
Efficient Budget Allocation with Accuracy Guarantees for
Crowdsourcing Classification Tasks

Long Tran-Thanh, Matteo Venanzi, Alex Rogers & Nicholas R. Jennings
University of Southampton

Southampton, UK
{ltt08r,mv1g10,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper we address the problem of budget allocation for
redundantly crowdsourcing a set of classification tasks where
a key challenge is to find a trade–off between the total cost
and the accuracy of estimation. We propose CrowdBudget,
an agent–based budget allocation algorithm, that efficiently
divides a given budget among different tasks in order to
achieve low estimation error. In particular, we prove that

CrowdBudget can achieve at most max
n

0, K
2
− O

“√
B
”o

estimation error with high probability, where K is the num-
ber of tasks and B is the budget size. This result signif-
icantly outperforms the current best theoretical guarantee
from Karger et al. In addition, we demonstrate that our
algorithm outperforms existing methods by up to 40% in
experiments based on real–world data from a prominent
database of crowdsourced classification responses.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents

General Terms
Algorithms, Theory, Experimentation

Keywords
Crowdsourcing, Task Allocation, Budget Limit, Regret Bounds

1. INTRODUCTION
Crowdsourcing classification tasks, such as classification of
complex images [5] or identification of buildings on maps
[3], has recently become widely used as it presents a low-cost
and flexible approach to solve complex classification tasks by
combining human computation with agent intelligence [2].
In particular, by dedicating tasks to a population of hired
users (i.e. workers) for a small fee, the taskmaster (i.e. task
requester) can collect a large set of class labels from the
workers and ultimely estimate classification answers from
the multiple reports. To achieve this, the taskmaster re-
dundantly allocates tasks to users (in order to reduce uncer-
tainty, as a single response might be unreliable), and then

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

aggregates the responses into a final estimate using a fusion
method (e.g. majority voting [1] or IBCC [10]). Within
many systems, such a process of task allocation and reports
fusion is not trivial and is typically done by a computer
agent as it might need complex computation that humans
cannot provide [5, 6].1

Now, a key challenge within these crowdsourcing systems
is to find an efficient trade–off between the cost of redun-
dant task allocation and the accuracy of the result. In more
detail, by assigning multiple users to a single task, we can
achieve higher accuracy of answer estimation, but we might
also suffer a higher cost due to hiring more users. To date,
research work has typically focused on applications where
the cost of task allocation is uniform for each task [2, 12,
5]. In this case, the search of the aforementioned trade–off
is reduced to the problem of minimising the estimation er-
ror per task given the number of assigned users to a single
task. However, in many real–world scenarios, completing
different tasks might require different costs that depend on
the difficulty and the time required for the user to complete
such a task. For example, consider a habitat monitoring
project where the goal is to accurately identify the living
area of some rare species (e.g. the desert tortoise from the
Mojave desert, US, or the New Forest cicada in the UK). To
avoid sending expeditions of professionals with high cost,
one low–budget, but efficient, way to tackle this problem
is to ask people from neighbouring areas to make observa-
tions and then send reports in return for a certain amount of
payment. However, as the approachability of geographical
areas might vary (e.g. due to possible dangers or landscape),
we might need to pay different costs to motivate people to
approach different areas in order to provide reports. Fur-
thermore, this allocation scheme has to cope with the fact
that the project is limited by its funds.

Another example comes from the human computation do-
main. Suppose a system designer aims to use a crowdsourc-
ing platform to execute complex workflows of jobs [13]. In so
doing, he/she decomposes the workflows into sets of micro–
tasks, and assigns these tasks to a population of users. Now,
a typical classification task within this domain is to deter-
mine whether a micro–task is completed, and the goal is to
maximise the total accuracy of such classifications. To do so,
he/she incentivises users to participate in this classification
phase and compensate their effort with a certain payment.
Note that the classification tasks may vary in difficulty, as
some are more time consuming, while many others are triv-
ial. Thus, users might need different sizes of payment when

1Hence the combination between human and agent (i.e.
computer) intelligence.

901

they face tasks with different difficulty levels. In addition,
the total payment is limited, as the system designer wants
to keep the cost within a finite budget.

Within the aforementioned scenarios, and many others
besides, the main challenge is to redundantly allocate a set
of tasks with different costs to an open population of users,
with respect to a budget limit, such that the estimation error
is minimised. In particular, if we allocate large budgets to
cheaper tasks, whose answers can typically be accurately es-
timated with only a few responses, we might fail to achieve
high total accuracy of estimation, as a large portion of these
budgets could be used for other tasks where the allocated
budget is insufficiently low. In contrast, it might not be ef-
ficient either to allocate much of the budget to expensive
tasks, as this will have less available for the others. Since
existing methods are typically not designed to make such
trade–offs, they are unlikely to be efficient in our settings.
Moreover, these methods do not provide theoretical guaran-
tees on the estimation error, which implies that they might
perform well on average, but they might arbitrarily poorly
in many specific cases. A notable exception is the work of
Karger et al. [6] which provides a e−O(n) bound for the aver-
age estimation error, where n is the number of users assigned
to a single task. However, this bound is only asymptotic (i.e.
it holds when the number of tasks tends to infinity), so is not
practical for real–world systems, where the number of tasks
is typically finite. Against this background, we focus on the
budget allocation problem in which an agent (on the behalf of
the taskmaster) has to allocate budgets to a set of tasks and
the total allocated budget cannot exceed a certain limit. The
agent’s goal is then to find an optimal budget allocation that
minimises the total estimation error of the answers. Within
this paper, we propose CrowdBudget as a budget allocation
strategy that efficiently tackles this problem. In particular,
by combining CrowdBudget with a majority voting-efficient
fusion method (i.e. methods that outperform the majority
voting rule, see Section 3), our agent can proveably achieve

