
Hierarchical Planning about Goals and Commitments

Pankaj R. Telang
Dept. of Computer Science

North Carolina State
University

Raleigh, NC 27695-8206
prtelang@ncsu.edu

Felipe Meneguzzi
School of Computer Science
Pontifical Catholic University

of Rio Grande do Sul
Porto Alegre, RS 90619-900

Brazil
felipe.meneguzzi@pucrs.br

Munindar P. Singh
Dept. of Computer Science

North Carolina State
University

Raleigh, NC 27695-8206
singh@ncsu.edu

ABSTRACT

We consider the problem of relating an agent’s internal state
(its beliefs and goals) and its social state (its commitments
to and from other agents) as a way to develop a compre-
hensive account of decision making by agents in a multi-
agent system. We model this problem in terms of hier-
archical task networks (HTNs) and show how HTN plan-
ning provides a natural representation and reasoning frame-
work for goals and commitments. Our approach combines a
domain-independent theory capturing the lifecycles of goals
and commitments, generic patterns of reasoning, and do-
main models. Specifically, our approach shows how each
agent may take into account its capabilities, costs, and pref-
erences as it plans its interactions (captured as operations
on commitments) with other agents to attempt to achieve
its goals.

Categories and Subject Descriptors

H.1.0 [Information Systems]: Models and Principles—
General ; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence—Multiagent systems

General Terms

Algorithms

Keywords

Commitments, Goals, Planning, HTN, SHOP2

1. INTRODUCTION
Modeling interactions among agents is an important con-

cern in multiagent systems. Specifically, researchers employ
high-level constructs such as social commitments for mod-
eling agent interactions. Such a model characterizes inter-
actions in terms of their (social) meanings. Its well-defined
set of commitment operations yields enactment flexibility to
the agents. Further, an agent’s social commitments relate
naturally to its goals [3, 5, 17]. For example, an agent may
create a commitment toward another to satisfy its goal, or
adopt a goal to satisfy its commitment.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Goals and commitments are declarative notions amenable
to automated reasoning. The operations that an agent per-
forms on goals and commitments are naturally hierarchical.
For example, a goal may be decomposed into multiple con-
junctive or disjunctive subgoals. The agent may satisfy a
subgoal on its own, or may create a commitment toward an-
other agent to satisfy it. If the commitment expires or is
violated, then the agent may create a commitment toward
some other agent, and sanction the violating agent. It is
natural that an agent’s plans be hierarchical: not only can
operations on commitments feature within plans, but also
to satisfy a commitment may require another hierarchical
plan. Although multiple proposals for multiagent modeling
based on goals and commitments exist, few approaches oper-
ationalize the resulting models. As an example, Winikoff [21]
employs classical BDI plans to operationalize commitment-
based interactions. However, Winikoff’s approach ignores
goals and fails to take advantage of the natural hierarchy of
goal and commitment operations.

Approach.. This paper proposes a novel approach based on
Hierarchical Task Network (HTN) planning for operational-
izing goals and commitments using the semantics developed
in our previous work [17]. HTN planning has been in used
in significant practical scenarios such as job scheduling [12].
Our approach exploits the natural hierarchical structure of
goals and commitments. We show how HTNs intuitively
capture the plans that consider joint goal and commitment
semantics.

Contributions.. Our proposed HTN-based approach offers
three important advantages. First, our proposed approach
offers clearer knowledge engineering than in the past. Sec-
ond, our approach takes into account a notion of preference
and cost that has been largely ignored in previous work on
generating protocol enactments, though a few works, e.g.,
[10, 26], discuss preferences for analysis. We desire flexible
protocols because they offer multiple choices to agents but
clearly all the choices are not equal from an agent’s per-
spective. Being able to handle costs is crucial to practical
reasoning by agents, yet is ignored by current approaches, so
our approach enables one to model the overall cost incurred
by each realization of a set of goals and commitment to all
agents within a system. Third, our approach lends itself to
supporting modular abstractions by which increasingly flex-
ible protocols may be generated by a layering of modules.
In particular, it enables agent designers to easily evolve the
plans in the light of changing needs.

877

Organization. Section 2 provides some historical motiva-
tion for our approach. Section 3 introduces goals, commit-
ments, and HTN planning. Section 4 describes our approach
for operationalizing goals and commitments via HTN plan-
ning. Section 5 applies our proposal to a well-known sce-
nario. Section 6 discusses related work and outlines future
directions.

2. HISTORICAL CONTEXT
We now briefly review the relevant literature to highlight

the contributions of this paper. Traditional distributed com-
puting representations of interaction focus on operational
details. Such approaches, e.g., (message) sequence diagrams
derived from agent-based extensions of the Unified Model-
ing Language (UML) [2, 14], violate the tenet of agent au-
tonomy since they over-constrain how the agents exchange
messages. This is a natural consequence of the procedu-
ral meaning such modeling constructs have in the under-
lying UML semantics. Because such approaches lack any
business-level meaning for the messages, an agent has no
basis for deviating from a prespecified flow without falling
out of compliance [19]. Although traditional languages sup-
port expressing alternative operational executions, e.g., via
the alt construct in sequence diagrams, they do not pro-
vide any support for the generation of correct alternative
executions. And, capturing multiple alternatives purely in
operational terms becomes unwieldy fast. As a result, the
specifications produced in practice are highly constrained,
surprisingly often seen as a single sequence of messages.

