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ABSTRACT

Highly accurate sensor measurements are crucial in order for
power plants to effectively operate, as well as to predict and
subsequently prevent any potentially catastrophic failures.
As the cost of sensors decreases while their power increases,
distributed sensor networks become a more attractive option
for implementation in power plants. In this work, we investi-
gate the use of a distributed sensor network to achieve highly
accurate measurements. We apply shaped rewards to local
components and use a simple learning algorithm at each sen-
sor in order to maximize those rewards. Our results show
that the measurements from a sensor network trained us-
ing shaped rewards are up to two orders of magnitude more
accurate than a sensor network trained with a traditional
global reward. Further, the algorithm proposed scales well
to large networks, and is robust to measurement noise and
sensor failures.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed Systems

General Terms

Algorithms, Experimentation

Keywords

Multiagent learning, Coordination

1. INTRODUCTION
One of the most significant challenges to developing effi-

cient energy sources is addressing how to control and opti-
mize power plants. As power plants become more complex,
a distributed control strategy will become necessary [13].
Rather than a central controller making decisions for an en-
tire plant, subsystems within the plant must be adaptively
controlled independently, while maintaining effectiveness on
an overall system level [8, 11]. In order for any control pro-
cess to be effective, accurate feedback about the environment
is required, which is typically provided by sensors.

Sensors are becoming smaller, less expensive, more com-
putationally powerful, and more capable of operating in

harsh environments [4], allowing for the implementation of
large sensor networks in industrial power plants. Given the
complexity of power plants and the power of new sensors, a
distributed sensor network is a natural system to implement
in a power plant [5].

Increasing the number of sensors in a system provides
many benefits. First, with a large network of sensors, the
network can compensate for sensor failures without losing
significant performance [10]. Second, with the ability of
sensors to preprocess data, distributed sensor networks can
give much more useful data relating to system wide per-
formance than a standard set of sensors [14]. Third, in-
teracting sensors can give system level information that is
not available from simply aggregating sensor information [9].
Finally, a distributed sensor network is often capable of self-
organization, which is extremely helpful in area surveillance
[7].

The contribution of this work are as follows:

• Extend the Defect Combination Problem to power plant
applications by providing indirect feedback using a sys-
tem model.

• Use shaped rewards on the modified Defect Combina-
tion Problem in order to minimize measurement error
in a distributed sensor network operating in a model
power plant.

• Show that the average difference reward meets real-
world performance requirements, including robustness
to noise and sensor failures, as well as accurate tracking
performance.

We develop a methodology to provide indirect feedback
based on information that is easily obtained in order to train
a network of sensors to have high-accuracy measurements.
In systems such as power plants, increasing the accuracy of
sensor readings is crucial, because small changes in the sys-
tem state must be detected not only to maintain effective
plant performance but to also predict and subsequently pre-
vent potentially catostrophic failures [3]. Through the use
of indirect feedback and reward shaping, we achieve sensor
measurements which are two orders of magnitude more ac-
curate than measurements using global rewards. This work
is in conjunction with the National Energy Technology Lab-
oratory (NETL), which is interested in new methodologies
for controlling and sensing in complex next-generation power
plants.

The rest of this paper is organized as follows. Section 2
gives background information on the Rankine cycle domain
and reward structures used, as well as past approaches to
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such sensor network problems. Section 3 defines the mod-
ified Defect Combination Problem for use in the Rankine
cycle. Section 4 defines the agent learning algorithm, as
well as derives the reward structures for the Rankine cycle
Defect Combination Problem. Section 5 defines the experi-
ments conducted, and presents the experimental results. Fi-
nally, Section 6 discusses the results, draws conclusions, and
identifies area of future work.

2. BACKGROUND
The following sections describe the Difference Reward and

the Expected Difference Reward, the Rankine cycle power
plant, the Defect Combination Problem, and past related
work.

2.1 Difference Reward
The Difference Reward Di(z) is defined as [12]:

Di(z) = G(z)−G(z−i) (1)

where G(z) is the global reward, and G(z−i) is the global
reward without the influence of agent i. Intuitively, the Dif-
ference Reward gives agent i’s specific impact on the system
performance. Note that:

∂Di(z)

∂a(i)
=

∂G(z)

∂a(i)
(2)

where a(i) is agent i. Thus, an agent acting to increase the
Difference Reward will also act to increase the global reward.
This property is termed factoredness [1]. Further, because
the Difference Reward only depends on the actions of agent
i, noise from other agents is reduced in the feedback given
by Di. This property is termed learnability [1].

