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ABSTRACT

In this paper, we address a relatively unexplored aspect of
designing agents that learn from human training by inves-
tigating how the agent’s non-task behavior can elicit hu-
man feedback of higher quality and quantity. We use the
TAMER framework, which facilitates the training of agents
by human-generated reward signals, i.e., judgements of the
quality of the agent’s actions, as the foundation for our in-
vestigation. Then, we propose two new training interfaces
to increase active involvement in the training process and
thereby improve the agent’s task performance. One provides
information on the agent’s uncertainty, the other on its per-
formance. Our results from a 51-subject user study show
that these interfaces can induce the trainers to train longer
and give more feedback. The agent’s performance, however,
increases only in response to the addition of performance-
oriented information, not by sharing uncertainty levels. Sub-
sequent analysis of our results suggests that the organiza-
tional maxim about human behavior, “you get what you
measure”—i.e., sharing metrics with people causes them to
focus on maximizing or minimizing those metrics while de-
emphasizing other objectives— also applies to the training
of agents, providing a powerful guiding principle for human-
agent interface design in general.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms

Performance, Human Factors, Experimentation

Keywords
reinforcement learning; human-agent interaction

1. INTRODUCTION

As autonomous agents become more sophisticated, they
are likely to be an increasingly integral part of our daily lives.
How well they are accepted by human users will depend
heavily on whether they can interact effectively with them,
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particularly those without expertise in autonomous agents
or even technology in general. Therefore, there is a great
need to improve our understanding of how to develop more
sophisticated interfaces that facilitate this interaction.

One critical form of human-agent interaction occurs when
agents learn with human assistance. Many approaches (e.g.,
learning from demonstration [2, 3, 26|, giving advice to rein-
forcement learners [12, 21|, and learning from human feed-
back [22, 23, 27, 28]) have been developed to enable such in-
teraction. One such approach, the TAMER, framework [13,
15], enables humans to train agents to perform tasks by giv-
ing scalar feedback signals in response to the agent’s behav-
ior. A TAMER agent creates a predictive model of human
feedback and myopically chooses the action at each time step
that it predicts will receive the highest feedback value. Sim-
ilar to any algorithm that enables humans to teach agents, a
TAMER agent’s learned performance depends critically on
the quality and quantity of feedback that the human pro-
vides. Here, we use TAMER as a platform to investigate
whether changes to the interaction interface can increase the
trainer’s involvement by measuring the quality and quan-
tity of feedback and the duration of training. Such changes
can also apply to other learning methods e.g., learning from
demonstration.

Our approach is motivated by the notion that, similar to
a human student and teacher, the interactions between a
TAMER agent and its human trainer should ideally be bidi-
rectional. For example, in addition to the human giving
feedback to the agent, the agent should also give feedback
to the human to inform them about its progress and indi-
cate the kind of human feedback that would be most useful.
Thus, not only should the human teach the agent how to
complete the task, the agent should also influence the hu-
man to teach it as effectively as possible.

In this paper, we investigate this approach within TAMER,
focusing on the impact of the interaction interface’s design.
Specifically, we study the use of two new interfaces for the
TAMER framework. In the first, the uncertainty-informative
interface, the agent informs the human of its uncertainty
about the actions it selects, in the hope that this motivates
the human to reduce that uncertainty by focusing feedback
on the most needed areas. In the second, the performance-
informative interface, the agent informs the human about its
current performance in the task relative to its earlier perfor-
mance, which we expect will motivate the human to give the



feedback needed to further improve this performance. We
hypothesize that these informative behaviors will cause the
human to (i) train longer, (ii) give more feedback, and (iii)
that the agent’s performance will improve as a result.

To test these hypotheses, we compared the agents with
informative behaviors to the original TAMER agent in a
human-user study with 51 subjects. Our results indicate
that both informative interfaces increase the duration of
training and the amount of feedback provided, with the
uncertainty-informative interface generating the most feed-
back. The results also show that whereas the performance-
informative interface improves the performance of the TAMER,
agent, the uncertainty-informative interface unexpectedly
reduces its performance.

For each interface, we also used principal component anal-
ysis to visualize the distribution of states that the agent
visited and in which feedback was received. The analy-
sis highlights very different feedback behavior where, in the
performance-informative condition, feedback tends to be given
only in concentrated and similar parts of the state space,
while, in the other conditions, feedback is given much less
selectively.

Altogether, these results not only offer new insights into
TAMER, they also highlight the importance of interface
design—a previously under-emphasized aspect of agent train-
ing using humans —by providing evidence of its influence on
human training behavior. Furthermore, the results fit a pat-
tern observed in organizational behavior research that fol-
lows from the adage “you get what you measure” [7]. That is,
sharing behavior-related metrics will tend to make a human
attempt to improve their score with respect to that metric.
To our knowledge, this is the first time this phenomenon has
been observed in the behavior of trainers for agent learning.

