different methods through the observer
patterns implemented in JPF as listeners. In our framework
we intercept the invocation of the update method, skip its
execution, and assign its return value based on the custom
choice choices.

2.4.2 Activity Duration
The activities in Brahms have a duration in seconds asso-

ciated with them. The duration of the activity can either be
fixed or can vary based on certain attributes of the activi-
ties. When the random attribute of an activity is set to true
the simulator randomly selects the activity duration between
the min and max durations specified for the activity. In or-
der to completely explore all the possible choices we create
a choice generator that can systematically explore all pos-
sible durations for the activities between the min and max
durations. In certain cases this may cause the state space
to explode. To mitigate the state space explosion, various
heuristics are available to the users where they can select
the number of choices that are to be explored, for example,
one heuristic explores the min, max and median durations
for the activity.

2.4.3 WorkFrame and ThoughtFrame choices
The third and final point of non-determinism in Brahms

arises when a set of active workframes or a set of active
thoughtframes have the same priorities. As described in Sec-
tion 2.2, the workframe with the highest priority is executed
from the set of active workframes as shown in A5 of Fig. 2.
However, there may be several workframes that have the
same priority. In this case a workframe is randomly selected
to be executed (the same situation could occur for thought-
frames with equal priority).

In our framework we create a custom choice generator for
systematically exploring all workframe and thoughtframes
with the same priority. When the method to select the
workframe and thoughtframe is executed in the Brahms sim-
ulator, the listener in our MAS controller intercepts the
call to create choices. The number of active workframes
with the same priority is the number of choices created by
JPF. Again, the same mechanism is implemented for active
thoughtframes with the same priority.

2.5 Intermediate representation
A key element of our framework is the notion of general-

ized intermediate representation, rather than a custom lan-
guage for MAS. The intermediate representation is a simple
reachability graph G := 〈N,E〉 where N is the set of nodes
and E is the set of edges. This graph is generated by the
MAS connector. Each node n ∈ N is labeled with the be-
lief/facts values of the agents and objects. An edge between
the nodes represents the updates to beliefs/facts and is also
labelled with probabilities. The reachable states generated
by the JPF MAS connector are mapped to the nodes in the
intermediate representation.

The nodes in the intermediate representation only con-
tains the part of the JPF state relevant for verifying prop-
erties about the Brahms model. Recall that the state gen-

erated in JPF contains an entire snapshot of the program
execution including the heap and the operand stack. In
essence JPF state contains all the elements of a Brahms
model, since the input to JPF is the implementation of the
Brahms semantics (we will refer to it as the Brahms sim-
ulator for brevity); the data structures part of the Brahms
simulator are also part of the JPF state.

We create and store a node in the intermediate represen-
tation for a JPF state that is generated that only contains
the values of the beliefs and facts of agents and objects. Sev-
eral JPF states may map to a single abstract state. Con-
sider the sequence of JPF states generated along a path
s0 → s1 → s2 → s3 → s4. The → represents transitions be-
tween states. Suppose, states s0, s1 and s2 map to the node
n0 while s3 and s4 map to n1 then the corresponding edge in
the intermediate representation is n0 → n1. Note, however,
that the state matching in MAS connector is performed on
the JPF states in order to explore all possible behaviors of
the MAS model.

We also store other details about transitions in JPF such
as the transition probabilities and action labels on the edges
of the intermediate representation. Consider the conclude
statement reported earlier where Pilot.checkStall is set
to false with belief certainty 70%. The choice generation
creates two choices, one where the belief is updated (with
probability 70%), and one where it is not update (with prob-
ability 30%). One edge in the intermediate representation
is annotated with the probability of 0.70: ni →.70 nj ; while
another edge in the intermediate representation is annotated
with the probability of 0.30%: ni →.30 ni. If three choices
are generated for three active workframes with the same pri-
ority, each transition probability is 1/3.

2.6 Verification
The verification of safety properties and other reachability

is performed on-the-fly as new states and transitions are
generated in JPF. Additional verification activities can be
performed on the intermediate representation after all the
JPF states have been generated.