An extension of the Difference Reward, the Expected Dif-
ference Reward EDi(z), is defined as in [12]:

EDi(z) = G(z)− Ei(a)[Gz] (3)

where Ei(a)[G(z)] is the expected value of the global reward
across all actions that agent i may take. In the case of a
discrete action space, Equation 3 becomes:

EDi(z) = G(z)−
∑

a∈A

Pi(a)Gi(za) (4)

where Pi(a) is the probability that agent i takes action a,
and Gi(za) is the global reward when agent i takes action
a. While the Difference Reward gives the impact of agent i
on the global reward, the Expected Difference Reward gives
the expected impact of agent i on the global reward. The
difference reward has been shown to promote good learned
policies in many domains, including rover coordination [1]
and distributed sensor network control [12].

2.2 Rankine Cycle
We develop a sensor network in a well known power gener-

ation system: a vapor power Rankine cycle [6]. The Rankine
cycle is one of the simplest thermodynamic power-producing
cycles, and serves as a testbed to demonstrate the effective-
ness of our approach. It is important to note that although
the Rankine cycle is not complex enough to demonstrate
effectiveness of control algorithms, it is adequate to demon-
strate the effectiveness of our sensor network training algo-
rithm. In our approach, the model is treated as a black

box, and only the output of the model is used to train sen-
sors operating within that model. Thus, the complexity of
the model is irrelevant in our approach. In a Rankine cy-
cle, the working fluid passes through a boiler and becomes
saturated vapor. Next, the fluid goes through the turbine,
which results in an energy output which is used to produce
electricity. The fluid then passes through a condenser and
becomes a saturated liquid. Finally, the fluid passes through
a pump and returns to the boiler, completing the cycle. The
Rankine cycle is shown in Figure 1. For the purposes of this
analysis, we make the following assumptions:

A1. Each component of the cycle is considered to be a con-
trol volume.

A2. All processes of the working fluid are internally re-
versible.

A3. The turbine and pump operate adiabatically.

A4. Kinetic and potential energy effects are negligible.

A5. Saturated vapor enters the turbine. Condensate exits
the condenser as a saturated liquid.

A6. The working fluid is water.

Boiler Turbine

CondenserPump
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Figure 1: A vapor power Rankine cycle. The work-

ing fluid travels through a boiler, turbine, con-

denser, and pump in succession.

As seen in Figure 1, there are four distinct states in the
Rankine cycle, each of which lies between two of the com-
ponents. At each state, the working fluid has an enthalpy
h, which is a thermodynamic value indicating the energy
stored in the working fluid. The enthalpy of a fluid is a
function of temperature and pressure. The system perfor-
mance is related to the enthalpy hs at each plant state s by
the following relations:

Ẇt

ṁ
= h1 − h2 (5)

Q̇out

ṁ
= h2 − h3 (6)

Ẇp

ṁ
= h4 − h3 (7)

Q̇in

ṁ
= h1 − h4 (8)

942



where ṁ is the mass flow rate of the working fluid, Ẇt is
the work output of the turbine, Q̇out is the heat output of
the condenser, Ẇp is the work input to the pump, and Q̇in

is the heat input to the boiler. In order to evaluate these re-
lations, the enthalpy of the working fluid at each state must
be determined by measuring the temperature and pressure
at each state; this requires the development of a sensing pol-
icy. Such a policy was studied in the Defect Combination
Problem.

2.3 Defect Combination Problem
The Defect Combination Problem (DCP) assumes that

there exists a set of imperfect sensors X which have constant
attenuations due to manufacturing defects or imperfections
[2, 12]. Each sensor xi ∈ X has an attenuation ai in its
measurement. Thus, if sensor xi is measuring some value
A, its measurement is A+ ai. The DCP involves choosing a
subset of the sensors such that the aggregate attenuation of
the combined readings is minimized, which is equivalent to
maximizing:

G(z) = −

∣

∣

∣

∑N

i=1
niai

∣

∣

∣

∑N

i=1
ni

(9)

where N is the number of sensors in the system, ni ∈ {0, 1}
is an indicator function based on whether the sensor is “on”
or“off,”and G is the aggregated attenuation of the combined
sensor readings.