The rest of this paper begins with a review of related work
in Section 2 and provides background on TAMER in Sec-
tion 3. Section 4 presents the proposed interfaces, Section
5 describes the experimental setup, and Section 6 reports
and discusses the results. Finally, Section 7 discusses future
work and concludes.

2. RELATED WORK

Here, we discusses the research most related to our ap-
proach, namely work on learning from demonstration and
learning interactively from human feedback as well as a dis-
cussion of past approaches in which the agent acts to explic-
itly affect the behavior of its human teacher.

2.1 Learning from Demonstration

In learning from demonstration, a human assists the agent’s
learning by demonstrating the task via teleoperation or shad-
owing (the learner records the task execution using its own
sensors and attempts to match or mimic the teacher’s mo-
tion as the teacher executes the task). The agent learns a
behavior policy from these demonstrations that reproduces
and generalizes the demonstrated behavior [3]. For exam-
ple, apprenticeship learning [1], is a form of learning from
demonstration in which an expert’s demonstrations are used
to estimate a hidden reward function.

In most learning by demonstration systems, the agent is a
passive recipient of the demonstrations and cannot actively
gather data to influence the learning process. As a result, it
can only imitate the teacher’s behavior and its performance
is thus limited by the teacher’s own skill level. However,
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methods have also been developed to further improve the
agent’s ability to learn from such a teacher. For example,
Argall et al. [2] propose an approach wherein learning from
demonstration is coupled with critiques by the human of
the agent’s performance. Chernova and Veloso [9] propose
to make the agent’s learning active by using a framework
in which the agent, on the basis of its confidence in what it
has learned, can request a specific demonstration from the
human and the human can correct the agent’s mistakes.
These approaches are similar in motivation to ours, in
that they seek human-agent interfaces that aid agent learn-
ing. In addition, the approach of Chernova and Veloso is
related to the uncertainty-informative interface we propose
in Section 4.1, in that the agent’s uncertainty is used to
guide this interaction. However, the focus of these methods
is different but complementary to ours. These two stud-
ies are concerned with the impact of enabling the agent to
query the trainer and of enabling the trainer to give correc-
tive feedback after observing behavior learned from demon-
stration; we investigate how trainer behavior—and resultant
agent performance—is influenced by the specific stream of
information that the agent shares with the trainer.

2.2 Learning from Human Feedback

In this learning category, a human trains the agent by
providing feedback signals that evaluate the quality of the
agent’s actions and state transitions [15, 22, 23, 27]. As
Knox and Stone write, “in contrast to the complementary
approach of learning from demonstration, learning from hu-
man [feedback] employs a simple task-independent interface,
exhibits learned behavior during teaching, and, we specu-
late, requires less task expertise and places less cognitive
load on the trainer” [17].

One of the earliest attempts to train artificial agents in
this way is based on clicker training [5], a form of animal
training in which the sound of an audible device such as a
clicker or whistle is associated with a primary reinforcer such
as food and then used as a reward signal to guide the agent
towards desired behavior. In addition, Thomaz and Breazeal
[28] propose a reinforcement-learning agent that combines
the standard Q-learning algorithm [31] with a separate in-
teraction channel by which the human can give the agent
feedback. The agent aims to maximize its total discounted
reward, where the human’s feedback is treated as additional
reward that supplements the environmental reward.

The TAMER framework [15] allows an agent to learn
from human reward signals instead of environmental reward.
These reward signals are provided by a human trainer who
observes and evaluates the agent’s behavior while the agent
is trying to perform the task. The primary differences be-
tween the TAMER framework and other algorithms for learn-
ing from human feedback are that TAMER creates a predic-
tive model of human reward, explicitly addresses delay in the
delivery of human reward signals, and chooses actions that
its human model predicts will elicit maximal reward through
fully myopic valuation, considering only reward caused by
its immediate action. General myopia is a feature of all past
algorithms for learning from human feedback and received
empirical support in recent work [17], but TAMER is unique
in that it is fully myopic (in reinforcement learning termi-
nology, it values future reward with v = 0).

In the TAMER+RL framework [16, 18], the agent learns
from both human and environmental feedback, which can



lead to better performance than learning from either alone.
This can be done sequentially (i.e., the agent first learns from
human feedback and then environmental feedback) [16] or
simultaneously (i.e., the agent learns from both at the same
time), allowing the human trainer to provide feedback at
any time during the learning process [18].

2.3 Agent Behavior that Influences the Trainer

This paper builds on the TAMER, framework but focuses
on how to improve training through the interface design. In
particular, past work on TAMER and TAMER+RL only
communicates the agent’s action and environmental state
to the trainer and does not empirically analyze what agent
information should be communicated to elicit training of
higher quality or longer duration. In this paper, we per-
form such a comparative analysis.