We have developed a set of translators to translate auto-
matically our intermediate representation to an input prob-
lem for a range of model checkers. For instance, a user
can select to output a PRISM model to verify (or compute)
probabilities of certain events, or time bounds for certain
events to happen. The intermediate representation is a sim-
ple reachability graph with the belief/facts values as labels
and edges representing updates to beliefs/facts. The corre-
sponding PRISM models do not require knowledge of the
Brahms Java encoding and the connector builds the labels
automatically. The probabilities on the edges in the interme-
diate representation is also added to the PRISM model. Sim-
ilarly, the SPIN translator can generate PROMELA code to
be used in conjunction with SPIN to perform LTL verifi-
cation, or NuSMV code to enable BDD-based CTL verifi-
cation. In all cases, our translators only extract the values
that are relevant for the target verification tool.

The goal of this work is not to generate the optimal en-
coding of intermediate representation for a model checker
but rather be able to verify different types of properties. An
interesting avenue of future work would be to study how the
current intermediate representation could be improved and
tailored to specific model checkers.

873



3. EXPERIMENTAL RESULTS
In this section we present empirical results to demonstrate

the utility of our MAS verification framework in analyzing
and verifying Brahms models. First we present a case study
using the scenario from the Air France 447 crash. This pro-
vides validation of the fact that the framework such as the
one described in this paper can be used for the verification of
models that describe interactions relevant in aviation safety.
We then perform a direct quantitative comparison with an-
other approach [15] that translates Brahms into Promela
models directly, by encoding both the model and the seman-
tics as a Promela model. This approach verifies properties
using the SPIN model checker.

3.1 Case study: Air France 447 Model
On June 1, 2009 the Air France Flight 447 between Rio de

Janeiro and Paris crashed in the equatorial Atlantic. The fi-
nal BEA accident report1 states that the weather conditions
caused icing to build up on the Pitot tubes resulting in inac-
curate airspeed readings. The inexperience of the pilot was
determined to be the cause of the crash. The pilot in charge
misjudged the airspeed of the plane and increased the alti-
tude of the plane without realizing the plane was in a stall
which eventually led to its crash. According to the report
the pilot was presented with several chances to recover, but,
was unable to do so.

A model of the conditions during the flight of AirFrance
447 was developed to validate that the conditions or hard-
ware failures did not lead to the crash2. We refer to this
as the “flight model”. This flight model only includes the
important factors (i.e. those that have been determined as
catalysts in the cause of the crash). In the model, there are
several components that interact with one another, namely:
the pilot, the controls, the airplane itself, two Pitot tube
sensors, the weather, and the stall level. The pilot uses the
controls (throttle, elevators) to manipulate the speed, alti-
tude and attitude (i.e., the inclination with respect to the
wind) of the plane. In the model, the pilot relies on the air-
speed reading, which is provided by the Pitot sensors. Pitot
sensors monitor the speed of the plane and relay that infor-
mation back to the pilot through the gauges. The Weather

object in the model can simulate stormy conditions which
results in ice to form over the Pitot tubes. In our model
of the Pitot tubes, when the amount icing over the sen-
sors goes above a certain threshold, the airspeed readings
become inaccurate. If the pilot notices that the airspeed
readings from each of the two Pitot sensors do not match,
the pilot attempts to estimate the airspeed using measures
described in aviation procedures. In the model the pilot has
access to the information that could allow him to determine
that the airspeed values reported by the Pitot sensors are
incorrect and has options to estimate the current airspeed.
The stall level may increase depending on the combination
of airspeed, altitude, and attitude. Once the stall level goes
above a certain threshold, through different mechanisms the
pilot becomes aware of the situation and can adjust the con-
trols accordingly.

