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ABSTRACT
We consider multiagent systems that involve two or more
business partners interacting via autonomous software agents.
A (business) protocol describes the messages exchanged by
the agents in high-level terms. Such systems pose a major
challenge with requirements evolution. Current approaches
couple agent and protocol designs, requiring coordinated
changes. In contrast, we propose an approach that decou-
ples agent and protocol designs, while maintaining interoper-
ability. We build on the well-known architectural construct
of an interceptor. We introduce interaction refactorings to
transform interactions in response to evolving requirements,
with each refactoring incrementally changing agents, inter-
ceptors, and the protocol. We identify three main forms of
requirements evolution and propose an extensible library of
refactorings that help address each form. We demonstrate
the approach through examples and a JADE prototype.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Mechanical verification

General Terms
Design

Keywords
Refactor; Interaction; Interceptor; Communication proto-
cols; Agent communication; Commitments

1. INTRODUCTION
We consider cross-organizational multiagent systems that

arise when two or more business partners interact, for exam-
ple, to carry out complex service engagements. Each busi-
ness partner implements a software agent that appears to
the rest of the system to be autonomous and active (both
proactive and reactive). To facilitate the interoperation of
the partners’ agents, such systems are often built using (busi-
ness) protocols that specify the messages that the agents
may exchange along with any constraints on such messages.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Although such protocols are valuable for engineering, they
result in architectural coupling: Designers cannot deploy a
new protocol until all parties agree and their agents are mod-
ified accordingly. In general, protocol and agent interfaces
must change together.

In essence, the decentralized nature of multiagent sys-
tems makes it difficult to handle evolving requirements since
any change appears to demand bulk (concurrent and coor-
dinated) updates, which are precisely ill-suited for a decen-
tralized system. In today’s practice, the business partners
negotiate such updates by personal communication. The
traditional approach faces a vicious cycle. First, without
numerous agent implementations that exploit a new proto-
col, protocol adoption is hindered. Second, without wide
protocol adoption, agent designers are little motivated to
implement a new protocol.

1.1 Problem: Requirements Evolution
Agents are designed by agent designers and protocols are

designed by protocol designers. We assume agent and pro-
tocol designers are distinct. When requirements change, to
break the vicious cycle of the traditional approach, we de-
sire a system where (1) concurrent and coordinated deploy-
ments are unnecessary; (2) agents can interoperate using
an evolved protocol, without agent code changes; (3) each
designer can work independently; and (4) designers can col-
laborate when necessary.

Payer Payee
promise //

pay //

(a) Pay

Payer Bank Payee
open //
acctoo

deposit //
confirmoo

choose //
check //

redeemoo
payB //

(b) PayViaCheck

Figure 1: Example protocols: possible enactments.

To illustrate our proposal, we introduce two running pay-
ment protocols, Pay and PayViaCheck, with Figure 1 show-
ing suggestive enactments. In Pay, Payer can promise to
pay Payee, creating a commitment. Once committed, Payer
pays at some future point. PayViaCheck is similar, except
Payer must first open an account with Bank. At any time,
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Payer can make confirmed deposits and send Payee a check
that it may redeem for payment at Bank. We identify three
forms of requirements evolution in the above setting.
Protocol Designer Independence(PDI) Assume the agents

initially employ Pay. A new legal requirement arises to
ensure all payments are traceable, which PayViaCheck
addresses. How can a protocol designer evolve proto-
col Pay to PayViaCheck to address this requirement
without having to ask that all agents be concurrently
updated?

Agent Designer Independence(ADI) Assume the agents
initially employ a payment protocol that supports trav-
elers checks and other forms of payment. A new re-
quirement arises for a specific Payer agent to reduce
costs by ceasing to use travelers checks. How can this
agent simplification result in protocol simplification?

Designer Collaboration(DC) At times, designers must
collaborate, with one agent’s changes propagating to
other agents. DC changes are an integral element of
the protocol simplification just mentioned.