There are two key drawbacks to the DCP in the context of
real-world sensor network applications. First, the objective
function (Equation 9) requires knowledge of the attenuation
of each sensor. However, it is extremely unlikely to know the
attenuation of each individual sensor in a real-world applica-
tion. Secondly, the DCP assumes constant attenuations ai

for each sensor xi. In reality, a sensor will have noise in its
reading, such that the attenuation will be N(σ, ai), where
N(σ, µ) is a normally distributed random variable with mean
µ and standard deviation σ. Thus, the DCP provides an
inadequate framework to train real-world sensor networks.
For a real-world application, the objective function must in-
clude readily available information about the system, and
the sensors should have noise in their measurements.

2.4 Related Work
Early work on the DCP defined each sensor as an agent,

which then chose to be on or off [12]. The agents learned
with a standard Q-learning algorithm, and agents received
either the global reward, the difference reward, or the ex-
pected difference reward. Both the difference reward and
expected difference reward are factored with respect to the
global reward, such that agents acting to improve their pri-
vate reward functions also acted to increase the global re-
ward. Further, these reward structures have high learnabil-
ity. Ultimately, the difference reward and expected differ-
ence reward yielded significantly better sensing policies than
the global reward in the DCP. Although sensor attenuation
was minimized in this work, the reward structure does not
allow for implementation in real-world sensor networks, be-
cause it requires knowledge of the attenuation of each sen-
sor. We aim to extend this work by implementing a model
of the system into the reward structure, in order to allow for
implementation in real-world applications.

3. DCP FOR POWER PLANTS
We apply a modified version of the DCP to a Rankine

cycle power plant. There is a set of motes Xs at each of the
four plant states, where s ∈ {1, 2, 3, 4} is the state of the
power plant (see Figure 1). Each mote xs,i ∈ Xs has sen-
sors capable of measuring temperature and pressure, the two
parameters needed to determine the enthalpy of the work-
ing fluid. The sensors in mote xs,i have a mean tempera-
ture attenuation ts,i, and a mean pressure attenuation ps,i.
Further, each sensor has an associated measurement noise
defined by the Gaussian distribution, where σt and σp are
the standard deviations for temperature and pressure atten-
uations respectively. Thus, the temperature and pressure
attenuations of the sensors on each mote are given by the
following normal distributions:

eT,s,i = N(σt, ts,i) (10)

eP,s,i = N(σp, ps,i) (11)

Each mote is considered to be an agent. First, an agent
decides whether to be “on” or “off.” If an agent decides to
be “on,” then it must decide if it will measure temperature,
pressure, or both temperature and pressure. The goal of the
agents is to collectively take actions which will minimize the
aggregate error in temperature and pressure readings. The
aggregate attenuation for temperature at a state s is defined
as:

gT,s =

∑Ns

i=1
ns,ieT,s,i

∑Ns

i=1
ns,i

(12)

where Ns is the number of motes in state s, and ns,i ∈ {0, 1}
denotes whether mote xs,i is measuring temperature or not.
Similarly, the aggregate attenuation for pressure at state s
is defined as:

gP,s =

∑Ns

i=1
ns,ieP,s,i

∑Ns

i=1
ns,i

(13)

where ns,i ∈ {0, 1} denotes whether mote xs,i is measuring
pressure or not. From Equations 12 and 13, the measured
values of temperature and pressure at state s are:

Ts,sensed = Ts + gT,s (14)

Ps,sensed = Ps + gP,s (15)

where Ts and Ps are the true temperature and pressure at
state s, respectively. Equations 12 and 13 can not be used
to provide feedback to learning agents, because they can not
be calculated directly in real-world applications, because the
attenuation of each sensor is not known. However, using the
system model and knowledge of the control inputs, the en-
thalpy at each state may be analytically determined. Thus,
the enthalpy found from the sensor readings may be com-
pared with the true enthalpy (found with system model) to
determine the accuracy of the sensor network.