a max
n

0, K
2
− O

“√
B
”o

upper bound on its total estima-

tion error with high probability, where B is the budget size
and K is the number of tasks. This bound is lower than
the one provided by Karger et al.. Moreover, in contrast to
most current approaches, our algorithm allocates the bud-
gets in advance through the analysis of costs and expected
accuracy. This type of functioning is motivated by many
crowdsourcing platforms in which the task requester needs
to pre-set the number of assignments per task (e.g. Amazon
Mechanical Turk or CrowdFlower). Given this, we advance
the state–of–the–art as follows:

• We introduce the problem of budget allocation for crowd-
sourcing classification tasks, in which the goal is to
minimise the error of the estimated answers for a fi-
nite number of tasks, with respect to a budget limit.

• We develop CrowdBudget, an algorithm that, com-
bining with a fusion method, proveably achieves an
efficient bound on the estimation error, which signifi-
cantly advances the best known results.

• By comparing the performance of CrowdBudget with
existing algorithms through extensive numerical eval-
uations on real–world data taken from a prominent
crowdsourcing system, we demonstrate that our al-
gorithm typically outperforms the state–of–the–art by
achieving up to 40% lower estimation error.

The remainder of the paper is structured as follows. In Sec-
tion 2 we discuss the related work in the domain of redun-
dant task assignment in crowdsourcing applications. Then
we formalise the model of budget allocation for task crowd-
sourcing in Section 3. Following this, we detail our proposed
algorithm in Section 4. We also provide a theoretical per-
formance analysis within this section. The results of the
experimental evaluation is then discussed in Section 5. Sec-
tion 6 concludes, and the appendix briefs the proofs.

2. RELATED WORK
Work on redundant allocation of classification tasks in crowd-
sourcing applications has typically focused on minimising
the estimation error given the number of users assigned to
a single task. In particular, Wellinder et al. proposed a
multidimensional model of users in order to estimate the ac-
curacy of a particular user’s answer, and thus, to improve
the estimation of the ground truth [12]. In a similar vein, a
number of works used Bayesian learning techniques to pre-
dict the users’ responses, such as the work of Kamar et al.
[5] and the IBCC algorithm (for independent Bayesian clas-
sifiers combination) [10]. Apart from these, Dai et al. used
a PoMDP–based (for partially observable Markov decision
process) approach to model the estimation’s quality [2]. In
addition, Bachrach et al. relied on a machine learning based
aggregator to derive an efficient estimation of the correct
answer [1]. However, none of these methods will work in our
setting, as they do not address the challenge of having differ-
ent costs for different classification tasks. Nevertheless, they
can be used as an underlying fusion method for CrowdBud-
get, as they provide majority voting efficient response fusion
approaches (for more details, see Section 3).

More related to our work is CrowdScreen, an algorithm
proposed by Parameswaran et al. [9], that aims to find an
optimal dynamic control policy with respect to both total
cost and total estimation error over a finite set of tasks.
However, the cost of task allocation is considered to be uni-
form among different tasks in the system. In addition, as per
the other aforementioned approaches, there are no guaran-
tee on performance. One notable exception that does pro-
vide theoretical guarantees is the work of Karger et al. [6].
Within this work, the authors developed an algorithm based
on low–rank matrix approximation to assign tasks to users
and estimate correct answers. In addition, they devised an
eO(−n) upper bound on the estimation error. However, this
bound only holds when the number of tasks tends to infin-
ity, which implies that their bound is not useful for most
practical contexts, as opposed to our results (see Section 4
for more details).

3. MODEL DESCRIPTION
Let 1, . . . , K denote the classification tasks whose outcomes
have to be estimated. Within our model, we assume that
the classifications are binary. Note that this assumption is
reasonable, as it is true in many real–world systems. Let
tk ∈ {0, 1} be the unknown ground truth (i.e. the correct
answer) of each task k. To estimate tk, we can request re-
sponses from a (large) set of users (i.e. population of the
crowd) as follows. In our model, the taskmaster does not
deterministically choose specific users to perform a particu-
lar task k, but only submits a set of tasks to a crowdsourcing
system, as is the case in many open crowdsourcing systems
with a large population of users (e.g. MechanicalTurk or

902

CrowdFlower) 2. Following this, a computer agent (i.e. the
system) allocates the budgets to each task k, with respect
to the total budget limit B. It then redundantly requests
answers for each task k from the crowd, allowing users to
provide their response to the corresponding task. In return,
the users receive a payment ck from the system. Note that
the agent cannot exceed the budget limit assigned to each
task when requesting answers. Given the provided answers,
the agent then uses a fusion method to estimate tk.

We assume that for each user u and task k, there is an
unknown Bernoulli distribution D (u, k) from which u sam-
ples his answer to task k 3. This distribution formalises
the knowledge and uncertainty of user u towards task k.
In our model, users from the crowd, who decide to provide
an answer to a particular task, can be regarded as being
chosen from the population with an unknown probability
distribution Xk, which depends only on task k. In addition,
we assume that the responders of each task k are chosen
from the population in an i.i.d. (independent and identi-
cally distributed) manner, as they can be considered to be
independent from each other.