Venkatraman and Singh [19] introduced the idea of a com-
mitment protocol in conceptual terms along with the idea
of each agent maintaining a view of its commitments to oth-
ers and vice versa, as a way to verifying compliance. Yolum
and Singh [23] developed the idea of explicit reasoning about
commitments using the notion of a commitment machine,
which supports the generation of a finite state machine. An
agent could then participate in a commitment protocol with-
out having to reason explicitly about commitments: thereby
trading off flexibility for ease of implementation. Winikoff
et al. [22] and Chopra and Singh [6] expanded the notion
of commitment machines. Yolum and Singh [24, 25] intro-
duced a commitment reasoner based on the event calculus
with Chesani et al. [3] producing an approach for tracking
commitment states based on the reactive event calculus. Re-
cently, there has been increasing interest on relating goals
and commitments [4, 5, 17], which seeks to close the gap
between agents’ goals (representing their mental state) and
their commitments (representing their social state).

In simple terms, whereas the above works study the con-
ceptual aspects of commitment protocols and goals, we show
how to approach the subject from a more intuitive yet pow-
erful technique. Specifically, reasoning about commitments
and goals brings up the challenge of decision making by an
agent as it adopts and enacts various commitment protocols
so as to advance its goals. Although the earliest works on
commitments, e.g., [23], did not model goals explicitly, they
showed how an agent could reason about commitments, for
example, by applying implemented frameworks such as the
event calculus or causal logic [7, 24, 25]. The newer works
on goals and commitments, e.g., [17], are abstract in that
they define an operational semantics of the relation between
goals and commitments, but do not provide algorithms to
automatically process their operational semantics.

3. BACKGROUND
We now provide some essential background necessary to

understand the contributions of this paper.

3.1 Running Example: Purchase Scenario
We illustrate our approach via a simple purchase scenario

involving a merchant and a customer. The merchant has a
goal of getting paid, and can provide goods, and the cus-
tomer has a goal to get the goods, and can pay. The mer-
chant and the customer can achieve their goals in various
ways. As an example, the merchant may commit to the cus-
tomer to providing the goods if the customer pays. Even-
tually the merchant may provide the goods to the customer
(satisfying customer’s goal for goods), and the customer may
pay the merchant (satisfying merchant’s goal to get paid)
either before or after the merchant provides the goods. In
another example, to achieve its goal for goods, the customer
may manufacture the goods itself, and to achieve its goal
of getting paid, the merchant may deposit funds in a bank
and receive interest payments from the bank. However, it
may be more costly for the customer to manufacture the
goods than to procure the goods from the merchant, and
the merchant’s interest payments may not be as much as
the merchant’s profit by selling the goods to the customer.

Our HTN formalization enables the merchant and cus-
tomer to generate a joint feasible plan to satisfy their goals.
If the merchant or the customer prefer not to employ the
generated plan, our formalization is capable of generating
alternative plans.

3.2 Logic Language
We use a first-order logic language consisting of an infinite

set of symbols for predicates, constants, functions, and vari-
ables, obeying the usual formation rules of first-order logic
and following its usual semantics when describing planning
domains [12].

Definition 1 (Term). A term, denoted generically as τ ,
is a variable w, x, y, z (with or without subscripts); a con-
stant a, b, c (with or without subscripts); or a function term
f(τ0, . . . , τn), where f is a n-ary function symbol applied to
(possibly nested) terms τ0, . . . , τn.

Definition 2 (Atomic formula). A (first-order) atomic for-
mula, denoted as ϕ, is a construct of the form p(τ0, . . . , τn),
where p is an n-ary predicate symbol and τ0, . . . , τn are terms.
A first-order formula Φ is recursively defined as Φ ::= Φ ∧
Φ′|¬Φ|ϕ.

We assume the usual abbreviations: Φ ∨ Φ′ stands for
¬(¬Φ∧¬Φ′); Φ → Φ′ stands for ¬Φ∨Φ′ and Φ ↔ Φ′ stands
for (Φ → Φ′) ∧ (Φ′ → Φ). Additionally, we also adopt the
equivalence {Φ1, . . . , Φn} ≡ (Φ1 ∧ · · · ∧ Φn) and use these
interchangeably. Our mechanisms use first-order unification
[1], which is based on the concept of substitutions.

Definition 3 (Substitution). A substitution σ is a finite
and possibly empty set of pairs {x1/τ1, . . . , xn/τn}, where
x1, . . . , xn are distinct variables and each τi is a term such
that τi 6= xi.

Given an expression E and a substitution σ = {x1/τ1, . . . ,
xn/τn}, we use Eσ to denote the expression obtained from
E by simultaneously replacing each occurrence of xi in E
with τi, for all i ∈ {1, . . . , n}.

878

Unifications can be composed ; that is, for any substitu-
tions σ1 = {x1/τ1, . . . , xn/τn} and σ2 = {y1/τ ′

1, . . . , yk/τ ′

k},
their composition, denoted as σ1 · σ2, is defined as {x1/(τ1 ·
σ2), . . . , xn/(τn · σ2), z1/(z1 · σ2), . . . , zm/(zm · σ2)}, where
{z1, . . . , zm} are those variables in {y1, . . . , yk} that are not
in {x1, . . . , xn}. A substitution σ is a unifier of two terms
τ1, τ2, if τ1 · σ = τ2 · σ.

Definition 4 (Unify Relation). Relation unify(τ1, τ2, σ) holds
iff τ1·σ = τ2·σ. Moreover, unify(p(τ0, . . . , τn), p(τ ′

0, . . . , τ
′

n), σ)
holds iff unify(τi, τ

′

i , σ), for all 0 ≤ i ≤ n.