We encode this model as a Brahms model. We implement

1http://www.bea.aero/en/enquetes/
flight.af.447/flight.af.447.php
2Statistical Analysis of Flight Procedures, by Adrian
Agogino and Guillaume Brat at NASA Ames Research Cen-
ter, CA.

all the different agents and objects and their interactions
through activities, thoughtframes, workframes, and updates
of beliefs and facts. As an example, part of a workframe
from the Pilot agent in the Brahms model is shown below:

workframe wf_stallAdjust {

repeat: true; priority: 2;

when(

knownval(current.time < 200) and

knownval(Stall.stallLevel > 0.5))

do {

adjustForStall();

conclude((Controls.elevators =

Controls.elevators - .04),

bc: 100, fc: 100);

} }

The first variable (repeat) tells the simulator whether or
not this workframe is repeatable, and the second gives the
level of priority (in case more than one workframe is avail-
able). The two knownval statements within the when()
clause are guards. The first guard, current.time < 200,
simply provides a bound on the length of the simulation.
The second guard checks if the stallLevel is greater than
the threshold, 0.5. If both guards evaluate to true, then
the events in the do clause are executed. The first event
is a primitive activity named “adjustForStall”, and the sec-
ond event sets the elevators to decrease by .04. The second
event updates the pilot’s belief about the value of elevators
with 100% probability (bc:100), and with 100% probability
results in an actual change of the fact Controls.elevator

(fc:100).
We can successfully validate the model to show that the

pilot can always correct the stall in a timely manner and
that the plane does not crash due to hardware failures. We
verify this property using on-the-fly verification in JPF as
the intermediate representation is being generated. It takes
2.5 minutes to generate the 28, 648 reachable states required
to verify the property using JPF. Notice that this is a com-
plex example involving several agents and objects, most of
which have variables ranging over a continuous domain (e.g.
altitude, airspeed, etc.). We are currently working in con-
junction with aviation safety experts to create different ver-
sions of the model to increase the variability of the actions
(especially for the pilot). Our aim is to study what condi-
tions can lead to a crash, and estimate the probability of
those conditions as well.

3.2 Comparison with another approach
Stocker et al. present a technique to translate a Brahms

model directly into a Promela model and verify the Promela
model using the SPIN model checker [15]. They use the for-
mal semantics described in [17] as a basis for this transla-
tion. Note that we use exactly the same semantics in our
Brahms simulator. First, they produce a Java representation
of the Brahms model. The Java representation is a syntactic
transformation of the Brahms model and the Brahms ele-
ments such as agents, objects, workframes, thoughtframes,
beliefs, and facts into Java data structures such as lists and
maps. Then, using this Java representation they produce
Promela process descriptions, which represent partial in-
stantiations of the semantics, suitable for input to the SPIN
model checker. LTL specifications for the Brahms model are
then be checked using SPIN.

874



The direct translation of Brahms to Promela can pose
some challenges because Promela does not provide a natu-
ral way to encode object-oriented hierarchical systems such
as the ones employed in Brahms. Furthermore, Promela
does not support object orientation, stacks, strings, method
calls etc., which only allows a partial instantiation of the
Brahms operational semantics. This makes it difficult to
prove that the translation matches the operational seman-
tics. The SPIN model checker then generates choices at
all the guards in order to generate the model. The lack of
extensible plug-ins within SPIN makes it hard to create cus-
tomized choices. In our framework we avoid this issue by
encoding the reachable state space of the model using our
intermediate representation, which is then translated into
Promela.

3.2.1 Comparing results
The work in [15] uses a domestic-health care example to

validate the approach. The model includes an elderly per-
son, a helper robot, a care provider who is human, and an-
other automated agent. The automated agent and robot
assist the elderly person by issuing reminders and assisting
them in their activities. When the automated agent and
robot are unable to assist the person, they call the human
care provider.

The work in [15] verifies ten different properties for this
model. We analyze the same domestic-health care example
using the same input Brahms model in our framework in or-
der to empirically compare the effectiveness of our approach
with the one presented in [15].

The MAS connector in our framework takes 54 seconds
to explore a total of 7792 JPF states to generate the inter-
mediate representation of the domestic-health care example
in [15]. In the resulting intermediate representation there
are 511 nodes with 690 edges. During the analysis of the
domestic-health care model in JPF over 77 million bytecode
instructions are executed, while 168 classes and over 2000
methods are analyzed. This demonstrates that the program
analyzed is of a significant size. However, a mere 7792 JPF
states are generated and only 511 nodes in the intermediate
representation are produced as output.