1.2 Approach: Refactoring Interactions
Our approach builds on the time-honored architectural

abstraction of an interceptor or Chain of Responsibility pat-
tern [7, 15]. Extending this, we show how to construct in-
terceptors modularly in a rule-based manner from logical
specifications of refactorings. Specifically, each interceptor
is expressed as a series of reaction rules that are triggered
by a message and which may refer to the interceptor’s in-
ternal state. An interceptor chain is an ordered list of zero
or more interceptors, that mediates all message flow to and
from its agent. Incoming messages pass through an inter-
ceptor chain before arriving at the business logic component
of an agent and outgoing messages likewise pass through the
same interceptor chain in reverse order.

Given one or more agents that use a protocol, design-
ers can incrementally refactor the agent and protocol in-
teractions while preserving interoperability of the agents. A
refactoring defines a set of coordinated, incremental changes
to agents, interceptor chains, and the protocol. We provide
an extensible library of refactorings from which designers
may select and apply one or more refactorings to implement
requirement changes. We partition refactorings into three
groups based on the requirements evolution problem they
address:
PDI For example, to evolve Pay to PayViaCheck, the pro-

tocol designer adds redemption processing by adding
interceptors to convert each pay message to the mes-
sage sequence deposit, confirm, check, redeem, and
payB.

ADI Our approach enables agent and agent interface changes:
(1) moving (internalizing or externalizing) functional-
ity between the agent implementation and the inter-
ceptor chain, and (2) an agent declaring it will not
send messages in cases enabled by the protocol.

DC These refactorings enable reorganizing, optimizing, and
simplifying an interceptor chain.

Contribution and Organization
Our main contribution is the concept of interaction refac-
torings that enable independent and incremental evolution
of interactions, decoupling the efforts of agent and proto-
col designers. Section 2 describes our enabling framework.

Section 3 introduces representative refactorings and the un-
derlying interceptor architecture. We apply refactorings to
our example protocols in Section 4. We evaluate a proto-
type implementation in Section 5. Section 6 concludes with
comparisons and a discussion of related work. This paper is
previously unpublished except Section 2.1, which provides
essential background.

2. APPROACH ILLUSTRATED
For brevity and clarity, we introduce the key concepts and

syntax for our approach via examples.

2.1 Protocol and Commitment Background
A commitment C{debtors},{creditors}(ant, csq) means the set

of debtor roles commits to the set of creditor roles to make
the consequent (csq) true whenever the antecedent (ant) is
true, following Gerard and Singh [8]. And, a protocol is a
set of guarded statements:

sender→ receiver : [guard] message means{meanings}.

The sender must not send a message when the Boolean,
public guard expression is false; it may send it when the
guard is true.

Each message’s meaning is a set of actions on proposi-
tions (set and clr) and commitments (create, transfer,
release, and cancel). For example, in Pay, we have

Payer→ Payee : [promise] payMsg means {set(pay)}.

2.2 Applying Rule-Based Interceptors

R S

Requester Service

ReqResp

Rename
message

IR,1: on snd request
do snd order

IS,1: on rcv order
do rcv request

Rename
message

IR,2: on rcv confirm
do rcv respond

IS,2: on snd respond
do snd confirm

Order

Consumer Provider

Order

Figure 2: Evolving ReqResp to Order.

Figure 2 shows a simple, concrete example of our architec-
ture, in which Rebecca’s agent R, enacting role Requester,
sends a request message to Steve’s agent S, enacting role
Service. S performs its function and responds. When the
interceptor chains are empty, R and S interoperate using
the ReqResp protocol (top dotted line).

Suppose the protocol designer, P, determines that R is
actually placing an order, and S is actually returning a con-
firmation. P then requires R and S must now interact with
specialized protocol Order using messages order and con-
firm (bottom dotted line). Without needing to change either
agent’s implementation, P provides two interceptors for each
agent’s interceptor chain, evolving protocols from ReqResp
to Order.