Thus, two terms τ1, τ2 are related through the unify rela-
tion if there is a substitution σ that makes the terms syn-
tactically equal. In our representation and algorithms, we
adopt Prolog’s convention [1] and use strings starting with a
capital letter to represent variables and strings starting with
a small letter to represent constants.

3.3 Commitments
Social commitments are extensively studied in multiagent

literature [9, 11, 20]. Specifically, a commitment C(debtor,
creditor, antecedent, consequent) means that a debtor

agent commits to a creditor agent to bring about the con-
sequent if the antecedent holds [16]. For example, in the
purchase scenario, the customer commits to the merchant
to paying if the merchant provides the goods: C(customer,
merchant, goods, pay).

Figure 1 shows the commitment lifecycle [17]. Before a
commitment is created, it is in state null. When the debtor
creates a commitment, the commitment enter the state ac-
tive, which consists of two substates: conditional and de-
tached. An active commitment is conditional when its an-
tecedent is false, and detached when its consequent is true.
An active commitment expires if its antecedent fails. If the
consequent of an active commitment is brought about, then
the commitment satisfies. An active commitment becomes
pending when the debtor suspends it (e.g., to redirect its re-
sources to another more pressing goal or commitment), and
a pending commitment becomes active when the debtor re-
activates it. If the debtor cancels or the creditor releases a
conditional commitment, the commitment is terminated. If
the debtor cancels a detached commitment, then the com-
mitment is violated.

3.4 Goals

Expired (E) Null (N) Pending (P)

Conditional (C) Detached (D)

Terminated (T) Satisfied (S) Violated (V)

Active (A)

createantecedent failure

antecedent

cancel cancelconsequent
release

suspend
reactivate

Figure 1: Commitment life cycle as a state transition

diagram.

Null (N)

Inactive (I) Active (A)

Suspended (U)

Terminated (T) Failed (F) Satisfied (S)

consider

activate

reconsider reactivate

suspend suspend

drop ∨ abort fail succeed

Figure 2: Goal lifecycle as a state transition dia-

gram.

A goal is a state of the world that an agent wishes to bring
about. We formulate a goal as: G = G(x, pg, s, f), where x
is an agent, pg is the precondition of the goal, the truth of
which is required for the goal to be considered [17, 18]. s
is the success condition of G, and f is the failure condition.
A goal succeeds if s holds without f holding. For example,
in the purchase scenario, the customer has a goal of procur-
ing the goods before a deadline: G(customer, needsGoods,
goods, deadline). We note that, to improve readability, we
have slightly simplified the formulation of goals from [17] by
conflating the success condition of the goal with its effect,
as well as the in-condition with the negation of the failure
condition.

Figure 2 shows our goal lifecyle [17]. A goal is in state null
before it is considered, if the goal’s precondition is true, then
a goal may be considered. When the agent considers a goal,
it becomes inactive. The agent may activate an inactive
goal, in which case the goal becomes active. The agent may
suspend an inactive or an active goal, which will transition
the goal to the suspended state. If the agent reconsiders a
suspended goal, the goal transitions to the inactive state,
and if the agent reactivates a suspended goal, the goal tran-
sitions to the active state. When the goal is inactive, active,
or suspended: (a) if the agent drops or terminates the goal,
then the goal transitions to state terminated ; (b) if the fail-
ure condition holds, then the goal transitions to the state
failed ; and (c) if the success condition holds, then the goal
transitions to the state satisfied.

3.5 Classical and HTN Planning
STRIPS-style planning defines a problem in terms of an

initial state and a goal state—both specified as sets of ground
atoms—and a set of operators. An operator has a precondi-
tion encoding the conditions under which the operator can
be used, and a postcondition encoding the outcome of ap-
plying the operator. Planning is concerned with sequencing
actions obtained by instantiating operators describing state
transformations. In our representation, an operator o is
a five-tuple 〈name(o), pre(o), del(o), add(o), cost(o)〉, where
(1) name(o) = act(~x), the name of the operator, is a symbol
followed by a vector of distinct variables such that all free

879

variables in pre(o), del(o), and add(o) also occur in act(~x);
(2) pre(o), del(o) and add(o) called, respectively, the precon-
dition, delete-list and add-list, are sets of atoms where the
add and delete lists are disjoint; and (3) cost(o) is a numeric
expression representing the cost of executing an operator.
The delete-list specifies which atoms should be removed from
the state of the world when the operator is applied, and the
add-list specifies which atoms should be added to the state
of the world when the operator is applied.

A Hierarchical Task Network (HTN) planner generates
a plan by successive refinements of sets of tasks. Tasks
are classified into primitive (à la individual operators in
STRIPS-style planning) and compound (abstract high-level
tasks). An HTN planner recursively decomposes compound
tasks by using a designer-specified library of methods un-
til only primitive tasks remain. Methods are elements of
domain knowledge that describe how a higher-level task can
be decomposed into more primitive tasks, they constrain the
search space making HTN planning more efficient. For ex-
ample, in the purchase scenario, the customer’s higher-level
task, achieveGoal, to achieve its goal for procuring the goods
could be decomposed into primitive tasks of creating a com-
mitment, C(customer, merchant, goods, pay), toward the
merchant, and of paying the merchant after the merchant
provides the goods.