The enthalpy of the working fluid is a thermodynamic
property which quantifies the level of energy in the fluid.
Enthalpy change in a fluid corresponds to the fluid either ab-
sorbing or expelling energy, and is used to determine power
levels in a power cycle. In the Rankine cycle power plant, the
control inputs are Q̇out, Ẇp, Q̇in, and ṁ, and are known val-
ues. Thus, using Equations 5 through 8 in addition to the
assumptions made about the Rankine cycle, the enthalpy
values h1 through h4 may be directly determined. The en-
thalpy at each state is also estimated by the sensor network,
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where the estimation of enthalpy is defined by:

hs,sensed = f(Ts,sensed, Ps,sensed) (16)

where f(T, S) is the enthalpy equation based on thermody-
namic empirical data, and Ts,sensed and Ps,sensed are the
sensed temperature and pressure values, as defined in Equa-
tions 14 and 15. The error in the enthalpy reading at a given
state is thus:

hs,error = |hs − hs,sensed| (17)

where hs is the true enthalpy of state s, found using the
Rankine cycle model. The error in enthalpy gives an in-
dication of the effectiveness of the sensors measuring tem-
perature and pressure. The objective of the entire sensor
network is to minimize the total attenuation of enthalpy
measurements at each state, which is equivalent to maxi-
mizing:

G(z) = −
4

∑

s=1

hs,error (18)

The key difference between this approach and the DCP
is the fact that the objective function given by Equation 18
uses data which is readily available in order to judge sen-
sor efficacy. Recall that the DCP objective function (Equa-
tion 9) includes individual sensor attenuations, which are
extremely impractical to obtain, especially as the size of the
sensor network grows. Thus, the modification we have made
to the DCP allows for implementation in real-world appli-
cations.

4. AGENT LEARNING
Agent learning in the Rankine cycle DCP is achieved through

standard multiagent Q-learning, shown in Algorithm 1. Each
agent maintains a private Q-table, and updates the Q-table
at each time step based on the reward that the agent re-
ceives.

Algorithm 1 Reinforcement Learning Algorithm

Each agent i generates a randomly seeded Q-table Qi;
episode = 1;
while episode < maxEpisodes do

1. Each agent i selects an action from Q-table using
ǫ-greedy;
2. Calculate measured temperature and pressure at
each state (Eqns. 14 and 15);
3. Calculate measured enthalpy at each state (Eqn. 16);
4. Calculate true enthalpy at each state (Eqns. 5
through 8);
5. Calculate system objective (Eqn. 18);
6. Calculate rewards Ri for each agent (D, ED, AD,
or G);
7. Q-update: Qi(a)← Q(a)(1− α) + αRi;
8. episode = episode+ 1;

end while

The following sections derive each reward (D, ED, AD, and
G) used for learning.

4.1 Global Reward
The simplest approach to solving the learning problem is

to simply use the Global Reward to provide feedback to each

agent. Although this method is simple, it is an ineffective
approach. As the number of sensors in the network grows,
the Global Reward provides poor agent-specific impact. For
example, in a sensor network with 1000 motes, the Global
Reward provides poor feedback on the action selection of
one particular agent, because of the small impact on G that
one agent has. For this reason, it is not expected that using
the Global Reward for feedback will provide satisfactory re-
sults, but will provide a good baseline for comparison of our
shaped rewards D and ED.

4.2 Difference Reward
We will now derive the Difference Reward for the Rankine

cycle DCP. Recall from Equation 1, the Difference Reward
is defined as:

Di(z) = G(z)−G(z−i) (19)

There are four actions a ∈ A that each agent may take in
the Rankine cycle DCP, where A = {a1, a2, a3, a4}, and:

• a1: sense nothing

• a2: sense pressure

• a3: sense temperature

• a4: sense both temperature and pressure

Removing an agent from the system is equivalent to having
it sense nothing, or to take action a1. The aggregate atten-
uation for temperature at a state s without the impact of
agent i is:

gT,s,−i =

∑Ns

j=1,j 6=i
ns,jeT,s,i

∑Ns

j=1,j 6=i
ns,j

(20)

The aggregate attenuation for pressure at a state s without
the impact of agent i is:

gP,s,−i =

∑Ns

j=1,j 6=i
ns,jeP,s,j

∑Ns

j=1,j 6=i
ns,j

(21)

Thus, the temperature and pressure measurements at any
state s without the impact of agent i are given by:

Ts,sensed,−i = Ts + gT,s,−i (22)

Ps,sensed,−i = Ps + gP,s,−i (23)

The estimated enthalpy at state s without the effects of
agent i is given by:

hs,sensed,−i = f(Ts,sensed,−i, Ps,sensed,−i) (24)