The properties specified in [15] can be verified using SPIN
after automatically transforming the intermediate represen-
tation into a Promela model. All the properties can be ver-
ified in a total of two seconds. Note that the SPIN verifi-
cation is extremely fast because it does not need to allocate
space for variables that may not be reachable. As reported
in [15], the full model generation in SPIN takes longer due
to the structure of the example and semantics. We report
below the total time taken for the verification of this ex-
ample using the two approaches. This time includes all the
steps: in our cases these comprise intermediate representa-
tion generation using JPF, translation to SPIN, and SPIN
execution time (for all properties). In the case of [15] the
total time includes Java data structure generation from the
Brahms source code, Promela code generation, and SPIN
execution time (for all properties):

• Total time by [15]: 5 mins.

• Total time by our framework: 1 min

All the experiments were executed on the same machine
(a standard quad-core Linux machine with 8 GB of RAM);

in our case, the dominant component is the reachable state
space generation using JPF (54 seconds); in the case of [15]
the dominant component is the SPIN execution time.

As an additional validation step we have also encoded the
properties of [15] both as CTL and PCTL properties, and
translated our intermediate representation to NuSMV and
PRISM code. As above, the final translation and verification
steps take around 2 seconds at most for both model checkers.

4. RELATED WORK
There are several model checking tools available for multi-

agent system verification. MCK, [5], allows verification of
temporal-epistemic logics using various OBDD- and SAT-
based techniques. MCMAS, [10], is an OBDD-based model
checker that supports the verification of time, knowledge,
and strategies. VERICS, [9], allows the verification of MAS
specified with a rich input language based on Petri Nets,
and uses bounded model checking among other techniques
for verification. All these tools have a dedicated input lan-
guage and, to the best of our knowledge, do not offer cross
integration with different formalisms.

The AIL/AJPF toolkit, [4], is a closely related work to
the verification framework presented in this paper. This
toolkit employs JPF to perform verification of BDI agent
programming languages. AJPF translates agent program-
ming languages to an intermediate representation called the
Agent Infrastructure Layer (AIL). This intermediate repre-
sentation is then executed in AJPF, an extension of JPF.
The key differences with our approach are: (1) We do not
translate input into an intermediate representation. Instead,
we operate directly on model in conjunction with the simula-
tor for the model (2) We generate an intermediate represen-
tation for the output of our tool: this allows us to generate
automatically input files for a range of state-of-the art model
checkers. (3) Our MAS framework enables the verification
of various languages (LTL, CTL, PCTL, ATL, etc.), while
AIL/AJPF is limited to a BDI extension of LTL. (4) In
our work JPF is used primarily for its backtrackable search,
customizable choice generators, and support for customized
state storage technique and not just as a verification tool.
We could replace JPF with another MAS connector to gen-
erate the behavior space of the MAS model.

Another closely related work, [7], interacts with the in-
terpreter for the Goal MAS programming language to per-
form model checking. Our approach is different in that our
framework supports multiple input formalisms, and we do
not implement model checking algorithms directly; instead,
we employ state-of-the-art tools to support multiple modal-
ities.

Finally, as described in Section 3, the work by Stocker et
al. [15] deals with the verification of Brahms models using
a translation to SPIN. Our work is different in that we pro-
vide a more general framework that allows multiple input
formalism and allows more expressive specification patterns
(for instance using probabilities in PRISM). Additionally,
as shown by the experimental results, we provide a more
efficient mechanism for Brahms verification: the state space
exploration performed by our framework only considers the
components of the simulation that are relevant for verifica-
tion (i.e. facts and beliefs), thus producing a more compact
representation that is then fed into SPIN.

875



5. CONCLUSION
We presented a framework for the verification of multi-

agent systems that allows us to leverage state-of-the-art ver-
ification tools. Our framework makes use of connectors to
interact with existing multi-agent systems, generating an
intermediate representation (behavior space). The behav-
ior space can then be translated to the input language of
mature verification tools such as SPIN and NuSMV. In con-
trast with other previous approaches we do not translate
the input models into a common formalism. Instead, we
provide an extensible framework that can support different
inputs and can be integrated with existing tools. We validate
the effectiveness of our framework using the Brahms agent
modeling language, using JPF as a connector, and providing
automated translators to SPIN, PRISM, and NuSMV. The
experimental results from two case studies demonstrate the
potential of the framework to tackle large state spaces.