Our approach is thus related to work in human-robot
interaction on transparent learning mechanisms, where fa-
cial expressions and body language are used to express the
robot’s learning state and solicit feedback from someone [8,
20, 29, 30]. Similarly to our approach, the agent provides the
human with information about its learning process. How-
ever, our work is the first to consider this within the TAMER
framework and provides the first analysis of how manip-
ulating the information the agent provides can affect the
trainer’s behavior. Furthermore, our empirical user study
provides evidence that such informative behavior increases
the trainer’s feedback quantity and quality.

In this paper, we frame the information sharing of an
agent’s interactive interface as a form of communicative be-
havior. In related work, this information sharing was achieved
directly through the agent’s task-focused behavior in an ex-

periment in which the agent deviates from its greedy behavior—

intentionally choosing actions it believes to be sub-optimal—
whenever the trainer’s recent feedback is sparse, in effect
punishing the trainer for inattentiveness [14]. The results
showed that, in comparison to TAMER agents that sim-
ply act greedily, these manipulative agents elicited a higher
overall frequency of feedback and yet performed worse.

3. BACKGROUND

This section briefly introduces the TAMER framework
and the Tetris platform used in our experiment.

3.1 TAMER Framework

In the TAMER framework, the agent strives to maximize
the reward caused by its immediate action, not a discounted
sum of future rewards. The intuition for why an agent can
learn to perform tasks by such myopic valuation of reward is
that human feedback can generally be delivered with small
delay—the time it takes for the trainer to assess the agent’s
behavior and deliver feedback—and the evaluation that cre-
ates a trainer’s reward signal carries an assessment of the
behavior itself, with a model of its long-term consequences
in mind. Recent analysis indicates that agents should act
myopically in episodic tasks [17].

The TAMER framework is built to solve a variant of

Markov decision processes, (i.e., model of a sequential decision-

making problem commonly used in reinforcement learning
[24]) in which there is no reward function encoded before
learning. Instead, the agent learns a function fI(s,a) that
approximates the expectation of experienced human reward,
H:SxA — R Given a state s, the agent myopically
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chooses the action with the largest estimated expected re-
ward, argmax, H(s,a). The trainer observes the agent’s
behavior and gives reward corresponding to its quality.

Sensory
display

Delayed reward

h

Credit
assigner

Action
a

Action
selector
TAMER
agent

Supervised
learner

Figure 1: Interaction in the TAMER framework (re-
produced from [13]).

The TAMER agent treats each observed reward signal as
a label for the previous (s, a), which is then used as a super-
vised learning sample to update the estimate of f](s, a). In
this paper, the update is performed by incremental gradient
descent; i.e., the weights of the function approximator spec-
ifying H (s,a) are updated to reduce the error |r — H(s,a)],
where r is the reward observed after taking action a in state
s. Figure 1 illustrates interaction in the TAMER framework.

In our experiments, we used the original baseline TAMER
interface presented in [15] as a control condition.! In this in-
terface, feedback is given via keyboard input and attributed
to the agent’s most recent action. Each press of one of the
feedback buttons registers as a scalar reward signal (either
-1 or +1). This signal can also be strengthened by pressing
the button multiple times. The TAMER, learning algorithm
loops by taking an action, sensing reward, and updating H.

3.2 Tetris Platform

Tetris is one of the most popular computer games in the
world. Although it has simple rules, it is a challenging prob-
lem for agent learning because the number of states required
to represent all possible configurations of the Tetris board is
extremely large [10]. In the TAMER framework, the agent
uses 46 state features—including the 10 column heights, 9
differences in consecutive column heights, the maximum col-
umn height, the number of holes, the sum of well depths, the
maximum well depth, and the 23 squares of the previous 23
features [13]—to represent the state observation. The input
to H is 46 corresponding state-action features, the differ-
ence between state features before and after a placement.
Tetris is an excellent platform for investigating how humans
and agents interact during agent learning because it is a fun
game that is familiar to most human trainers. We use an
adaptation of the RL-Library implementation of Tetris.?

Like other implementations of Tetris learning agents (e.g.,[4,
6, 25]), the TAMER agent chooses from possible final place-
ments of pieces upon the stack of previously placed pieces,
instead of controlling atomic rotations and left/right move-
ments. Even with this simplification, playing Tetris remains
a complex and highly stochastic task. For the standard

'Beyond the interface, the agents are all identical to those in
the control condition of [14], which use more state features
than in [15].
2library.rl-community.org/wiki/Tetris_(Java)



Figure 2: The uncertainty-informative interface: (a)
the uncertainty graph window, (b) the current un-
certainty (pink bar), and (c) the uncertainty of past
actions (dark blue bar).