Formally [12], an HTN planning problem P is a tuple
(d, I,D), where (1) d is a task network, (2) I is an initial
state, and (3) D is an HTN planning domain. The planning
domain D is a tuple (A,M), respectively, finite sets of op-
erators and methods. A task network H is a tuple (T, C),
where T is a finite set of tasks (primitive and compound),
and C is a set of partial ordering constraints on tasks in
T . A constraint specifies the order in which certain tasks
can be executed, and can be either a precedes or a succeeds
relation. For example, ti ≺ tj (equivalently ti ≻ tj) means
that ti must be executed before tj . A task has a precondi-
tion that must hold under some substitution before the task
can be executed. Corresponding to each primitive task t,
an operator exists in the planning domain, that is, A ⊆ T .
The operator specifies the effect on the world state if the
task is executed. Corresponding to each compound task t,
a method exists in the planning domain, that is, A ⊆ M .
A method m is a tuple (t, s,H’), where s is a precondition
that must hold for a task t to be refined into another task
network H’ = (T ’, C’). Note that A∪M = T : all operators
in A and all methods in M are in the task set T .

4. FORMALIZATION WITHIN HTN
We now formalize Telang et al.’s [17] operational seman-

tics as an HTN planning domain. Doing so, together with
domain-specific operations, enables us to use an HTN plan-
ner such as JSHOP2 [15] to automatically synthesize cor-
rect protocols to achieve an individual agent’s goals either
in isolation (Section 4.1) or via commitments among mul-
tiple agents (Section 4.2). We finish with the formalization
of the HTN methods required to generate goal-commitment
protocols in Section 4.3. We adopt JSHOP2’s convention of
naming primitive tasks with an initial exclamation mark (!).

4.1 Goal and Commitment Dynamics
As agents interact, their commitments and goals progress

in a systematic manner. In essence, the dynamics of com-
mitments and goals are captured using their lifecycles, as

presented in Figures 1 and 2. Note that only some of the
transitions in Figures 1 and 2 are under explicit control of
an agent. For example, an agent can explicitly create a com-
mitment, thus transitioning it to the active state. However,
once a commitment is active, transitions to the satisfied and
expired occur based on what transpires or fails to transpire
in the environment. Notice that the discharge of a com-
mitment depends solely on the consequent becoming true,
which could happen because of an action by any of the agents
or through some environmental process. In settings where
we wish to ensure that the debtor performs the action that
brings about the consequent, we could specify the conse-
quent to incorporate the debtor, e.g., paid(John, $1) instead
of paid($1).

We formalize the dynamics using the HTN planning frame-
work. This formalization seeks to support operations that an
agent can explicitly execute to manipulate its internal repre-
sentations of the current state of a goal or commitment. To
capture the above intuition regarding the agent’s control, we
define the dynamics in two parts: (1) a set of logical axioms
characterizing the states of a goal and of a commitment; and
(2) a set of planning operators that induce the state changes
over which the agent has direct control.

The states of a commitment C are defined logically via
(1) five predicates corresponding to lifecycle states (null(C),
pending(C), canceled (C), released(C), and expired(C)) and
(2) six axioms corresponding to state transitions, where D
represents the debtor of the commitment, and A represents
the creditor of the commitment:
〈operator : !create(C, D, A),

pre :(commitment (C, D, A) ∧ null (C)),
del :(null (C)), add :(),
cost :0〉
〈operator : !suspend(C, D, A),

pre :(commitment (C, D, A) ∧ active(C)),
del :(), add :(pending(C)),
cost :1〉
〈operator : !reactivate (C, D, A),

pre :(commitment (C, D, A) ∧ pending(C)),
del :(pending(C)), add :(),
cost :1〉
〈operator : !expire(C,D, A),

pre :(commitment (C, D, A) ∧ conditional (C)
∧ timeout(C)),

del :(), add :(expired (C)),
cost :5〉
〈operator : !cancel(C,D, A),

pre :(commitment (C, D, A) ∧ active(C)),
del :(), add :(canceled (C)),
cost :10〉

〈operator : !release(C,D, A),

pre :(commitment (C, D, A) ∧ active(C)),

del :(), add :(released (C)),

cost :1〉

Here, p(C) and q(C) capture the antecedent and conse-
quent, respectively, of C being true: these would be sub-
stituted by domain-specific predicates, e.g., goods may fea-
ture as the antecedent in some commitment. Note that the
terminal axiom is merely a shortcut for the set of states
from which a commitment cannot move out. Moreover, com-
mitment (and later goal) types are introduced to allow the
existence of multiple instances of a commitment with the
same conditions.

p(C)← commitment(C, D, A) ∧ commitmentType(C, c1) ∧ payc

q(C)← commitment(C, D, A) ∧ commitmentType(C, c1) ∧ goodsc

880

The remaining commitment states are defined via the fol-
lowing axioms:

conditional (C)← active(C) ∧ ¬p(C)

detached (C)← active(C) ∧ p(C)

active(C)← ¬null (C) ∧ ¬terminal(C) ∧

¬pending(C) ∧ ¬satisfied (C)

terminated(C) ← (¬p(C) ∧ canceled (C)) ∨ released (C)

violated(C) ← (p(C) ∧ canceled (C)) ∨ ¬p(C)

satisfied (C)← ¬null (C) ∧ ¬terminal(C) ∧ p(C) ∧ q(C)

terminal(C)← commitment(C, D, A) ∧

(canceled (C) ∨ released (C) ∨ expired (C))