The error in the enthalpy measurement without the effects
of agent i is:

hs,error,−i = |hs − hs,sensed,−i| (25)

The total system reward without the effects of agent i is:

G(z−i) = −
4

∑

i=1

hs,error,−i (26)

The Difference Reward for the Rankine cycle DCP is thus:

Di(z) = G(z)−G(z−i) (27)

where G(z) is defined in Equation 18 and G(z−i) is defined
in Equation 26.
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4.3 Expected Difference Reward and Average
Difference Reward

We will now derive the Expected Difference Reward for
the Rankine cycle DCP. Recall that the Expected Difference
Reward is defined by:

EDi(z) = G(z)−
∑

a∈A

Pi(a)Gi(za) (28)

In order to calculate the Expected Difference Reward for
some agent i, we must determine the global reward when
agent i selects any action a ∈ A. We begin by defining
temperature and pressure indicator functions based on the
action selected:

nt(a) =















0, a = a1

0, a = a2

1, a = a3

1, a = a4

(29)

np(a) =















0, a = a1

1, a = a2

0, a = a3

1, a = a4

(30)

The aggregate attenuation for temperature at state s when
agent i takes action a is:

gT,s,i(a) =

[

∑Ns

j=1,j 6=i
ns,jeT,s,j

]

+ nt(a)eT,s,i

nt(a) +
∑Ns

j=1,j 6=i
ns,j

(31)

The aggregate attenuation for pressure at state s when agent
i takes action a is:

gP,s,i(a) =

[

∑Ns

j=1,j 6=i
ns,jeP,s,j

]

+ np(a)eP,s,i

np(a) +
∑Ns

j=1,j 6=i ns,j

(32)

The temperature and pressure measurements at state s when
agent i takes action a are thus:

Ts,sensed,i(a) = Ts + gT,s,i(a) (33)

Ps,sensed,i(a) = Ps + gP,s,i(a) (34)

The estimated enthalpy at state s when agent i takes action
a is:

hs,sensed,i(a) = f(Ts,sensed,i(a), Ps,sensed,i(a)) (35)

The error in the enthalpy measurement at state s when agent
i takes action a is:

hs,error,i(a) = |hs − hs,sensed,i(a)| (36)

The total system reward when agent i takes action a is thus:

Gi(za) = −
4

∑

s=1

hs,error,i(a) (37)

The probabilities in the Expected Difference Reward are
based on previous actions taken by each agent. Initially,
each probability P (a) is set to 1/|A|, where |A| is the car-
dinality of the set A. During learning, each agent keeps
a record of the number of times it has taken every action.
These records allow for direct calculation of the probabili-
ties. Suppose that agent i has taken action ak a total of
ck times, then the probability of agent i taking a particular

Table 1: Experiment Parameters

Parameter Value
α 0.3
ǫ 0.0002

Episodes 1000
Statistical Runs 2000

Table 2: Controller Parameters
Parameter Value

Q̇out 169.75 MW

Ẇp 844.1 kW

Q̇in 269.77 MW
ṁ 3.77 · 105 kg/h

action aj is given by:

Pi(aj) =
cj

∑

4

k=1
ck

(38)

With the probabilities defined, we can now calculate the
Expected Difference Reward as:

EDi(z) = G(z)−
4

∑

j=1

Pi(aj)Gi(zaj
) (39)

We can define a similar reward, the Average Difference Re-
ward, which is equivalent to the expected difference reward
when the probabilities of taking each action are assumed to
be constant:

ADi(z) = G(z)− 1

4

4
∑

j=1

Gi(zaj
) (40)

5. EXPERIMENTS AND RESULTS
The following sections describe the experiments conducted

with the Rankine cycle DCP, as well as the results for each
experiment. For each experiment, the number of agents in
each state was varied from 50 to 1000. The experimental
parameters were all set as in Table 1, unless otherwise noted.
For each plot, the error in the mean σ/

√
N is reported,

where N = 2000 is the number of statistical runs.