20 x 10 board size that we use, the state space is greater
than 2200,

To eliminate training effects that can be caused by per-
ception speed, this interface allows the trainer to adjust the
falling speed of each piece by pressing the ‘+’ and ‘—’ buttons
respectively. Button ‘z’ is used for negative reward, and but-
ton ‘/’ is used for positive reward. To inform the trainer that
he/she is giving feedback, the game screen flashes blue and
red for positive and negative reward, respectively. Moreover,
the trainer can also pause the game with the space bar, and
continue training with button ‘2’. The interface is a Java
applet that runs in the trainer’s browser.

4. INFORMATIVE INTERFACES

In this section, we propose two variations on the baseline
TAMER interface described above that each display addi-
tional information about the agent’s performance history or
internal processes. These variations are motivated by the no-
tion that the interaction between the trainer and the agent
should be consciously designed to be bidirectional, where
the agent gives the trainer informative and/or motivating
feedback about its learning process. Our intuition is that
such feedback will help keep the trainer’s involvement in
the training process and empowers them to offer more use-
ful feedback. More objectively, we hypothesize that doing
so will increase the quantity of the trainer’s feedback and
improve the agent’s task performance.

4.1 Uncertainty-Informative Interface

The first variation is the wuncertainty-informative inter-
face, in which the agent indicates to the trainer its uncer-
tainty about the action it selects. We hypothesize that doing
so will motivate the trainer to reduce uncertainty by giving
more feedback and enable them to focus that feedback on
the states where it is most needed. To implement this inter-
face, we added a dynamic bar graph above the Tetris board
that shows the agent’s uncertainty, as shown in Figure 2.

Many methods are possible for measuring the agent’s con-
fidence of action selection. For example, the confidence
execution algorithm in [9] uses nearest neighbor distance
from demonstrated states to classify unfamiliar, ambiguous
states. Since we are primarily interested in how a trainer’s
perception of the agent’s uncertainty of an action affects
training behavior, we applied a simple uncertainty metric
that we expected to maximize the amount of feedback given.
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While more sophisticated uncertainty metrics could also be
used, optimizing this metric is not the focus of our study.

Our approach considers an agent to be more certain about
its action in a state if it has received feedback for a similar
state. We calculate the weighted sum of the distance in
feature space from the current state to the k nearest states
that previously received feedback, yielding a coarse measure
of the agent’s uncertainty about the current action. Thus,
we define the uncertainty U of the current state s. as

U(se) = Simqwid;, (1)
where d; is the Euclidean distance between the current state
s. and the i-th closest state s; in the set of all states wherein
the agent received feedback:

di = /571 (si5 — 5¢5), (2)

where s;; is the value of the j-th state feature of state s;.
We chose the weights w; (where £¥_;w; =1) to approximate
an exponential decay in the ranking of farther neighbors. In
our experiments, k = 3 and (w1, w2, ws) = (0.55,0.3,0.15).

While the human is training the agent, the graph shows
both the uncertainty of the current state (pink rightmost
bar) and past states (dark blue bars), as illustrated in figure
2. In the graph window, the uncertainty at each time step
(each time a piece is placed) is shown from left to right
chronologically. For the first game, no bar is shown until the
agent has received feedback three times. Then, before each
piece is placed, the agent shows its current uncertainty for
the action it is about to make. If the trainer gives feedback,
the value of the current uncertainty is modified according to
Equation 1 and the new uncertainty is visualized as a dark
blue bar after the piece is placed. Meanwhile, a new pink
bar appears to the right of it, showing the uncertainty of the
new placement. Since the graph window can only show up
to 60 time steps, it is cleared when the current time step is
a multiple of 60, and the bar showing the new uncertainty is
shown from the left side again. The vertical axis is labeled
only with “high” and “low” so that trainers focus on relative
differences in uncertainty, not absolute values. To keep the
changes in uncertainty visible, the interface starts with a
fixed maximum uncertainty value; if the height of the bar
exceeds this maximum, the ceiling value of the vertical axis
is correspondingly adjusted. When the height of the bar
exceeds the ceiling value of the vertical axis, the ceiling value
is automatically adjusted to fully show the highest bar.

4.2 Performance-Informative Interface

The second variation is the performance-informative in-
terface, in which the agent indicates to the trainer its per-
formance over past and current games. We hypothesize
that explicitly displaying performance history will increase
the trainer’s motivation to improve the agent’s performance,
thus leading to more and higher quality feedback. To im-
plement this interface, we again added a dynamic bar graph
above the Tetris board, as shown in Figure 3. In this case,
however, each bar indicates the agent’s performance in a
whole Tetris game. Since clearing a line reduces the stack
height and in turn gives the agent the opportunity to clear
more lines, we quantified the performance of the agent by
the number of lines cleared. This metric is both intuitive for
the trainer to understand and fits with past work on agents
that learn to play Tetris [6, 25]. The interface was designed
to look very similar to the uncertain-informative interface to
avoid confounding factors. During training, the graph shows



the agent’s performance (i.e., lines cleared per game) during
past and current games, ordered chronologically from left to
right, so the trainer can keep track of the agent’s progress.