We now introduce some terms. For each task k and user
u ∼ Xk, let ED(u,k) [rk (u)] = μu,k. That is, μu,k is the ex-
pected answer of user u to task k w.r.t. distribution D (u, k).
By denoting EXk [μu,k] = μk, we assume that:

∀k : |μk − tk| <
1

2
. (1)

That is, we assume that for each task k, the expected value
of the answers is somewhat closer to the correct answer.
This assumption is common in the crowdsourcing literature
[5, 10, 6] and can be justified as follows. Here, we assume
that the users are not malicious (i.e. they do not provide
wrong answers on purpose). As such, they only provide their
best guess based on their knowledge of the task. However,
this knowledge might be inaccurate with some uncertainty
(hence the distributions D (u, k)). These together ensure
that, on average, the answers will tend towards the ground
truth (i.e. Equation 1 holds).

Consider a set of responses rk (u1) , . . . , ri (unk) of task k
from the crowd, where rk (uj) ∼ D (uj , k). Let r̂k (nk) de-
note the estimate of tk, which is derived from the aforemen-
tioned nk responses by using a fusion method. One simple,
but efficient method is the majority voting rule, which can
be formalised as follows:

r̂MV
k (nk) =

$
1

nk

nkX
j=1

rk (uj) − 1

2

%
+ 1. (2)

That is, r̂MV
k (nk) = 1 if 1

nk

Pnk
j=1 rk (uj) ≥ 1

2
, and 0 oth-

erwise. Note that efficient state–of–the–art fusion methods
typically outperform the majority voting rule by using some
user profile tracking method [1, 10]. This leads us to the
following definition:

Definition 3.1 (MV–Efficiency). A response fusion
method is MV–efficient (or majority voting efficient) if its
outcome is more accurate than the outcome of the majority

2There are crowdsourcing systems where we can determin-
istically assign tasks to specific users. The main advantage
of these systems is that we might be able to use user pro-
files in order to achieve good estimations even with a few
answers. The analysis of such systems, however, remains as
future work.
3Note that the tasks are binary.

voting rule on the same set of responses. More formally,
let r̂k (nk) denote the estimated answer of that particular
method given nk responses. For each k we have:

P{r̂k (nk) �= tk} ≤ P{r̂MV
k (nk) �= tk},

where tk is the ground truth of task k.

Such MV–efficient methods other than the majority voting
rule include, but are not limited to: weighted majority vot-
ing [8], graphical model based methods [1], and IBCC [10].

We now formalise our problem, the budget allocation for
redundant task assignment, as follows. Let rk,1, . . . , rk,nk

be the (a priori unknown) responses of the crowd to task
k, where nk is the number of users who provided an answer
to the task. Let r̂k (nk) denote the estimate of the correct
answer tk based on these responses, using a MV–efficient
fusion method (see Definition 3.1). Recall that by request-
ing a response for task k, we have to pay a cost ck. Let B
denote our total budget that we can use for requesting an-
swers. Let Δ (nk) denote the estimation error, that is, the
difference between the estimate r̂k , derived from answers
rk,1, . . . , rk,nk , and the correct answer tk. More formally,
we have:

Δ (nk) = |r̂k (nk) − tk| . (3)

The total expected estimation error with respect to the bud-
get limit B can be then defined as

E [Δ (B)] =

KX
k=1

E [Δ (nk)] =

KX
k=1

P{r̂k (nk) �= tk} (4)

Our task is to determine a set of n1, . . . , nK that minimises
the total error, and thus, maximise the accuracy of estima-
tion. More formally, we aim to solve the following optimisa-
tion problem:

min
{nk}

E [Δ (B)] = min
{nk}

KX
k=1

P{r̂k (nk) �= tk}, s.t.
KX

k=1

cknk ≤ B

(5)
In what follows, we will propose an algorithm that efficiently
tackles the aforementioned optimisation problem.

4. BUDGET–LIMITED TASK ALLOCATION
Given the model formalisation, we now develop CrowdBud-
get, a budget allocation algorithm for redundant task assign-
ment that can efficiently crowdsource tasks in order to min-
imise the total estimation error with respect to the budget
limit. To do so, we first describe the algorithm in Section 4.1,
before providing theoretical guarantees on its performance
in Section 4.2.

4.1 The CrowdBudget Algorithm
As mentioned in Section 1, it is a requirement in many real–
world applications to have the number of users assigned to
each task a priori set up. Thus, we design CrowdBudget
within this spirit as follows (for the pseudo code, see Algo-
rithm 1).