Next, we formalize the dynamics of goals. As for com-
mitments, the states of a goal G from agent A are defined
in terms of (1) five predicates corresponding to lifecycle
states (null(G), activatedG (G), suspendedG (G), dropped(G),
and aborted (G)) and (2) five axioms corresponding to state
transitions:
〈operator : !consider(G, A),

pre :(goal(G, A) ∧ null (G) ∧ pg(G)),
del :(null (G)), add :(),
cost :1〉
〈operator : !activate (G, A),

pre :(goal(G, A) ∧ inactiveG (G)),
del :(), add :(activatedG (G)),
cost :1〉
〈operator : !suspend(G, A),

pre :(goal(G, A) ∧ ¬terminalG (G) ∧ ¬null (G)),
del :(activatedG (G)), add :(suspendedG (G)),
cost :1〉
〈operator : !reconsider(G, A),

pre :(goal(G, A) ∧ suspendedG (G) ∧ ¬terminalG (G) ∧
¬null (G)),

del :(), add :(suspendedG (G)),
cost :1〉
〈operator : !reactivate (G, A),

pre :(goal(G, A) ∧ suspendedG (G) ∧ ¬terminalG (G) ∧
¬null (G)),

del :(activatedG (G)), add :(suspendedG (G)),
cost :1〉
〈operator : !drop(G, A),

pre :(goal(G, A) ∧ ¬terminalG (G) ∧ ¬null (G)),
del :(), add :(dropped(G)),
cost :1〉

〈operator : !abort(G, A),

pre :(goal(G, A) ∧ ¬terminalG (G) ∧ ¬null (G)),

del :(), add :(aborted (G)),

cost :1〉

Here, pg(G), s(G) and f respectively capture the precon-
dition, success condition, and failure condition of G. For
example, for goal G(payc, goodsc, deadlinec), we could en-
code the following axioms:

pg(G)← goal(G, A) ∧ goalType(G, g3) ∧ payc

s(G)← goal(G, A) ∧ goalType(G, g3) ∧ goodsc

f(G)← goal(G, A) ∧ goalType(G, g3) ∧ deadlinec

The remaining goal states are defined via these axioms:

inactiveG (G)← ¬null (g) ∧ ¬f(G) ∧ ¬s(G) ∧

¬terminalG (G) ∧ ¬suspendedG (G) ∧

¬activeG(G)

activeG(G) ← activatedG (G) ∧ ¬f(G) ∧ ¬satisfied G(G)

∧ ¬terminalG (G) ∧ ¬suspendedG (G)

satisfiedG(G)← ¬null (G) ∧ ¬terminal(G) ∧ pg(G)

∧ s(G) ∧ ¬f(G)

failedG (G)← ¬null (G) ∧ f(G)

terminatedG (G)← ¬null (G) ∧ (dropped(G) ∨ aborted (G))

terminalG (G)← goal(G, A) ∧ (dropped(G) ∨ aborted (G))

4.2 Relating Goals to Commitments
We now define the methods corresponding to the practi-

cal reasoning rules for goals and commitments [17]. Each
rule is written guard

transition
, where guard is a query on the

state, and transition consists of one or more transitions in
the state of a goal or commitment. To map such a rule to
the HTN formalism. we define a compound task for each
rule identifier and express each rule as an HTN method that
decomposes this task into primitive transitions to the state
of a goal or commitment. The guard of the rule becomes
the precondition of the method, and the task network con-
tains the primitive action corresponding to the transition.
(Below, the superscript on a C or a G refers to the state
in the corresponding lifecycle as shown in Figures 1 and 2,
respectively.) For example, the entice rule

〈GA, CN 〉

create(C)
entice

becomes the following method:
(method : entice(G, C, D, A),

pre :(goal(G, D) ∧ activeG(G) ∧

commitment(C, D, A) ∧ null (C) ∧ (s(G)↔ p(C))),

tn :(!create(C, D, A)))

(method : deliver(G, C, D, A),

pre :(goal(G, D) ∧ null (G) ∧

commitment(C, D, A) ∧ detached (C)),

tn :(!consider(G, D), !activate (G, D)))

For brevity, we omit the methods for the remaining prac-
tical rules though we use them in our running examples.

4.3 Bringing it all Together
For an HTN planner to generate valid plans to achieve an

agent’s goals individually or through commitment protocols,
we need methods to decompose an agent’s goals. Table 1
formalizes methods for decomposing all achievable goals in
a domain into commitment protocols. The first method in
Table 1 recursively tries to activate all possible goals for an
agent. Notice that we omit domain dependent methods to
achieve goals by individual agents without help from others,
but in many domains, agents will have a choice between
executing a single agent plans and using commitments to
get other agents to help them.

If a certain goal is already active, the second method
tries to decompose such a goal into an individually initi-
ated plan to achieve that goal. Such a plan may consist
of an individual plan: a designer must create a domain-
dependent plan through an additional method to decompose
the achieveGoal compound task. Or, the plan may consist

881

of a generic commitment protocol: use the last method in
Table 1 to create a commitment protocol based on entic-
ing another agent A2 to adopt a commitment whose an-
tecedent satisfies the goal, and whose consequent is a goal
of A2. If A2 achieves A1’s goal, this commitment detaches,
in which case A1 delivers the promised consequent. Finally,
the third method in Table 1 caters to two agents A1 and
A2 whose goals can be achieved by mutual commitments. If
both agents commit as appropriate, when A1 detaches its
commitment, the goal of A2 is achieved, and vice versa.