Figure 3: The performance-informative interface:
(a) performance graph window, (b) current game
performance, and (c) performance of past games.
During the first game, after the first line is cleared, the
graph shows a pink bar at the left side of the graph window,
representing the number of lines cleared so far. When a game
ends, its corresponding bar becomes dark blue and any new
lines cleared in the new game are visualized by a pink bar
to its right. As in the uncertainty-informative interface, the
window is cleared after it is filled with 60 bars—games in this
case—and new bars appear from the left. The vertical axis
is labeled ‘Lines Cleared’ and is initially bounded between
0 and 10. When the number of lines cleared exceeds the
axis’ upper bound, the limit is increased by 25 while all
prior performance is in the range [0, 100] and the height of
all bars are adjusted accordingly. Subsequently, the upper
bound is increased by 50 for the range (100, 1000], 100 for
the range (1000, 10000], and 1000 for greater than 10000.

S. EXPERIMENTAL SETUP

To maximize the diversity of subject recruitment, we de-
ployed the Tetris game on the internet. 70 participants from
more than 10 countries were recruited by email, a Facebook
page and flyer and poster advertisements. Their ages ranged
from 19 to 63 and included both males and females. Some
had backgrounds in AI or related fields while others had
little knowledge of computer science; at least 8 had no pro-
gramming skills. Of the 38 subjects who filled in the post-
experiment questionnaire, 9 were from the Netherlands, 8
from China, 7 from Austria, 3 from Germany, 2 each from
the USA, Italy, and Greece, and one each from the UK,
Belgium, Japan, Canada, and Turkey.

In the experiment, all the participants were told “In this
experiment you will be asked to train an agent to play Tetris
by giving positive and negative feedback” in the instructions.
The instructions also described how to give feedback and,
for the appropriate conditions, explained the agent’s infor-
mative behavior. The subjects were divided evenly and ran-
domly into the three conditions. However, data from 19
of the recruited subjects was removed because the subjects
registered but never started training or used the wrong ID
when returning to train their agent (so they trained multi-
ple agents). Thus, the rest of this paper analyzes the results
from the remaining 51 participants. The experimental de-
tails of each condition are described below:

e Control Condition: 16 participants trained the agent
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without seeing any informative behaviors using the
baseline TAMER interface described in Section 3.1.
e Uncertainty-Informative Condition: 19 partici-
pants trained the agent using the interface described
in Section 4.1.
e Performance-Informative Condition: 16 partici-
pants trained the agent using the interface described
in Section 4.2.
The participants were encouraged to train the agent as many
times as they liked during 7 days. We recorded the state
observation, actions, human rewards, lines cleared, the ab-
solute start time, speed of each time step, lines cleared per
game, and number of training sessions.

We also investigated the correlation between the trainer’s
training behavior and certain characteristics of the trainer’s
personality. We hypothesized that for the uncertainty and
performance-informative conditions, a more empathetic and
competitive trainer respectively for each condition will spend
more time on training, leading to higher performing agents.

To validate these hypotheses, we designed a questionnaire
to measure the trainer’s feelings about the agent, the train-
ing process, and the personalities of the trainer. We used a
5-point scale composed of bipolar adjective pairs: 7 to test
the trainer’s feelings about the agent, and 10 for the train-
ing process. Participants were also given a self-report scale
including 13 items from the Empathy Quotient (EQ) [19]
to measure the trainers’ willingness to interpret the infor-
mative behavior and 14 items as a measure of competitive-
ness, which were adapted from the Sport Orientation Ques-
tionnaire [11]. 8 filler items were also included to minimise
potential bias that can be caused by the trainers second-
guessing what the questionnaire was about (four of them
were from the Introversion-Extroversion Scale and another
four from EQ [19]).

6. RESULTS AND DISCUSSION

This section presents and analyzes the results of our human-
user study. All reported p values were computed via a
two-sample t-test. Since each hypothesis specifies a one-
directional prediction, a one-tailed test was used. Addition-
ally, an F-test was used to assesses whether the dependent
variables for each condition have equal variances, since the
two-sample t-test is calculated differently if the difference in
variance for the two samples is significant (i.e., p < 0.05).

6.1 Training Time

We hypothesized that both conditions would increase the
time spent on training compared to the control condition.
We found that both informative behaviors did engage the
trainers for longer, in terms of both absolute time and num-
ber of time steps. In mean absolute time, trainers in the
performance-informative condition spent 220% more time
on training (¢(17) = 1.74,p < 0.02), as did trainers in the
uncertainty-informative condition, who spent 128% longer
(t(21) = 1.72,p = 0.05). In mean time steps—a metric unaf-
fected by the player’s chosen falling speed—for the perform-
ance-informative and uncertainty-informative conditions, the
number of time steps spent training the agent were 565%
(t(16) = 1.75,p < 0.01) and 274% (t(19) = 1.73,p = 0.076)
more than for the control condition, as shown in Figure 4a.