5.1 Enthalpy Measurement
The first experiment involves measuring the enthalpy at

each state in the Rankine cycle during steady-state opera-
tion without the presence of sensor noise. Constant control
inputs were maintained, consistent with typical steady-state
operation [6], given in Table 2. In each power plant state, the
agents were trained in order to minimize enthalpy attenua-
tion at that state. The rewards tested are the global reward,
the difference reward, the expected difference reward, and
the average difference reward. The policies learned using
these reward structures are compared with a random pol-
icy, where each agent randomly selects an action at each
episode with uniform probability. The enthalpy measure-
ment experiment give a baseline result to compare against
when analyzing sensor failures and measurement noise. The
learning plot for 1000 agents in the Rankine cycle DCP is
shown in Figure 2, and the scaling results when varying be-
tween 50 and 1000 agents are shown in Figure 3. As seen
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Figure 2: Rankine Cycle DCP with 1000 agents and

no noise or failures.

Figure 3: Rankine Cycle DCP with no noise or fail-

ures - scaling.

in Figure 2, the random reward policy performed the worst,
as expected. G(z) yielded slightly better results than ran-
dom, but still yielded poor performance due to learning noise
associated with G(z). AD(z) and D(z) yielded similar per-
formance, with AD(z) performing slightly better. Finally,
ED(z) yielded the best results.

As seen in Figure 3, ED(z) and AD(z) yielded the best re-
sults, regardless of the number of agents in the system. The
reason these reward structures perform better thanD(z) can
be attributed to the fact that they provide non-zero feedback
when an agent chooses to sense nothing. In contrast, D(z)
gives a feedback of zero when an agent chooses to sense noth-
ing, whether that action is benificial or detrimental to the
system. ED(z) and AD(z) both give meaningful feedback
regardless of the action selected by the agent, which yields
better learned performance.

5.2 Enthalpy Measurement with Sensor Fail-
ures

The second experiment involves determining the effects of
sensor failures on the system. For this experiment, the net-
work is allowed to train for 1000 episodes, as in the enthalpy
measurement experiment (Section 5.1). After 1000 episodes,

a percentage of the sensors fail, and the network retrains for
another 1000 episodes to compensate for the sensor failures.
The level of sensor failures is set at 15%. This experiment
gives an indication of how robust the sensor network is to
agent failures, which is a crucial property for a sensor net-
work operating in a real-world domain such as a power plant.
The results for 500 agents with 15% sensor failure are shown
in Figure 4, and the scaling results when varying the num-
ber of agents between 50 and 1000 are shown in Figure 5.
As seen in Figure 4, after 15% of the sensors fail, D(z) and

Figure 4: Rankine Cycle DCP with 500 agents and

15% failures.

AD(z) are able to recover over 95% of lost performance.
However, ED(z) is unable to recover, and actually performs
worse than D(z). This is due to the fact that ED(z) is cal-
culated by tracking the probabilities of each agent taking
an action. After the agents fail, these probabilities are no
longer accurate, because they depended on the system prior
to agent failure. Once the agents fail, these incorrect proba-
bilities actually corrupt the learning signal, resulting in poor
performance. As seen in Figure 5, ED(z) does not recover

Figure 5: Rankine Cycle DCP with 15% failure -

scaling.

from failures and perform better than D(z) until there are at
least 750 agents in the system. Our results show that as the
system size increases, uncertainty about action selection for
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each agent also increases, resulting in a more uniform prob-
ability distribution when calculating ED(z). Thus, as the
system size increases, agent failures impact ED(z) less and
less. When agent failures are present, AD(z) consistently
performs better than all other reward structures tested.

5.3 Enthalpy Measurement with Sensor Noise
The third experiment involves determining the effects of

measurement noise on the sensor network. For this experi-
ment, sensor noise is set at 15%. Noise is defined by altering
the value of the standard deviation of the normal distribu-
tion from which sensor readings are drawn. For a particular
noise value φ, the standard deviation is defined as:

σ(φ) =
φ

3
(41)

Thus, for a particular noise value chosen, there is a proba-
bility of 0.997 that the noise will be less than or equal to the
chosen value. This experiment gives an indication of how
robust the sensor network is to measurement noise, which
is always present in real-world sensor network applications,
and thus must be accounted for by sensor network control.
The results for 1000 agents with 15% sensor noise are shown
in Figure 6. As seen in Figure 6, when noise is present in the

Figure 6: Rankine Cycle DCP with 1000 agents and

15% noise.

system, D(z), ED(z), and AD(z) all provide almost identi-
cal performance. As measurement noise is introduced to the
system, the probabilities while calculating ED(z) become
less certain (i.e. the probability distribution becomes more
uniform), and ED(z) becomes almost identical to AD(z).
D(z) is able to effectively filter much of the sensor noise,
because it only depends on the action of a single agent.