Figure 3 is a message sequence chart of the interaction, in-
cluding both agents (solid lifelines) and all their interceptors
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R IR,1 IR,2 Order IS,2 IS,1 S
snd request//

snd order //
snd order //

rcv order //
rcv order //

rcv request//
snd respondoo

snd respondoo
snd confirmoo

rcv confirmoo
rcv respondoo

rcv respondoo

Figure 3: Detailed enactment of Figure 2.

and protocol (dashed lifelines). When R sends request, R’s
top interceptor (IR,1) converts it to send order, which flows
down to the protocol end of R’s interceptor chain, and is
sent over the protocol (Order) via the messaging infrastruc-
ture to S’s interceptor chain. The order message flows up S’s
interceptor chain. Its top interceptor (IS,1) converts it back
to message request. S’s response is converted to confirm in
its bottom interceptor (IS,2), and is sent over the protocol
(Order) to R, whose bottom interceptor (IR,2) converts it
back to respond. The essential point of this example is both
R and S use the original ReqResp protocol, even though
messages of the Order protocol are what flow on the wire.

3. INTERCEPTORS AND REFACTORINGS
Given a set of agents that interoperate using a protocol,

designers can incrementally refactor agent and protocol in-
teractions to an evolved interaction, while preserving inter-
operability. Interceptors and interceptor chains mediate all
message flow between an agent and a protocol using a reac-
tion (event-based) architecture. A refactoring defines a set
of coordinated and incremental changes to agents, intercep-
tor chains, and the protocol. Interceptors and interceptor
chains are the key elements that make refactorings possible.

3.1 Interceptor Chains

Ai: agents (exec) A1 An

ARi: agent-roles (spec) AR1 ARn

protocol P0

I1,1 In,1

Ii,j : interceptors (exec) I1,2 In,2

I1,3 In,3

protocol Pn

PRi: proto-role (spec) PR1 PRn

protocol (spec) Pn

ADI

DC

PDI

Figure 4: Interaction architecture. The dashed
boxes signify the refactorings introduced above.

Figure 4 shows our interaction architecture consisting of
agents (Ai), interceptor chains (Ii,∗), interceptors (Ii,j), and
protocols (Pk). Each agent, enacting role (or interface) ARi

of protocol P0, communicates exclusively with the agent
(top) end of its interceptor chain. An interceptor chain is
an ordered list of interceptors (shaded boxes). The protocol
(bottom) end of an interceptor chain, enacting role (or inter-
face) PRi of protocol Pn, communicates with the protocol
end of other agents’ interceptor chains. Agent implemen-
tations and interceptors are executable elements; roles and
protocols are nonexecutable specifications.

In Figure 4, the top dotted line (P0) separates the agent
implementation and agent role (above) from the middleware
of the interceptor chain and protocol (below). The bottom
dotted line (Pn) separates the agent and interceptor chain
nodes (above) from the protocol interconnection (below).
Figures 2 and 5 are concrete instances of Figure 4.

Interceptor chains are the key to our approach because
they enable the required designer independence: they in-
sulate agents from protocol changes and insulate protocols
from agent changes.

3.2 Interceptor Syntax and Semantics
Interceptor chains and interceptors are preprogrammed

elements provided by the infrastructure, and require no de-
signer implementation. We construct them using the follow-
ing grammar

chain := role : interceptor∗

interceptor := reaction | assertion
reaction := onClause (ifClause)? doClause;
onClause := on event
ifClause := if φ
doClause := do op | do {op∗}
event := rcv m | snd m to role
op := rcv m | snd m to role | error | call proc
assertion := kill event

where role is a role name, m is a message type, proc is a pro-
cedure name, φ is a Boolean expression, and BNF operators:
A1|A2 (alternatives), A∗ (zero or more repetitions), and A?

(optional). The doClause is an ordered list of (1) receive op-
erations (rcv m) that “call up” the chain, (2) send operations
(snd m to role) that “call down” the chain, (3) throwing a
run-time error (error), and (4) procedure calls to get or set
interceptor chain data, or perform business functions. As-
sertions are design-time declarations and optionally perform
run-time checks. The interceptor kill event asserts that event
can never occur at a particular point in the chain at run
time. It is used to propagate message deletions throughout
the interaction.

At run time, an interceptor chain mediates all messages
flowing in either direction between its agent and the pro-
tocol. The chain attempts to match each message to each
interceptor, in order. A send message event starts at the
agent (top) end of the chain, and “calls down” the chain
toward the protocol end (bottom), passing over every inter-
ceptor in the chain in turn. A receive message event starts at
the protocol end, and “calls up” the chain toward the agent
end.