To measure the amount of feedback given, we counted the
number of times a feedback button was pressed, comparing
each experimental condition to the control. As shown in
Figure 4b, in the performance-informative condition, 165%



7000 -+ 3000 -

6000 - 2500 -

5000 -
2000 -

4000
1500 +

3000
1000 -

2000 -

Number of time steps

500 -

Number of feedback instances

1000 -

b
Figure 4: Number of time steps trained (a), number of feedback instances given during training (b) and offline

a

performance per cumulative interval for the three conditions (c).

1400

1200
1000

800

600 -
400

Lines Cleared per Game

200

Control condition: blue, performance-

informative condition: red, uncertainty-informative condition: green.

400

300

1 2 3 456 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 5: Number of feedback instances over the first 30 intervals. Each interval is 200 time steps. Control
condition: blue, performance-informative condition: red, uncertainty-informative condition: green.

more feedback is given (¢(17) = 1.74,p = 0.034), whereas in
the uncertainty-informative condition, 390% more feedback
than in the control condition (¢(19) = 1.73,p = 0.016). In
addition, the number of time steps with feedback (irrespec-
tive of the number of feedback instances at each time step)
for both informative conditions was significantly more than
the control condition (performance-informative: ¢(19) = 1.73,
p < 0.02; uncertainty-informative: ¢(19) = 1.73,p < 0.025).

Figure 5 shows how feedback was distributed over the first
30 intervals, which each interval contains 200 time steps.
The longest training time is about 100 intervals; because
of limited space, we show only the first 30 intervals. Af-
ter 30 intervals, the subjects in the uncertainty-informative
condition still give more feedback than the other conditions.
Trainers in both informative conditions gave feedback for
much longer than those in the control condition. Most no-
tably, trainers in the uncertainty-informative condition gave
a strikingly large amount of feedback, even during later in-
tervals, with a much slower fall-off than the other conditions.

Thus, our results clearly suggest that informative behavior
can significantly increase the amount of feedback given and
time spent training, suggesting better involvement.

6.2 Performance

We also hypothesized that the trainers’ increased involve-
ment would lead to improved performance by the agents. To
test this, we first examined how the agents’ performances
varied over time. Because the duration of a game varies sig-
nificantly depending on the quality of the trained policy, we
saved each agent’s policy at regular time intervals. We used
intervals of 200 time steps to get a picture of reasonable res-
olution of the agents’ progress. Then, we tested the saved
policy of each agent off-line for 20 games. Figure 4c shows
the resulting mean performance averaged across games, and
then agents, for the first 14 intervals, as well as the final
off-line performance, after all training was complete. If an
agent’s training stopped before others in the same condition,
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then in later intervals its final average off-line performance
was used to compute the average for that condition.

Compared with the control condition (average final off-
line performance is 926.5 lines), agents in the performance-
informative condition learned best (1241.8 lines, t(30) =
1.70,p = 0.267), while those in the uncertainty-informative
condition learned worst (645.1 lines, ¢(33) = 1.69,p = 0.24).
While the differences are not significant (perhaps due to the
small sample size), Figure 4c shows that the uncertainty-
informative condition performs consistently worse than the
other conditions while the performance-informative condi-
tion performs consistently better.

These differences in performance did not always match
our hypotheses. As expected, agents in the performance-
informative condition had better performance than the con-
trol condition. However, whereas the uncertainty-informative
condition generated significantly more feedback than any
other condition, the resulting agents had the worst perfor-
mance of all three conditions.

6.3 State Feedback Behavior

The main surprise in the results presented in Sections
6.1 and 6.2 is that, while the uncertainty-informative con-
dition elicited the most feedback, the resulting agents per-
formed substantially worse. This result is especially puz-
zling given that the performance-informative condition also
elicited more feedback than the control condition but gen-
erated agents with better performance. We note that the
learning algorithm had no access to uncertainty or perfor-
mance metrics, and the interfaces differ only in their feed-
back to the trainer. Therefore, differences in agent perfor-
mance result only from the feedback given by the agent.

We hypothesized that this discrepancy could be because
the trainers in the performance-uncertainty condition were
influenced by feedback that was better aligned with the goal
of the game. In other words, because they were shown the
agent’s performance, they were more motivated to train the
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Figure 6: a): Distribution of states along the first(horizontal axis) and second (vertical axis) principal com-
ponents, with and without feedback. The columns show intervals 1-3, 4-6, and 7-14, from left to right, respec-
tively. b): the left and right columns shows example stacks along the first and second principal components
respectively, ordered from corresponding positive (top) to negative (bottom) component values.

agent to maximize performance. In contrast, we suspect that
trainers in the uncertainty condition were distracted from
this goal by the agent’s informative behavior. That is, while
they trained for longer and gave more feedback than trainers
in the control condition, they were more focused on giving
feedback that would reduce the uncertainty bar, rather than
giving feedback that would maximize performance. In an
effort to test this hypothesis, we analyzed how the state of
the game itself might have influenced the feedback given.
To this end, we analyzed all the states visited by all of the
agents in every condition using principal component analysis
(PCA). Then, within the feature space created by the first
two principal components, we examined how the distribution
over states in which feedback was given differed across time
and across the three conditions.