Table 1: Methods to achieve goals through commit-

ments.
(method : achieveGoals,

pre :(goal(G, A) ∧ pg(G) ∧ ¬activeG(G)),
tn :(!consider(G, A), !activate (G, A), achieveGoals))

(method : achieveGoals,
pre :(goal(G, A) ∧ activeG(G)),
tn :(achieveGoal(G, A)))

(method : achieveGoals,
pre :(goal(G1, A1) ∧ activeG(G1) ∧

goal(G2, A2) ∧ activeG(G2) ∧
commitment (C1, A1, A2) ∧ (s(G1)↔ p(C1)) ∧
commitment (C2, A2, A1) ∧ (s(G2)↔ p(C2))),

tn :({entice(G1, C1, A1, A2), entice(G2, C2, A2, A1)},
{detach(C1), detach(C2)}))

(method : achieveGoals,
pre :(⊤),
tn :())

(method : achieveGoal(G1, A1),
pre :(goal(G1, A1) ∧ activeG(G1) ∧

commitment (C, A1, A2) ∧ (s(G1)↔ p(C)) ∧
goal(G2, A1) ∧ (s(G2)↔ q(C)) ∧ (G1 6= G2)),

tn :(entice(G1, C, A1, A2), detach(C), deliver(G2, C, A1, A2),
achieveGoal(G2, A2)))

5. APPLYING THE HTN FORMALIZATION
We illustrate the HTN formalization on the purchase sce-

nario. Table 3 summarizes the goals and commitments from
this example. The HTN formalization for the purchase sce-
nario reuses the domain-independent methods, operators,
and axioms from Section 4. We add four domain-dependent
operators to the formalization.
manufactureGoods, with success condition goods: the cus-

tomer manufactures goods on its own.
earnInterest, success condition pay: the merchant deposits

money in a bank to earn interest.
sendPayment, with success condition pay: the customer

pays the merchant.
sendGoods, with success condition goods: the merchant

sends goods to the customer.
For simplicity, we use an absolute number for cost instead

of an expression. We set the cost of manufactureGoods, earn-

Interest, sendPayment, and sendGoods to be 20, 20, 1, and 1
respectively. Notice that we set the cost of manufactureGoods

higher than sendPayment and of earnInterest higher than send-

Goods. Here we assume the costs are centrally set; normally
it is ill-founded to compare preferences across agents.

Figure 3 shows a portion of the HTN tree rooted at the
achieveGoals method, showing it invokes the customer’s method
to achieve its goals Gcg, achieveGoal(C, Gcg). The achieve-

Goal method invokes entice, detach, and deliver methods. The
entice method invokes the create(Ccm) operator to create
a commitment. Since the commitment Ccm is active, and

Table 2: Domain-specific axioms and methods for

the merchant scenario.
pg(G)← goal(G, A) ∧ goalType(G, Gmp) ∧ ⊤

s(G)← goal(G, A) ∧ goalType(G, Gmp) ∧ pay

f(G)← goal(G, A) ∧ goalType(G, Gmp) ∧ deadline

pg(G)← goal(G, A) ∧ goalType(G, Gcg) ∧ needsgoods

s(G)← goal(G, A) ∧ goalType(G, Gcg) ∧ goods

f(G)← goal(G, A) ∧ goalType(G, Gcg) ∧ deadline

pg(G)← goal(G, A) ∧ goalType(G, Gmg) ∧ pay

s(G)← goal(G, A) ∧ goalType(G, Gmg) ∧ goods

f(G)← goal(G, A) ∧ goalType(G, Gmg) ∧ deadline

pg(G)← goal(G, A) ∧ goalType(G, Gcp) ∧ goods

s(G)← goal(G, A) ∧ goalType(G, Gcp) ∧ pay

f(G)← goal(G, A) ∧ goalType(G, Gcp) ∧ deadline

p(C)← commitment(C, D, A) ∧ commitmentType(C, Cmc) ∧ pay

q(C)← commitment(C, D, A) ∧ commitmentType(C, Cmc) ∧ goods

p(C)← commitment(C, D, A) ∧ commitmentType(C, Ccm) ∧ goods

q(C)← commitment(C, D, A) ∧ commitmentType(C, Ccm) ∧ pay

〈operator : !sendGoods(A, D),
pre :(¬goods ∧ (A = m) ∧ (D = c)),
del :(), add :(goods),
cost :1〉

〈operator : !sendPayment(A, D),
pre :(¬payc ∧ (A = c) ∧ (D = m)),
del :(), add :(payc),
cost :1〉

〈operator : !manufactureGoods(A),
pre :(¬goodsc ∧ (A = c)),
del :(), add :(goods),
cost :10〉

(method : achieveGoal(G),
pre :(G = Gcg ∧ goal(G, c) ∧ activeG(G)),
tn :(!manufactureGoods(c)))

(method : achieveGoal(G),
pre :(G = Gmg ∧ goal(G, m) ∧ activeG(G)),
tn :(!sendGoods(m, c)))

(method : achieveGoal(G),
pre :(G = Gcp ∧ goal(G, c) ∧ activeG(G)),
tn :(!sendPayment(c, m)))

(method : detach(C),
pre :(C = Cmc ∧ active(C)),
tn :(!sendPayment(c, m)))

(method : detach(C),
pre :(C = Ccm ∧ active(C)),
tn :(!sendGoods(c, m)))

Table 3: Goals and commitments from the purchase

example.