In our current MAS connector implementation we store
states explicitly: an avenue of future work is to explore the
use of symbolic execution and abstraction-based techniques
for further improving the scalability of the framework. As
mentioned in the paper, JPF has several extensions for sym-
bolic execution, parallel search, abstraction based analyses
among others: we plan to integrate these extensions within
our framework in our future work. Currently we are working
on other automated translators to inputs for model check-
ers that reason about strategies (e.g. MCMAS). We are
also working at the development of connectors for other for-
malisms, in addition to Brahms. Given the flexibility of our
approach and the set of libraries already developed, we hope
that the MAS verification community will adopt our frame-
work and contribute toward the continued development of
an extensible framework for MAS verification.

6. REFERENCES
[1] F. L. Bellifemine, G. Caire, and D. Greenwood.

Developing Multi-Agent Systems with JADE. Wiley,
2007.

[2] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV2: An open-source tool for
symbolic model checking. In CAV, volume 2404 of
LNCS, pages 359–364. Springer-Verlag, 2002.

[3] W.J. Clancey, P. Sachs, M. Sierhuis, and R. Van Hoof.
Brahms: Simulating practice for work systems design.
International Journal of Human-Computer Studies,
49(6):831–865, 1998.

[4] L. A. Dennis, M. Fisher, M. P. Webster, and R. H.
Bordini. Model checking agent programming
languages. Autom. Softw. Eng., 19(1):5–63, 2012.

[5] P. Gammie and R. V. D. Meyden. MCK: Model
checking the logic of knowledge. In Proceedings of
CAV-2004, Lecture Notes in Computer Science, pages
479–483. Springer, 2004.

[6] G. Holzmann. Spin model checker, the: primer and
reference manual. Addison-Wesley Professional, first
edition, 2003.

[7] S. S. Jongmans, K. Hindriks, and M. V. Riemsdijk.
Model checking agent programs by using the program
interpreter. Computational Logic in Multi-Agent
Systems, pages 219–237, 2010.

[8] Java PathFinder.

http://babelfish.arc.nasa.gov/trac/jpf/.
Accessed: 15 October 2012.

[9] M. Knapik, A. Niewiadomski, W. Penczek, A. Pólrola,
M. Szreter, and A. Zbrzezny. Parametric model
checking with verICS. In Transactions on Petri nets
and other models of concurrency IV, pages 98–120.
Springer-Verlag, Berlin, Heidelberg, 2010.

[10] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
model checker for the verification of multi-agent
systems. In CAV 2009, Lecture Notes in Computer
Science, pages 682–688. Springer, 2009.

[11] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. MASON: A multiagent simulation
environment. Simulation, 81(7):517–527, July 2005.

[12] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a BDI-architecture. In James F. Allen,
Richard Fikes, and Erik Sandewall, editors, KR, pages
473–484. Morgan Kaufmann, 1991.

[13] A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In Victor R. Lesser and Les Gasser,
editors, ICMAS, pages 312–319. The MIT Press, 1995.

[14] M. Sierhuis. Modeling and Simulating Work Practice.
BRAHMS: a multiagent modeling and simulation
language for work system analysis and design. PhD
thesis, Social Science and Informatics (SWI),
University of Amsterdam, SIKS Dissertation Series
No. 2001-10, Amsterdam, The Netherlands, 2001.

[15] R. Stocker, L. Dennis, C. Dixon, and M. Fisher.
Verification of brahms human-robot teamwork models.
In Proceedings of 13th European Conference on Logics
in Artificial Intelligence, JELIA’12, 2012.

[16] R. Stocker, M. Fisher, L. Dennis, and C. Dixon. A
Formal Semantics for the Brahms Language. (See
http://www.csc.liv.ac.uk/ rss/publications),
2011.

[17] R. Stocker, M. Sierhuis, L. Dennis, C. Dixon, and
M. Fisher. A formal semantics for brahms. In
Proceedings of the 12th international conference on
Computational logic in multi-agent systems,
CLIMA’11, pages 259–274, Berlin, Heidelberg, 2011.
Springer-Verlag.

[18] Swarm Software for Agent-based Modeling.
http://www.swarm.org/index.php/Main_Page.
Accessed: 15 August 2012.

876