As shown in Figure 6a, we divided the training process
in each condition into 4 sections chronologically: intervals
1-3, 4-6, 7-14, and 15 and higher. For brevity, we do not
show plots for intervals 15 and greater; at this point, all
trainers in the control conditions had stopped; plots for the
other two conditions are qualitatively similar to those for
intervals 7-14. Again, each interval is composed of 200 time
steps. From top to bottom, the three rows show the control,
performance and uncertainty-informative conditions. We
plotted the projection of the visited states onto the first
two principal components of the data. Since there were
many more states without feedback (shown in black), for
visualization, they were overlaid with those that received
feedback, which were colored according to their correspond-
ing condition: control in blue, performance-informative in
red and uncertainty-informative in green. The proportion
of variance explained by the first and second components
are 45.01% and 9.49%, respectively.

Figure 6a shows that, in the initial stage (intervals 1-3),
informative behaviors seem to have little influence on the
distribution of states with feedback. However, in all in-
tervals thereafter, the performance-informative behavior ap-
pears to keep the trainer focused on giving feedback in states
in the center of the second principal component (around 0),
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while the uncertainty-informative behavior receives feedback
in a much wider range of states along the second principal
component. Note that in the uncertainty-informative con-
dition, not all trainers exhibited the broader feedback be-
havior; trainers that gave more focused feedback (like the
performance-informative users) had the better performing
agents. If feedback is given to states which do not benefit or
even harm learning, this discrepancy may explain the differ-
ence in performance between performance and uncertainty-
informative conditions. On closer inspection of the distribu-
tion of states with and without feedback, we observed that,
in all cases, the distributions were unimodal.

Inspecting the coefficients of the principal eigenvectors, we
observed that the state features corresponding to the height
of the stack and the number of holes contributed most to the
first principal component, and so the narrow point at the
far right of the space is representative of the start of each
game when the stack height is 0. For the second principal
component, positive weights were found for columns 1, 2, 9,
and 10, of the tetris board, while the features representing
the column heights 4, 5, 6, and 7 were negatively correlated.
This is seen more clearly in Figure 6b, where along the first
principal component, the overall height of the Tetris board
is gradually increasing while keeping roughly flat. For the
second principal component, the contour of the Tetris board
is changing from n-shaped to u-shaped from the top to the
bottom. Combining with Figure 6a, we observe that, in
the uncertainty-informative condition, a lot of feedback was
given to n-shaped states, which intuitively would not benefit
learning, especially in intervals 7-14. This may explain the
poor performance in the uncertainty-informative condition,
which indirectly supports our second hypothesis.

As well as providing an insight for TAMER, these results
also align with what could be expected from the maxim, “you
get what you measure”; i.e., people often try to optimize
the metrics you show them while deemphasizing others. In
our case, measuring, or informing users about performance
increased performance, and measuring uncertainty reduced
uncertainty, through increased feedback, but reduced per-



formance. The notion that “you get what you measure”
has been discussed extensively in organizational literature
(e.g., metrics for software development teams [7]), but we
believe this paper is the first to find evidence that suggests
the concept applies to the design of interactive interfaces for
training agents. Consequently, understanding the influence
of metric-sharing on human behavior could be a powerful
guiding principle in the design of interactive interfaces for
training agents, though more investigation is needed to judge
its general applicability.

7. CONCLUSIONS AND FUTURE WORK

This paper demonstrates the effectiveness of using infor-
mative interfaces to increase the quantity and quality of
trainer feedback, using the TAMER framework as a plat-
form for our investigation. Our empirical user study showed
that these informative behaviors can significantly increase
a trainer’s engagement along several different metrics, in-
cluding the duration of training, the number of feedback
instances and the frequency of feedback. Though not signif-
icant, the performance-informative behavior led to substan-
tially better agent performance, whereas the uncertainty-
informative behavior led to worse agent performance. Fur-
ther investigation of our experimental data using PCA sug-
gested that this may be because the performance-informative
behavior keeps the trainer focused on giving feedback to
similar states, whereas the uncertainty-informative behav-
ior induces the trainer to give feedback in a wider range of
states. This in turn aligns with the notion ”you get what you
measure’—measuring performance increased performance,
and measuring uncertainty reduced uncertainty.