Recall that nk denotes the number of users the agent aims
to assign to task k. To determine this value, it first pre–sets

nk =

—
B

c2
k

PK
j=1

1
cj

�
(lines 4−8). The agent also maintains Br

that denotes the residual budget, which is initially set to be
B. After each pre–set of nk, Br is decreased by nkck. Next,
if Br > 0, the agent sequentially increases the number of

903

Algorithm 1 CrowdBudget

1: Inputs: number of tasks K, budget B, allocation costs
c1, . . . , cK ;

2: Outputs: number of allocations n1, . . . , nK ;
3: Parameter setting: ∀k : nk = 0, Br = B;
4: Initial phase:
5: for k = 1 → K do

6: nk =

—
B

c2
k

PK
j=1

1
cj

�
;

7: Br = Br − nkck;
8: end for
9: Residual phase:

10: k = 1;
11: while Br ≥ 0 and k ≤ K do
12: nk = nk + 1, Br = Br − ck, k = k + 1;
13: end while
14: Fusion phase:
15: Allocate nk users to each task k;
16: Use MV–efficient method to estimate answers;

allocated users for each task k by 1, until the original budget
is exceeded (see lines 9 − 13). This phase guarantees that
the budget is fully used. Note that if the residual budget
is positive after the initial phase, the number of users we
allocate to task k is

nk =

6664 B

c2
k

PK
j=1

1
cj

7775+ 1. (6)

Following this, the agent redundantly submits the tasks to
the system, and once it receives the responses from the users,
it uses an MV–efficient fusion method to estimate the an-
swers to each of the tasks (lines 14 − 16). We now show
that with the aforementioned setting of nk, CrowdBudget
does not exceed the total budget B (i.e.

P
nkck ≤ B). In

particular, after the initial phase Br = B −PK
j=1 cj . Thus,

we have:

KX
k=1

nkck ≤
KX

k=1

0
@ Br

c2
k

PK
j=1

1
cj

+ 1

1
A ck

=

KX

k=1

1

ck

!0@ BrPK
j=1

1
cj

1
A+

KX
j=1

cj = B.

Now, the intuition behind the specific budget allocation of
CrowdBudget is as follows. By using the Hoeffding–Azuma
concentration bounds [4] on the probability of estimation
error for each single task defined in Equation 3, we can re-
duce our objective described in Equation 5, which is stochas-
tic constraint optimisation problem, into a non–stochastic
model (see the appendix for more details). By solving the
fractional version of this non–stochastic optimisation prob-
lem, we get that the optimal (fractional) budget allocation
is n∗

k = B

c2
k

PK
j=1

1
cj

. Given this, by setting nk as described in

Equation 6 (which is the rounded value of the optimal so-
lution for the fractional problem), we achieve efficient near–
optimal estimation error.

4.2 Performance Analysis
We now turn to the analysis of CrowdBudget’s performance.
Specifically, we aim to provide theoretical guarantees on the
estimation accuracy of the algorithm. To do so, we introduce
the following terms. Let dmin = minj

˛̨
μj − 1

2

˛̨
. In addition,

let cmin = minj cj and cmax = maxj cj denote the smallest

400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

Budget $

A
ve

ra
ge

 e
st

im
at

io
n

er
ro

r

Exponential bound

PAC bound

Figure 1: Example values of the upper bounds.

and largest costs, respectively. For the sake of simplicity,
we hereafter assume that Equation 1 holds for each task k
if not stated otherwise. Given this, we state the following:

Theorem 1 (Main result 1). For any B ≥PK
j=1 cj,

the expected estimation error of CrowdBudget is bounded as
follows:

E [Δ (B)] ≤ Ke

−2Bd2
min

c2max
PK

j=1
1

cj .

That is, the expected total estimation error exponentially
decreases as we increase the budget. Now, we improve the
error bound above by investigating the performance of Crowd-
Budget from a PAC (probably approximately correct) per-
spective [11]. That is, we aim to provide a more efficient
bounds which only holds with a high probability. In partic-
ular, we state the following:

Theorem 2 (Main result 2). For any B ≥ PK
j=1 cj

and 0 < β < 1, the following bound holds for the expected es-
timation error of CrowdBudget with at least (1 − β)K prob-
ability:

E [Δ (B)] ≤ max

8<
:0,

K

2
− dmin

vuut 2B

− ln β
2

KX
j=1

1

cj

9=
;

It can easily be shown that this PAC bound outperforms
the exponential bound. In addition, to demonstrate that
these bounds are indeed efficient (i.e. they guarantee low
expected estimation error), we depict the typical values of
these bounds in Figure 1. Here, we set the parameters
as follows: K = 100, ck = $0.6 for each k, β = 0.001,
and dmin = 0.3. These values are the average values of
the parameter settings from our experiments (see Section ’5
for more details). From this figure, we can see that from
B ≥ $600 (i.e. at least 10 users are assigned to each task
on average), the average estimation error per task of Crowd-
Budget is below 0.2, according to the exponential bound. On
the other hand, with the PAC bound, we can guarantee with
at least 90% probability (since (1 − β)K ≈ 0.9047) that the
average estimation error is 0 (i.e. we can accurately estimate
all the tasks). This implies that CrowdBudget can guaran-
tee low estimation error with low budget (i.e. low average
number of assigned users per task). Note that in real–world
systems such as Amazon Mechanical Turk or GalaxyZoo,
the average number of users that existing methods typically
assign to a task is significantly larger than 30 in order to
efficiently estimate the answers [5, 10].

In addition, we show that the results in Theorems 1 and 2
advance the state–of–the–art result of Karger et al. [6]. Note

904

that existing work (and thus Karger et al. as well) typically
assume that the cost is uniform. Hence, we need to consider
the bounds in the case of tasks with uniform costs (i.e. each
task has the same cost). Within this case, it is easy to
see that the number of users CrowdBudget assigns per task
is uniform. Given this, let n and c denote the number of
assigned users and cost per task. Note that n = B

Kc
. Thus,

Δ (n) can be regarded as the average estimation error (i.e.
per each task) of CrowdBudget (since all the task have the
same number of assigned users). Given this, theorems 1
and 2 can be reduced to the following corollary:

Corollary 3. For the case of uniform cost, the expected
error estimation per task of CrowdBudget for any n > 0
and K > 0 is at most

E [Δ (n)] ≤ e−2nd2
min .