A send event (snd m to role) matches an (on snd m′ to role′)
reaction, and a receive event (rcv m) matches an (on rcv m′)
reaction, if the message types match (m = m′) and to roles
match (role = role′). When the event matches both (1) the
message and (2) the reaction’s ifClause, if any, evaluates to
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true in the current state, then the interceptor consumes the
message and executes the list of operations in the doClause.
Messages that reach the agent end of the chain are given to
the agent; messages that reach the protocol end are given to
the messaging infrastructure for delivery to the receiver.

3.3 Refactorings Formalized
A refactoring is a design-time construct, which encapsu-

lates a coordinated and incremental set of interaction changes.
For example, refactoring Add Message encapsulates all the
interceptors for both the message sender and receiver. And
refactoring Add Middleman encapsulates all the interaction
changes for rerouting an existing message through a middle-
man, including all interceptors for the sender, middleman,
and receiver.

A refactoring is a five-tuple that encapsulates one interaction-
level change in high-level terms. As necessary, it can change
all agents, all interceptor chains, and the protocol, applying
an interrelated set of changes throughout, for example con-
sistently renaming a message at both sender and receiver.

R = 〈parameters, precondition,∆Agent,∆Chain,∆Protocol〉

Given refactoring parameters, the precondition must be true
at design time for the refactoring to be applicable. The
refactoring applies changes to Agents, Chains, and Protocols
at design time. Refactorings names are italicized, and each
refactoring tuple is described with these common sections
(omitting any empty sections)
• Parameters: input parameters to the refactoring.
• Preconditions: the preconditions that must be true be-

fore the refactoring can be applied.
• ∆Agent: changes to agents’ implementations.
• ∆Chain: changes to agents’ interceptor chains. The

notations role.pushA : r and role.pushP : r mean push
interceptor r on to the chain’s agent and protocol end,
respectively.
• ∆Protocol: changes to the protocol.

There are three groups of refactorings, each modifying a
different set of elements, which we describe next.

3.4 Protocol Designer Independence
PDI refactorings modify the protocol, the protocol role,

and the protocol end of interceptor chain. The protocol
designer applies these refactorings to convert a group of in-
teroperating agents from using protocol Pi to using proto-
col Pi+1. These refactorings isolate agents from protocol
changes (∆Agent = ∅).

3.4.1 Add Middleman
This refactoring redirects a message to flow through a mid-

dleman agent. It replaces a single message m with a pair of
sequential messages m1 and m2.

Snd Rcv
m //

⇒ Snd MM Rcv
m1 // m2 //

• Parameters:
– m: existing message Snd→ Rcv : [g]m means A
– m1: new message Snd→ MM : [g1]m1 means A1

– m2: new message MM→ Rcv : [g2]m2 means A2

• Preconditions:
– Roles Snd, MM, and Rcv exist in the protocol.
– m exists in the protocol.

– m1 and m2 do not exist in the protocol.
– g1 ` g
– All meanings in A, A1, and A2 exist
– A ⊆ A1 ∪A2

• ∆Chain: Add
Rcv.pushP : on rcv m2 do rcv m
MM.pushP : on rcv m1 do snd m2 to Rcv
Snd.pushP : on snd m to Rcv do snd m1 to MM

• ∆Protocol: Delete m. Add m1 and m2.
This refactoring can be naturally extended to reroute through

multiple middlemen, which is the variant we implement in
our prototype. For example, it converts pay in Pay to de-
posit, confirm, check, redeem, and payB in PayViaCheck.

Payer Payee
pay //

⇒ Payer Bank Payee
deposit //
confirmoo

check //
redeemoo
payB //

3.5 Agent Designer Independence
ADI refactorings modify the agent implementation, the

agent role, and the agent end of the interceptor chain. The
ADI refactorings isolate the protocol from agent changes
(∆Protocol = ∅).

As examples, the agent designer can move functionality
between the agent and its interceptor chain. Refactoring
Externalize Reaction moves functionality out of the agent
implementation and into the agent end of the interceptor
chain, delegating agent functionality to a mechanistic reac-
tion. Refactoring Internalize Reaction moves an interceptor
off the agent end of interceptor chain and the agent designer
merges that functionality into the agent’s implementation.