Future work will focus on developing new interfaces to
capitalize on the success of the performance-informative in-
terface, e.g., by creating a tournament and hall of fame with
which trainers compete against each other. We will also in-
vestigate ways to improve the uncertainty-informative inter-
face by developing different uncertainty metrics and incor-
porating uncertainty into the agent’s learning algorithm. In
the longer term, we hope to develop richer interfaces—e.g.,
using agent avatars and dialogue systems—that are built
upon empirical insights from this paper and similar future
investigations. We hope that this will create the enduring
and effective interaction needed to enable an agent to learn a
set of complex and interrelated tasks from human feedback.

8. ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive
comments that helped to improve the article. Guangliang
Li is supported by China Scholarship Council.

9. REFERENCES

[1] P. Abbeel and A. Ng. Apprenticeship learning via inverse
reinforcement learning. ICML, 2004.

[2] B. Argall, B. Browning, and M. Veloso. Learning by
demonstration with critique from a human teacher. HRI,
2007.

[3] B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics and
Autonomous Systems, 2009.

[4] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[5] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin,

M. Johnson, and B. Tomlinson. Integrated learning for
interactive synthetic characters. ACM Transactions on
Graphics, 2002.

916

[6]

[7]
(8]

[9]

(10]

[11]

(12]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

20]

(21]

(22]

23]

[24]
25]

[26]

27]

(28]

29]

(30]

(31]

N. Bohm, G. Kokai, and S. Mandl. Evolving a heuristic
function for the game of Tetris. Proc. Lernen,
Wissensentdeckung und Adaptivitat LWA, 2004.

E. Bouwers, J. Visser, and A. Van Deursen. Getting what
you measure. Communications of the ACM, 2012.

C. Chao, M. Cakmak, and A. Thomaz. Transparent active
learning for robots. HRI, 2010.

S. Chernova and M. Veloso. Interactive policy learning
through confidence-based autonomy. Journal of Artificial
Intelligence Research, 2009.

E. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is
hard, even to approximate. Computing and Combinatorics,
2003.

D. Gill and T. Deeter. Development of the sport orientation
questionnaire. Research Quarterly for Ezxercise and Sport,
1988.

K. Judah, S. Roy, A. Fern, and T. Dietterich.
Reinforcement learning via practice and critique advice.
Proc. of the 24th AAAI Conference on Al, 2010.

W. Knox. Learning from Human-Generated Reward. PhD
thesis, 2012.

W. Knox, B. Glass, B. Love, W. Maddox, and P. Stone.
How humans teach agents. IJSR, 2012.

W. Knox and P. Stone. Interactively shaping agents via
human reinforcement: The TAMER framework. Proc. of
the 5th International Conference on Knowledge Capture,
2009.

W. Knox and P. Stone. Combining manual feedback with
subsequent MDP reward signals for reinforcement learning.
AAMAS, 2010.

W. Knox and P. Stone. Reinforcement learning from human
reward: Discounting in episodic tasks. RO-MAN, 2012.

W. Knox and P. Stone. Reinforcement learning from
simultaneous human and MDP reward. AAMAS, 2012.

E. Lawrence, P. Shaw, D. Baker, S. Baron-Cohen,

A. David, et al. Measuring empathy: reliability and validity
of the empathy quotient. Psychological Medicine, 2004.

A. Lockerd and C. Breazeal. Tutelage and socially guided
robot learning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004.

R. Maclin and J. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning, 1996.

P. Pilarski, M. Dawson, T. Degris, F. Fahimi, J. Carey, and
R. Sutton. Online human training of a myoelectric
prosthesis controller via actor-critic reinforcement learning.
International Conference on Rehabilitation Robotics, 2011.
H. Suay and S. Chernova. Effect of human guidance and
state space size on interactive reinforcement learning.
RO-MAN, 2011.

R. Sutton and A. Barto. Reinforcement learning: An
introduction. Cambridge Univ Press, 1998.

I. Szita and A. Lorincz. Learning Tetris Using the Noisy
Cross-Entropy Method. Neural Computation, 2006.

M. Taylor and S. Chernova. Integrating human
demonstration and reinforcement learning: Initial results in
human-agent transfer. AAMAS Workshop, 2010.

A. Tenorio-Gonzalez, E. Morales, and L. Villasenor-Pineda.
Dynamic reward shaping: training a robot by voice.
Advances in Artificial Intelligence-IBERAMIA, 2010.

A. Thomaz and C. Breazeal. Reinforcement learning with
human teachers: Evidence of feedback and guidance with
implications for learning performance. Proc. of the National
Conference on Al 2006.

A. Thomaz and C. Breazeal. Transparency and socially
guided machine learning. ICDL, 2006.

A. Thomaz, G. Hoffman, and C. Breazeal. Real-time
interactive reinforcement learning for robots. AAAT
Workshop, 2005.

C. Watkins and P. Dayan. Q-learning. Machine Learning,
1992.