Furthermore, for any 0 < β < 1, we can guarantee that with
at least (1 − β)K probability, the following holds:

E [Δ (n)] ≤ max

(
0,

1

2
− dmin

s
2n

− ln β
2

)

These results show that our algorithm can also achieve low
estimation error in the case of uniform cost. Note that the
exponential bound is similar to that of Karger et al., but it
holds for any finite K as well. In contrast, Karger et al.’s
result is correct only in an asymptotic manner (i.e. K has to
converge to infinity). In addition, the PAC bound is tighter
than its exponential counterpart (see Figure 1). Thus, both
bounds indeed advance the state–of–the–art results.

In what follows, we prove that if the budget is sufficiently
large, we can assure that accurate estimation can be guar-
anteed with high probability. In particular, we have:

Theorem 4 (Main result 3). Let 0 < β < 1. Sup-
pose that

B ≥ − ln β

2d2
min

KX
j=1

c2
max

cj
.

Given this, by using CrowdBudget, E [Δ (B)] = 0 with at

least (1 − β)K probability.

That is, we can accurately estimate the ground truth with
high probability if the budget is sufficiently large. In par-
ticular, if we want to increase the probability of accurate
estimation (i.e. the estimation error is 0), then we need
to decrease the value of β. This implies an increase in the
value of budget B. Note that we sketch the proofs of all the
theorems and corollaries in Section 6.

5. EXPERIMENTAL EVALUATION
While we have so far developed theoretical upper bounds for
the expected total estimation error of CrowdBudget, we now
turn to practical aspects and examine its performance in a
realistic setting. Doing so allows us to investigate whether
the algorithm achieves a low estimation error when applied
to practical crowdsourcing systems. To this end, we run the
algorithm on a range of classification tasks, using data from
a real–world application and simulation, and compare its re-
sults with a number of benchmarks. Specifically, with real–
world data, we demonstrate that our algorithm outperforms
the state–of–the–art in practice. On the other hand, the sim-
ulation data allows us to better understand the behaviour

Votes Debiased Class
Galaxy ID Nvotes E CS Edeb CSdeb Ec CSc

2704605332 52 .88 .08 .88 .08 1 0
1093533953 55 .81 .07 .81 .07 1 0
1093599373 61 .33 .60 .06 .86 0 1
1080819805 55 .27 .71 .08 .89 0 1
1075183799 54 .18 .76 .04 .89 0 1
556728347 32 .81 .09 .72 .18 1 0

2704212289 34 .26 .70 .04 .92 0 1
109359942 36 .42 .56 .11 .85 0 1
556728347 57 .39 .58 .11 .84 0 1

2704212289 33 .27 .72 .06 .94 0 1
1093599453 65 .33 .61 .07 .87 0 1
1630863601 75 .24 .70 .05 .93 0 1
1093599326 38 .89 .08 .86 .11 1 0
162922504 36 .41 .55 .21 .76 0 1

1093599538 32 .81 .19 .81 .19 1 0

Table 1: Classification of SDSS data release 7 galax-
ies in Galaxy Zoo.

of CrowdBudget, as we can finely vary the parameter set-
tings in such datasets. In what follows, we first describe our
benchmark algorithms. We then describe the experimental
setting and detail the results.

5.1 Benchmarks
To show that our algorithm outperforms other budget allo-
cation strategies, we compare it against the following meth-
ods:

• Uniform: This algorithm allocates the same number
of users to each task. If some residual budget remains,
it uniformly allocates the residual budget across the
set of tasks. That is, for each k, we have

nk =

$
BPK

j=1 cj

%
or nk =

$
BPK

j=1 cj

%
+ 1.

Since the existing task allocation algorithms also uni-
formly assign users to each task (see Section 2 for more
details), this algorithm can be regarded as a general
representation of state–of–the–art approaches in this
domain.

• Random: This algorithm splits the budget among the
tasks in a random way. In particular, it randomly
samples K (i.e. the number of tasks) times from the
uniform distribution U [1, 10]. Let w1, w2, . . . , wK de-
note these values. Following this, it assigns budget
Bk = wkB

PK
j=1 wj

to each task k. It can be regarded as a

representation of algorithms that do not intelligently
divide the budget among the tasks.

To have a fair comparison, we use the same underlying fusion
method for our algorithm and the benchmarks as well. For
the sake of simplicity, we run the majority voting rule in our
experiments 4.

5.2 Experiments on Real-World Data
To test our algorithm on realistic settings, we use test data of
crowdsourced votes for celestial objects provided by Galaxy
Zoo [7]. In more detail, Galaxy Zoo is a citizen science
project that classifies images of galaxies by collecting mul-
tiple votes from non–experts. Specifically, high resolution
images are taken from a repository of more than 900,000

4The results with other methods show similar broad view.