Push Kill is another ADI refactoring that is described in
Section 3.6.1.

3.6 Designer Collaboration
DC refactorings modify interceptors within a single in-

terceptor chain. Protocol and agent designers can apply
these refactorings to reorder, merge, or split interceptors
within a chain to improve performance or to move intercep-
tors toward one of the ends of the chain where they can be
used in other refactorings. While refactorings in the other
two groups isolate designers, these refactorings enable mul-
tiple designers to collaborate within an interceptor chain
(∆Agent = ∅ = ∆Protocol).

3.6.1 Kill Message
This captures a set of three closely related refactorings—

one ADI, one DC and one PDI—with similar parameters and
preconditions, presented together for clarity. We iteratively
apply these refactoring to move kill assertions around the
interaction at design time (kill assertions are not typically
present in chains at run time).
• Parameters:

– Kill assertion kill snd m to Rcv
• Preconditions:

– Protocol contains message m.
• ∆Agent: (ADI: Push Kill) Sending agent publicly de-

clares it will never send m by publishing kill snd m onto
its chain.

– Snd.pushA : kill snd m to Rcv
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• ∆Chain: (DC: Move Kill) moves the kill up or down
the chain. If a kill event matches the following on event,
delete the reaction (left rule). If a kill event does not
match the following onClause or doClause events, swap
the interceptors (right rule). Similar rules apply for on
rcv reactions, and two kill assertions commute (neither
shown).

kill snd m
on snd m do snd n
kill snd n

kill snd m
on snd n do . . .
on snd n do . . .
kill snd m

• ∆Protocol: (PDI: Protocol Kill) propagates the kill as-
sertion from sender to receiver, deleting the message
from the protocol.

– Snd.popP : kill snd m to Rcv
– Rcv.pushP : kill rcv m
– Delete m from protocol

4. METHODOLOGY AND APPLICATION
In this section, we describe a methodology for selecting

a sequence of refactorings. Then, we show how to evolve
protocol Pay to protocol PayViaCheck, and how to support
requirements evolution by propagating kill message asser-
tions.

4.1 Methodology for Protocol Evolution
These steps guide the protocol designer in the evolution

of an interaction from protocol Pi to Pi+1.
M1 Add or rename any roles so all new roles exist in the

target protocol. Use Add Role (adds new role and empty
interceptor chain) or Map Role.

M2 If any message is too coarse (one message with a larger-
than-necessary set of meanings), split it into multiple,
parallel messages using Split Message.

M3 Rename existing messages with Rename Message, and
add new messages using Add Message.

M4 If any message needs to pass through one or more inter-
mediary roles (common when adding new roles), reroute
the messages using Add Middleman.

M5 If business function changes are required, add and delete
procedure calls to the doClauses using Add Procedure
and Delete Procedure.

M6 Combine parallel messages using Merge Message.
M7 Delete unneeded elements using Remove Middleman and

Remove Message.
M8 Delete unneeded roles using Remove Role.

4.2 Evolve Pay to PayViaCheck

Algorithm 1 Pay Protocol

protocol Pay {
role Payer; Payee;
prop promise; pay;
commitment

Cpay = C(Payer,Payee,promise,pay);
message

Payer→ Payee : promiseMsg
means {promise,create(Cpay)};

Payer→ Payee : [promise] payMsg
means {pay};

}

Algorithm 2 PayViaCheck Protocol

1: role Payer; Bank; Payee;
2: prop acct; deposit; choose; check; redeem; payB;
3: commitment
4: CpayB = C(Payer,Payee, deposit ∧ choose, check);
5: Cbank = C(Bank,Payer,deposit ∧ check ∧

redeem, payB);
6: Credeem = C(Payee,Bank,deposit ∧ check, redeem);
7: message
8: // Map promise to choose
9: Payer→ Payee : [acct] chooseMsg