Id Commitment or Goal

Gmp G(merchant, ⊤, pay, deadline)
Gcg G(customer, needsGoods, goods, deadline)
Gmg G(merchant, pay, goods, deadline)
Gcp G(customer, goods, pay, deadline)
Cmc C(merchant, customer, pay, goods)
Ccm C(customer, merchant, goods, pay)

the merchant has a goal Gmp to get paid, the detach(Ccm)
method is invoked, which invokes the method activate(Gmg),
which in turn invokes the domain-dependent operator send-

Goods. That satisfies Gmg and Gcg, and detaches Ccm.
Once the commitment Ccm is detached, the deliver(Ccm)

882

achieveGoals

achieveGoal(C, Gcg)

deliver(Ccm)

activate(Gcp)

sendPayment

detach(Ccm)

activate(Gmg)

sendGoods

entice(Gcg , Ccm, C, M)

create(Ccm)

Figure 3: A decomposition tree for the purchase

scenario.

method is invoked, which in turn invokes the activate(Gcp)
operator. Finally, the domain-dependent operator sendPay-

ment is invoked, which satisfies Gcp, Gmp, and Ccm. Follow-
ing this path, we obtain the plan: create(Ccm), sendGoods ,
and sendPayment. The total cost of this plan is 3. A second
possible plan (not shown in Figure 3) is: manufactureGoods,
and earnInterest. These two operators satisfy the achieve-

Goal(M, Gmp) and achieveGoal(C, Gcg). The total cost of
this plan is 40.

These plans and their costs represent concrete realizations
for the goals and commitments defined in the agent system
modeled, and serve two purposes. First, the existence of
plans that achieve the goals and satisfy commitments repre-
sents a proof of realizability for the specified agent system.
Second, when multiple plans exist, their individual costs en-
able agents to reason about optimal realizations of its goals
either by an agent on its own, or through commitments to
other agents.

6. CONCLUSIONS AND DIRECTIONS
The main contribution of this paper is a novel HTN planning-

based approach for operationalizing goals and commitments.
Our formalization for goals and commitments exploits exist-
ing off-the-shelf HTN planners to efficiently generate a plan
for an individual agent or a commitment protocol. More-
over, using our formalization, once can use such a planner
as an efficient validation tool for business protocols as they
are designed. Our approach offers advantages over exist-
ing approaches, e.g., [13, 23]. First, it supports the gen-
eration of human-readable protocols. Second, it reasons
about the costs of protocols to optimize them before exe-
cution. Third, the methods we define can be converted into
plan libraries for traditional agent programming languages,
specifically those that use HTN planning [8]. Fourth, al-
though compiling a commitment protocol may result in a
large HTN domain, HTN planning itself is recognized as
one of the most efficient planning formalisms, being able to
generate solutions to planning problems that have extremely
large state spaces.

6.1 Related Work
Chopra and Singh [6] employ C+, an action description

language, to model commitment protocols so they can be
contextually adapted. Günay et al. [13] propose an algo-
rithm to automatically create commitment protocols that
would achieve agent goals by matching goals to local capa-

bilities and services from third parties. By contrast, our
formalization applies an HTN planner such as JSHOP2 not
only to create such plans and commitment protocols, but
also to optimize the results based on the cost of the op-
erators. Further, it supports visualizing the generation of
a protocol in a readable way. Günay et al. reason about
an agent’s capabilities explicitly during protocol generation
whereas we explicitly enumerate the capabilities or services
that satisfy each goal. In this respect, the approach is com-
plementary to our approach.

Chopra et al. [4, 5] develop a semantic relationship be-
tween goals and commitments. Their approach can verify
if a set of commitments supports achieving a set of agent
goals, and if a set of agent goals supports satisfying a set of
commitments. In contrast, given a set of goals and commit-
ments, our approach produces operational level and feasible
plans that lead to satisfaction of the goals and commitments.

It is instructive to compare our approach to Telang et al.’s
[17] approach. We adopt their practical rules but add cost.
Telang et al. present a table showing one possible execution,
identifying the specific practical rules and agent states that
occur at each step in the execution. Our approach offers the
following relative advantages. First, we consider all possi-
ble executions if we disregard the cost. Second, we identify
a jointly optimal plan, which ensures that the sum of the
costs for each agent is minimal, and can generate additional
executions of increasing cost as needed.

6.2 Directions
Our approach brings cost into consideration for reason-

ing about goals and commitments. However, it assumes a
fully cooperative setting that takes into account the total
cost over all participants. A natural and important research
challenge is to extend the approach to handle self-interested
agents who might wish to optimize for themselves individ-
ually even if the overall cost of the plan is increased as a
result. Such agents may negotiate with each other or may
even disclose their costs strategically. We hope to pursue
such considerations in future work.

A natural important challenge is to apply our approach to
address the design-time challenge, which involves reasoning
about a protocol so as to generate an operational representa-
tion. Previous approaches can produce finite state machine
representations. Such representations do not provide a ba-
sis for incorporating costs to limit the execution paths that
would be suitable for a particular agent based on the costs
they can bear.

Finally, although our approach can be used to generate
protocol realizations when simultaneous goals and commit-
ments do not conflict, and detect when conflicts make real-
izations impossible, it cannot currently resolve such conflicts
automatically (e.g., suggest different methods to overcome
conflicts). Therefore, we leave the design of planning tools
to overcome domain-knowledge conflicts as future work.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments.

7. REFERENCES

[1] K. R. Apt. From Logic Programming to Prolog.
Prentice-Hall, U.K., 1997.