905

galaxies collected by the Sloan Digital Sky Survey (SDSS)
and users classify the images as either elliptical (E) or a
spiral (CS) (or unknown) galaxy based on the shape and
the size of the object (after a preliminary visualisation of
some training samples). We used the Galaxy Zoo dataset
for the SDSS image release 7. From this dataset, we ran-
domly selected a subset of 700 galaxies with more than 30
votes that were classified (i.e. at least 80% of its votes have
the same response) after applying Bamford et al.’s technique
of debiasing the votes according to image features referring
to the morphology and the colour of the galaxy extracted
with automatic image processing (see [7] for more details).
The reason for choosing these galaxies is twofold: (i) the re-
sult of agreement can be regarded as the ground truth for a
particular galaxy; and (ii) the number of votes per galaxy is
large enough to build up a detailed empirical distribution of
responses. Table 1 reports a sample of some galaxies from
our test set described by the SDSS galaxy ID, number of
votes, the percentages of votes for E and CS (the rest of the
votes are for unknown answers), the debiased percentages
for the votes Edeb and CSdeb, and the answers 5.

Now, since users participate Galaxy Zoo on a voluntary
basis, they do not receive payments for completing tasks.
However, due to its large and detailed dataset of user re-
sponses, we still use it to test the efficiency of our approach.
To do so, we introduce the cost of allocating tasks to users
as follows. To build a realistic cost function for getting tasks
completed (i.e. getting a response for an image), we again
use Bamford et al.’s debiasing technique to divide the galax-
ies into four groups based on their difficulty (i.e. how diffi-
cult they are for a typical user to classify). Note that this
division indeed reflects the realistic values of the galaxies’
difficulty level [7]. We then assign a price chosen from ar-
ray [$0.2, $0.5, $0.7, $1] such that easier tasks are less costly.
The intuition here is that harder tasks need higher com-
pensation. In addition, note that for each classified galaxy,
more than 80% of the responses are the same (due to the
80% threshold of agreement). That is, any response sam-
pled from the given distribution of the votes would give the
correct answer with at least 80% success rate. This is not
realistic as it is unlikely that a single user can be this ac-
curate in voting the galaxies. Given this, we added a noise
function to the answers sampled from the empirical distri-
butions of Galaxy Zoo in order to make the settings more
realistic. In particular, this noise function adds a decreasing
noise, guaranteeing a progressive improvement of accuracy
as the level of redundancy of votes increases.

Now, we analyse the behaviour of each algorithm in dif-
ferent scenarios by varying the budget B, using the afore-
mentioned parameter settings. The results are depicted in
Figure 2. As we can see from the results, CrowdBudget pro-
vides the best performance. In more detail, it outperforms
the benchmarks by up to 40% when the budget is small
or moderately large (i.e. B ≤ $1150). This implies that
CrowdBudget can allocate the tasks in a more efficient way
in the case of restricted budget. However, as the budget
is increased, the performance of Uniform and Random con-
verges to that of CrowdBudget. This is due to the fact that
with large budgets, both benchmark algorithms can also al-

5The columns are the percentages of votes for elliptical (E)
and spiral (CS) categories, the same percentages after the
debasing (Edeb, CSdeb), and the 80% classification flags (E c,
CS c) based on the debased votes.

Figure 2: Average estimation error per task of the
three budget allocation algorithms on the Galaxy
Zoo dataset with 700 tasks and a total budget vary-
ing between $50 and $2500.

locate sufficiently large number of users to each of the tasks,
and thus, can achieve low total estimation error.

In addition, we can observe that for a subset of moder-
ately large budget size (i.e. $250 ≤ B ≤ $750), Random
outperforms the Uniform budget allocation. In particular,
it is easy to show that on average, Random allocates the
same size of budget to all the tasks (as its random weights
are sampled from the same uniform distribution). Since the
costs for completing a classification task vary, Random allo-
cates more users to cheaper tasks, which are typically easier
(i.e. need fewer responses to achieve correct estimation). In
the case of B ≤ $750, the budget is not too large such that
Uniform could sufficiently allocate enough users to each task,
and thus, all of them might suffer from high estimation error.
In contrast, Random can achieve a lower estimation error by
efficiently allocating higher number of users to easier tasks.
This, however, does not hold for B ≤ $250, as Random does
not have enough budget to allocate a sufficient number of
users to the tasks.

5.3 Experiments on Synthetic Data
To better understand the behaviour of CrowdBudget, we
also run it on a set of synthetic data as this allows us to
freely set the parameters in order to thoroughly study its
performance. In particular, recall that more difficult tasks
might need more responses from the users in order to get
the correct estimation. Given this, we aim to investigate
how different levels of task difficulty might affect the per-
formance of our algorithm. To this end, we choose three
scenarios: (i) small budget case with B = $100; (ii) mod-
erately large budget with B = $200, and (iii) large budget
with B = $400. The intuition behind these choices is that
they present three typical cases we observed in the previ-
ous experiments, namely: (i) CrowdBudget is the best, but
Uniform outperforms Random; (ii) CrowdBudget still out-
performs the others, but Random comes second; and (iii)
all the algorithms have the same performance, due to suffi-
ciently large budget size. For all of the three scenarios, we

906

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Difficulty

A
ve

ra
ge

 e
st

im
at

io
n

er
ro

r
(A) Small budget

Uniform

Random

CrowdBudget

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
(B) Moderate budget

Difficulty

Uniform

Random

CrowdBudget

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
(C) Large budget

Difficulty

Uniform

Random

CrowdBudget

Figure 3: Average estimation error of the three task allocation algorithms on a synthetic dataset with (A)
small, (B) moderately large, and (C) large budgets. The average difficulty varies between 0.05 and 0.5.

set the number of tasks to K = 100. The cost of each task
is set to be the same as in the previous section.