10: means {choose,create(CpayB)};
11: // Add Message
12: Payer→ Bank : openMsg means {open};
13: Bank→ Payer : [open] acctMsg
14: means {create(Cbank),create(Credeem)};
15: // Add Middleman to pay
16: Payer→ Bank : depositMsg means {deposit};
17: Bank→ Payer : [deposit] confirmMsg means {};
18: Payer→ Payee : [acct ∧ choose ∧ create(CpayB)∧
19: create(Cbank) ∧ create(Credeem)]checkMsg;
20: means {check};
21: Payee→ Bank : [choose∧ check∧create(CpayB)∧
22: create(Cbank) ∧ create(Credeem)]
23: redeemMsg means {redeem};
24: Bank→ Payee : [acct ∧ check ∧ redeem]
25: payBMsg means {payB};

We demonstrate how our refactorings convert Pay (Fig-
ure 1(a), Algorithm 1) to PayViaCheck (Figure 1(b), Al-
gorithm 2), without requiring any agent implementations
changes, using the following sequence of refactorings. Each
step lists the methodology step number and the affected line
numbers in Algorithm 2. Figure 5 shows the refactorings and
interceptors.

1. Add Role: Bank. (Step M1, Line 1)
2. Rename Message: promiseMsg 7→ chooseMsg. The

two protocols use different names for the same mes-
sage. (Step M3, Lines 9-10)

3. Add Message: open and acct. During initialization (rcv
init), Payer sends an open request, and Bank responds
with an acct number. (Step M3, Lines 12-14)

4. Add Middleman: routes pay through multiple mid-
dlemen as deposit, confirm, check, redeem, and payB.
When Payer pays, then deposit the money at Bank,
wait for confirmation, and send check to Payee. Payee
then redeems check at Bank, who responds with payB,
which is converted back to pay. (Step M4, Lines 16-25)

4.3 Guard Propagation
Applying refactorings from all three groups enables agent

and protocol designers to collaborate on interaction-wide
changes. Assume we have a set of interoperating agents, us-
ing a payment protocol that supports multiple forms of pay-
ment, including Travelers Checks. If one particular (but not
necessarily every) Purchaser decides to stop using Travelers
Checks, it can publish that decision as a kill snd payTC as-
sertion to its interceptor chain. Multiple refactorings prop-
agate these change throughout the interaction as shown in
Figure 6.

1. Applying Push Kill, Purchaser declares it never sends
payTC.
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A C B

Payer Bank Payee

P0 = Pay

AddRole

P1

Rename
message

on snd promise
do snd choose

on rcv choose
do rcv promise

P2

Add
Message

on rcv acct
do rcv init

on rcv init
do snd open

on rcv open
do snd acct

P3

Add
Middle
Man

on snd pay
do snd deposit

on rcv deposit
do snd confirm

on rcv check
do snd redeem

on rcv confirm
do snd check

on rcv redeem
do snd payB

on rcv payB
do rcv pay

P4 =
PVC

Payer Bank Payee

PayViaCheck

Figure 5: Evolution of Pay to PayViaCheck (PVC).
Each shaded box is one interceptor.

Purchaser Payee Issuer

kill snd
payTC
��

kill rcv
payTC

kill snd
depositTC
��

kill rcv
depositTC

I1,1
��

I2,1
��

OO

I3,1

OO

I1,2
��

I2,2

��

OO

I3,2

OO

Purchaser

kill
payTC // Payee

OO kill
depositTC // Issuer

OO

Figure 6: Removing unused message (false guard).

2. Repeated application of Move Kill moves this assertion
down to Purchaser ’s protocol end.

3. Applying Protocol Kill, the protocol designer prop-
agates the kill assertion from sender to receiver and
deletes payTC from the protocol.

4. Repeated application of Move Kill moves the kill asser-
tion up to Payee’s agent end.

5. Payee’s agent designer pops the assertion off its agent
end and internalizes it into its implementation.

6. Since Payee now never receives payTC, it realizes it
never sends depositTC, and publishes kill snd depositTC,
which propagates further.

The resulting protocol is different from the starting proto-
col, and is specialized for a particular set of agents. Overuse
of these refactorings should be avoided to prevent an explo-
sion of protocol variations. But when applied sensibly, these
refactorings provide a natural means to incrementally evolve
old interactions to handle changing requirements.

Designers have the option, but not the hard requirement,
to move assertions as described above. Any assertion sim-
ply remains at its last location, where its optional run-time
check will succeed on any acceptable enactment.