5.4 Enthalpy Measurement with Sensor Fail-
ures and Sensor Noise

The fourth experiment involves determining the effects of
both sensor failures and measurement noise on the sensor
network. This experiment is identical to the sensor failure
experiment (Section 5.2), with the addition of measurement
noise as in the noise experiment (Section 5.3). This exper-
iment gives insight to how well the sensor network would
perform in real-world applications, where both sensor noise
and sensor failures must be adequately addressed in order to
maintain acceptable network performance. The results for

1000 sensors with 15% measurement noise and 15% agent
failure are shown in Figure 7. As seen in Figure 7, D(z),

Figure 7: Rankine Cycle DCP with 1000 agents and

15% noise and failures.

ED(z), and AD(z) all perform almost identically. Again,
ED(z) and AD(z) are essentially equivalent, because noise
in the system results in the probability distribution for cal-
culating ED(z) near-uniform, making it almost identical to
the true uniform distribution used to calculate AD(z). An
interesting result is the fact that ED(z) is able to recover
from failure when noise is present, even though it was unable
to recover from failure when there was no noise. This can be
attributed to the effect the noise has on the probability dis-
tribution for calculating ED(z). Based on these results, we
conclude that AD(z) is the best reward choice for training
agents in the distributed sensor network. AD(z) is robust
to measurement noise, sensor failures, and a combination of
measurement noise and sensor failures. Other reward struc-
tures struggle in at least one of these situations, while AD(z)
provides consistently good feedback for learning agents.

5.5 Temperature Tracking
The final experiment involves training a distributed sen-

sor network with AD(z), and then using this sensor network
to track the temperature at the turbine outlet during hea-
tup. The temperature at the turbine outlet was raised from
200oC to 315oC. We add artificial oscillations to the tem-
perature profile in order to add complexity to the problem.
This experiment gives insight to how the sensor network
can track changing parameters, which is a crucial element
for a sensor network giving feedback to a plant controller.
There are 1000 sensors, and the sensors have 15% measur-
ment noise. The results for the temperature tracking exper-
iment are shown in Figure 8. As seen in Figure 8, there is
no observable difference between the true temperature pro-
file and the measured temperature profile. This shows that
the trained sensor network is capable of tracking system
parameters, which is essential for the plant control which
makes use of these parameters. Thus, in addition to be-
ing robust to agent noise and failures, AD(z) can provide
accurate measurements to the system controller, making it
an ideal reward structure for use in real-world power plant
control applications.
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Figure 8: Temperature tracking at turbine outlet.

There is no discernible difference between the true

and measured temperatures.

6. DISCUSSION
This research investigated how to train a distributed sen-

sor network operating in a power plant. We extended the
Defect Combination Problem to utilize readily available in-
formation from the system model in order to train a sensor
network. Then, we tested G(z), D(z), ED(z), and AD(z) as
reward structures to train the sensor network. Our results
show that variants of the Difference Reward provide sensor
network performance that is almost two orders of magnitude
more accurate than when using the global reward. Further,
we show that AD(z) is robust to sensor failures, measure-
ment noise, and both sensor failures and measurement noise
occuring simultaneously. Finally, we show that the sensor
network trained with AD(z) can accurately track dynamic
system parameters, which is a crucial feature of a sensor net-
work giving feedback to the plant controller. Thus, AD(z)
is an ideal reward structure for use in real-world sensor net-
work applications.

Future work involves testing this sensor training algorithm
on a more realistic simulator and to combine the sensor net-
work with a controller. Although the Rankine cycle is not
an accurate model of a real-world power plant, the algorithm
we utilized is independent of the model; the model is treated
as a black box, and only the model output affected the sen-
sor network feedback. The complexity of the model does not
affect how the sensor network learns, and is not necessary
to test the sensor network itself. However, the complex-
ity of the model is important when considering a controller,
because the complexity of the control algorithm typically
increases with system complexity. By incorporating a more
realistic plant model, we can test the sensor network while
it is working in conjunction with a plant controller. Ulti-
mately, the sensor network must provide accurate measure-
ment data in order for correct control decisions to be made,
so the sensor network and controller should be tested to-
gether to give more meaningful insight on the quality of the
distributed sensor network.
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