To estimate the difficulty of task k, we take the difference
of μk (i.e. the expected value of the response) from tk (i.e.
the ground truth). The larger this distance the harder a task
can be regarded (i.e. the greater the number of responses
needed to achieve the correct answer). Within our settings,
we vary the average difficulty value from 0.05 (very easy
tasks) to 0.5 (very hard tasks, where the responses can be
regarded as total random choices).

The results are depicted in Figure 3. In more detail, we
can observe that if the budget is fixed and the average diffi-
culty level is increased, the performance of all the algorithms
decreases. However, as the budget is increased, CrowdBud-
get (and the others as well) can allocate sufficient number
of users to each task, and thus, it can achieve low estima-
tion error on average, even for very hard tasks (see Fig-
ure 3c). We can also see that if the task is very hard (i.e.
the difficulty distance is larger than 0.4), the performance
of our algorithm does not significantly differ from that of
the benchmarks (Figures 3a – 3c). In sum, our algorithm
significantly outperforms the others if the budget is moder-
ately large and the average difficulty is not very hard, which
is a typical scenario in many real–world systems [5, 10].

6. CONCLUSIONS AND FUTURE WORK
We introduced the problem of budget allocation for crowd-
sourcing classification tasks with different classification costs.
In particular, we aim to minimise the total estimation error
of the answers with respect to a budget limit. To solve
this problem, we proposed a budget allocation algorithm,
CrowdBudget, that efficiently divides a given budget among
the tasks such that the total estimation error is proveably
bounded with eO(−B). We then improved this upper bound

to max
n

0, K
2
− O

“√
B
”o

by relaxing to a PAC bound. We

also showed that our results advance the best known theo-
retical results, as we provided tighter bounds, that also hold
for finite number of tasks. Finally, we demonstrated that
our algorithm outperforms state–of–the–art methods by up
to 40% in simulations using real–world data. As a result, our
work could potentially form an efficient basis to real–world
systems, such as Amazon Mechanical Turk, oDesk or Crowd-
Flower, where taskmasters have to efficiently crowdsource a
set of classification tasks without exceeding a certain budget.
This is now an ongoing discussion.

Note that currently we have not addressed non–binary
classifications, nor systems with explicit task allocation (i.e.
where the taskmaster can explicitly choose the users to whom

he/she wants to assign the tasks). In particular, extending
our results to such cases is not trivial, as the techniques we
used here do not support such models. Given this, we intend
to provide further analysis to these settings in future work.

APPENDIX: PROOFS
In this section, we provide the proofs for the theorems and
corollary stated in Section 4. In so doing, we use the def-
initions and terms introduced in Sections 3 and 4. From
the definition of MV–efficiency, we can easily derive that for
any MV–efficient fusion method, E [Δ (B)] ≤ E

ˆ
ΔMV (B)

˜
where E

ˆ
ΔMV (B)

˜
is the expected estimation error of the

majority voting. Thus, hereafter we only focus on the ma-
jority voting method during the proofs, and for the sake of
simplicity, we omit the superscript MV.

Proof sketch of Theorem 1. Consider the estimation
r̂ (nk) of the majority voting rule for task k. Without loss of
generality, we assume that tk = 0 (the proof works the same
for the case tk = 1). In this case, E [Δ (nk)] = P {r̂ (nk) = 1}.
By definition, r̂ (nk) = 1 if and only if 1

nk

Pnk
j=1 rk (uj) ≥ 1

2

where rk (u1) , . . . , ri (unk) are the corresponding responses
from the crowd. From the assumption defined in Equation 1,
we have μk < 1

2
. Let dk = 1

2
− μk. From the Hoeffding–

Azuma concentration bounds [4] we have:

P

(
1

nk

nkX
j=1

rk (uj) ≥ 1

2

)
= P

(
1

nk

nkX
j=1

rk (uj) − μk ≥ dk

)

≤ e−2nkd2
k . (7)

From Equation 6, we get

nk = 1 +

6664 B

c2
k

PK
j=1

1
cj

7775 ≥ B

c2
k

PK
j=1

1
cj

. (8)

Recall that dmin = mink

˛̨
μk − 1

2

˛̨
. Thus, we have dk ≥

dmin. In addition, ck ≤ cmax. Substituting these inequalities
and Equation 8 into Equation 7 we achieve:

P

(
1

nk

nkX
j=1

rk (uj) ≥ 1

2

)
≤ e

−2Bd2
min

c2max
PK

j=1
1

cj .

By summing this up over K tasks we conclude the proof.

Proof sketch of Theorem 2. Again, we can assume
without loss of generality that tk = 0 for all k. For any

907

εk > 0, the Hoeffding–Azuma concentration bounds imply:

P

(˛̨̨
˛̨ 1

nk

nkX
j=1

rk (uj) − μk ≥ εk

˛̨̨
˛̨
)

≤ 2e−2nkε2
k . (9)

Now, let εk =

r
− ln β

2
2nk

for a chosen 0 < β < 1. Equation 9

implies that with at least (1 − β)K probability, the following
holds for all k:˛̨̨

˛̨ 1

nk

nkX
j=1

rk (uj) − μk

˛̨̨
˛̨ ≤

s
− ln β

2

2nk
= εk. (10)

This indicates that with at least (1 − β)K probability, the
average of the responses for task k is within the radius of εk

around μk. From now on we only focus on this case. Recall
that E [Δ (nk)] = P {r̂ (nk) = 1} and r̂ (nk) = 1 if and only
if 1

nk

Pnk
j=1 rk (uj) ≥ 1

2
. Since Equation 10 holds for all k

and μk < 1
2

(see Section 3 for more details), we have:

E [Δ (nk)] = P

(
1

nk

nkX
j=1

rk (uj) ≥ 1

2

)
= max

j
0,

εk − dk

2εk

ff
.