883

[2] B. Bauer and J. Odell. UML 2.0 and agents: How to
build agent-based systems with the new UML
standard. Engineering Applications of Artificial
Intelligence, 18(2):141–157, Mar. 2005.

[3] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Commitment tracking via the reactive event calculus.
In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), pages
91–96, Pasadena, California, 2009. IJCAI.

[4] A. K. Chopra, F. Dalpiaz, P. Giorgini, and
J. Mylopoulos. Modeling and reasoning about
service-oriented applications via goals and
commitments. In Proceedings of the 22nd
International Conference on Advanced Information
Systems Engineering (CAiSE), pages 417–421, 2010.

[5] A. K. Chopra, F. Dalpiaz, P. Giorgini, and
J. Mylopoulos. Reasoning about agents and protocols
via goals and commitments. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 457–464,
Toronto, 2010. IFAAMAS.

[6] A. K. Chopra and M. P. Singh. Contextualizing
commitment protocols. In Proceedings of the 5th
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1345–1352, Hakodate,
Japan, May 2006. ACM Press.

[7] A. K. Chopra and M. P. Singh. Contextualizing
commitment protocols. In Proceedings of the 5th
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1345–1352, Hakodate,
Japan, May 2006. ACM Press.

[8] L. de Silva, S. Sardina, and L. Padgham. First
principles planning in BDI systems. In Proceedings of
the 8th International Conference on Autonomous
Agents and Multiagent Systems – Volume 2, AAMAS,
pages 1105–1112, 2009.

[9] N. Desai, A. K. Chopra, and M. P. Singh. Amoeba: A
methodology for modeling and evolution of
cross-organizational business processes. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 19(2):6:1–6:45, Oct. 2009.

[10] N. Desai, N. C. Narendra, and M. P. Singh. Checking
correctness of business contracts via commitments. In
Proceedings of the 7th International Conference on
Autonomous Agents and MultiAgent Systems
(AAMAS), pages 787–794, Estoril, Portugal, May
2008. IFAAMAS.

[11] N. Fornara and M. Colombetti. Ontology and time
evolution of obligations and prohibitions using
semantic web technology. In Proceedings of the 7th
AAMAS Workshop on Declarative Agent Languages
and Technologies (DALT), pages 101–118, 2009.

[12] M. Ghallab, D. Nau, and P. Traverso. Automated
Planning: Theory and Practice. Elsevier, 2004.

[13] A. Günay, M. Winikoff, and P. Yolum. Commitment
protocol generation. In Proceedings of the 10th
AAMAS Workshop on Declarative Agent Languages
and Technologies (DALT), pages 51–66, 2012.

[14] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and
M. Zapletal. UN/CEFACT’s Modeling Methodology
(UMM): A UML profile for B2B e-commerce. In

Proceedings of the 2nd International Workshop on
Best Practices of UML (ER), pages 19–31, 2006.

[15] O. Ilghami and D. S. Nau. A general approach to
synthesize problem-specific planners. Technical report,
University of Maryland, 2003.

[16] M. P. Singh. Semantical considerations on dialectical
and practical commitments. In Proceedings of the 23rd
Conference on Artificial Intelligence (AAAI), pages
176–181, Chicago, July 2008. AAAI Press.

[17] P. R. Telang, N. Yorke-Smith, and M. P. Singh.
Relating goal and commitment semantics. In
Proceedings of the 9th International Workshop on
Programming Multiagent Systems (ProMAS 2011),
volume 7217 of LNCS, pages 22–37, Taipei, 2012.
Springer.

[18] J. Thangarajah, J. Harland, D. Morley, and
N. Yorke-Smith. Operational behaviour for executing,
suspending and aborting goals in BDI agent systems.
In Declarative Agent Languages and Technologies VII,
Revised Selected and Invited Papers, volume 6618 of
LNCS, pages 1–21. Springer, 2011.

[19] M. Venkatraman and M. P. Singh. Verifying
compliance with commitment protocols: Enabling
open Web-based multiagent systems. Autonomous
Agents and Multi-Agent Systems, 2(3):217–236, Sept.
1999.

[20] M. Verdicchio and M. Colombetti. Commitments for
agent-based supply chain management. SIGecom
Exchanges, 3(1):13–23, 2002.

[21] M. Winikoff. Implementing commitment-based
interaction. In Proceedings of the 6th International
Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 868–875,
Honolulu, May 2007. IFAAMAS.

[22] M. Winikoff, W. Liu, and J. Harland. Enhancing
commitment machines. In Proceedings of the 2nd
International Workshop on Declarative Agent
Languages and Technologies (DALT), volume 3476 of
LNAI, pages 198–220, Berlin, 2005. Springer.

[23] P. Yolum and M. P. Singh. Commitment machines. In
Proceedings of the 8th International Workshop on
Agent Theories, Architectures, and Languages (ATAL
2001), volume 2333 of LNAI, pages 235–247, Seattle,
2002. Springer.

[24] P. Yolum and M. P. Singh. Flexible protocol
specification and execution: Applying event calculus
planning using commitments. In Proceedings of the 1st
International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 527–534,
Bologna, July 2002. ACM Press.

[25] P. Yolum and M. P. Singh. Reasoning about
commitments in the event calculus: An approach for
specifying and executing protocols. Annals of
Mathematics and Artificial Intelligence,
42(1–3):227–253, Sept. 2004.

[26] P. Yolum and M. P. Singh. Enacting protocols by
commitment concession. In Proceedings of the 6th
International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 116–123,
Honolulu, May 2007. IFAAMAS.

884