(11)
In particular, since 1

nk

Pnk
j=1 rk (uj) ∈ [μk − εk, μk + εk], we

have the following scenarios. If μk + εk < 1
2
, we have

1
nk

Pnk
j=1 rk (uj) < 1

2
, and thus, the estimation is always cor-

rect (note that tk = 0). On the other hand, if μk + εk ≥ 1
2
,

then there is a chance to get the incorrect estimation. Specif-
ically, the probability of getting the wrong answer is εk−dk

2εk
.

Now, we give an upper bound to this probability. Note that

εk − dk

2εk
=

1

2
− dk

s
2nk

− ln β
2

≤ 1

2
− dmin

s
2nk

− ln β
2

. (12)

Substituting this into Equation 11 and summing up over K
tasks, we get:

E [Δ (B)] ≤ max

(
0,

K

2
−

KX
k=1

dmin

s
2nk

− ln β
2

)
. (13)

In what follows, we aim to minimise the second term on the
RHS of Equation 13. In so doing, we consider the following
constraint optimisation problem:

max
KX

k=1

dmin

s
2nk

− ln β
2

s. t.
KX

k=1

nkck ≤ B. (14)

By relaxing the problem by allowing nk to be fractional,
we can easily show (e.g. by using the Lagrangian relaxation
method) that the optimal solution of this fractional problem
is n∗

k = B

c2
k

PK
j=1

1
cj

. However, this cannot be the solution for

our problem as nk cannot be fractional. Nevertheless, it can
also easily shown that by assigning values to nk as described
in Equation 6, we can achieve near–optimal solution. Substi-
tuting Equation 6 into Equation 13 concludes the proof.

Proof sketch of Corollary 3. By setting ck = c for
all k, we have that nk = n (i.e. the number of assigned
users per task is the same for all k). Furthermore, we have
n = B

Kc
. Substituting this into the bounds of Theorems 1

and 2 concludes the proof.

Proof sketch of Theorem 4. Suppose that 0 < β <
1. Recall that with at least (1 − β)K probability, we have:˛̨̨

˛̨ 1

nk

nkX
j=1

rk (uj) − μk

˛̨̨
˛̨ ≤ εk, (15)

where εk =

r
− ln β

2
2nk

. Now, for B ≥ − ln β

2d2
min

PK
j=1

c2max
cj

, we

have εk < dk for all k. Thus, with at least (1 − β)K prob-

ability, we have E [Δ (nk)] = P
n

1
nk

Pnk
j=1 rk (uj) ≥ 1

2

o
= 0.

By summing up over K, we conclude the proof.

ACKNOWLEDGEMENTS
This work was funded by the ORCHID project (http://
www.orchid.ac.uk/).

7. REFERENCES
[1] Y. Bachrach, T. Graepel, G. Kasneci, M. Kosinski,

and J. V. Gael. Crowd iq - aggregating opinions to
boost performance. Autonomous Agent and Multi
Agent Systems (AAMAS), 2012.

[2] P. Dai, Mausam, and D. S. Weld. Artificial intelligence
for artificial artificial intelligence. AAAI, 2011.

[3] M. Ebden, T. D. Huynh, L. Moreau, S. Ramchurn,
and S. Roberts. Network analysis on provenance
graphs from a crowdsourcing application. International
Provenance and Annotation Workshop, 2012.

[4] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of American
Statistical Association, 58(301):13–30, 1963.

[5] E. Kamar, S. Hacker, and E. Horvitz. Combining
human and machine intelligence in large–scale
crowdsourcing. Autonomous Agent and Multi Agent
Systems (AAMAS), 2012.

[6] D. Karger, S. Oh, and D. Shah. Iterative learning for
reliable crowdsourcing systems. Neural Information
Processing Systems (NIPS), 2011.

[7] C. Lintott, K. Schawinski, S. Bamford, and A. Slosar.
Galaxy zoo 1: Data release of morphological
classification for nearly 900,000 galaxies. arXiv:
1007.3265, [astro-ph.GA], 2010.

[8] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212–261, 1994.

[9] A. Parameswaran, H. Garcia-Molina, H. Park,
N. Polyzotis, A. Ramesh, and J. Widom.
Crowdscreen: Algorithms for ltering data with
humans. Very Large Data Bases (ACM VLDB), 2010.

[10] E. Simpson, S. Roberts, I. Psorakis, A. Smith, and
C. Lintott. Bayesian combination of multiple
imperfect classifiers. Neural Information Processing
Systems (NIPS), 2011.

[11] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11), 1984.

[12] P. Welinder, B. S., S. Belongie, and P. Perona. The
multidimensional wisdom of crowds. Neural
Information Processing Systems (NIPS), 2010.

[13] H. Zhang, E. Law, K. Gajos, R. Miller, D. Parkes, and
E. Horvitz. Human computation tasks with global
constraints. ACM Conference on Human Factors in
Computing Systems (CHI), 2012.

908

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