5. EVALUATION
We have prototyped these ideas using the JADE agent

platform [3], with one JADE agent for each agent and one
JADE “chain agent” for each interceptor chain. Each chain
agent has its own thread of execution and message input
queue, so it can send and receive messages without blocking.

First, at design time, a program builds the interceptor
chains by applying refactorings. Second, at run-time ini-
tialization, each chain agent reads its interceptors. Third,
as message events arrive from agents, the chain agent walks
each message event up and down the interceptors in the
chain.

An agent can be connected to multiple, different intercep-
tor chains in different situations, enabling that single agent
to simultaneously interact over different protocols.

Table 1 shows the number of refactorings and intercep-
tors needed to evolve between protocols. Messages is the
total number of messages in the final execution, including
six initialization and six terminating, low-level messages not
shown in Figure 1.

Table 1: Effort in evolving (refactorings and inter-
ceptors) and running (messages) sample protocols.

From To Refactor Intercept Messages

Pay PayViaMM 2 5 19
Pay PayViaCheck 4 11 24
Pay PayViaCredit 5 12 24

Section 4.1’s methodology offers guidance for designers,
focusing on Protocol Designer Independence refactorings.
However, Section 4.3 illustrates the key benefit that Agent
Designer Independence and Designer Collaboration refactor-
ings yield in interaction-wide changes. We claim our ap-
proach is easier than the traditional approach of manually
changing agent implementation, because (1) predefined and
verified refactorings are selected from a library, and (2) refac-
torings are at a much higher conceptual level than agent
implementations.

Our interaction refactorings do not assist in refactoring
business functions inside the agent’s implementation.

Let reaction R be on snd m do snd n. If R is the only
generator of snd n, then the Move Kill works correctly: if
kill m, then kill n. But if R merges two existing messages,
then it overkills snd n. While merging does not occur in
the examples covered here, in general, it could. The current
approach cannot adequately address such merging.

Refactorings can time-shift messages only within a lim-
ited range. The data values an interceptor passes in a mes-
sage must come from previous messages or values stored in
the interceptor chain. A message cannot be shifted earlier
than the availability of all its parameters, and it cannot be
shifted later than the next message that needs one of those
values. This constraint required altering PayViaCheck’s de-
posit message, which originally required an up-front, one-
time deposit. The refactored design can make a deposit just
before sending each check. Without this change, the refac-
toring would not have been possible.
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6. DISCUSSION
We identify and describe three forms of requirement evo-

lution: Protocol Designer Independence (PDI), Agent De-
signer Independence (ADI), and Designer Collaboration (DC).
Each focuses on different parts of an interaction, two provide
designer isolation, and one enables designer collaboration.
We describe refactorings for all three forms. Applying refac-
toring from all three forms, in concert, supports interaction-
wide evolution. Interceptors and interceptor chains are the
critical elements that enable refactorings.

We demonstrated refactorings to transform Pay into Pay-
ViaCheck, without changing agent implementations. We
also demonstrated an agent voluntarily restricting its be-
havior (payTC) and propagating that change throughout
the interaction.

This paper covers just a few refactorings, but we have
defined a library with over 30 refactorings. A JADE pro-
totype demonstrates basic interceptor chain functionality,
refactorings automatically generating reactions, and agent
interoperability after refactoring to a new protocol.

We adopt a reaction-based, interceptor chain architecture
that is effective and yet simple enough to yield refactorings
that are easy to understand and apply. Because intercep-
tors are predefined and simple, we can define refactorings to
mechanically evolve them. Mechanical evolution of general-
purpose agent implementation is likely intractable.

Refactorings clearly communicate interaction changes. We
mechanically transform refactorings into sets of interceptors.
Interceptor chains can store important pieces of state (e.g.,
an agent’s checking account information) and can make com-
mitments on behalf of the agent (e.g., committing to re-
deem valid checks). In this case, the interceptor chain be-
comes a trustee of the agent, sometimes a necessity when
unmodified agents participate in new protocols. However, it
also raises autonomy concerns about the interceptor chain.
Agents should be able to limit the trust and autonomy they
grant to their interceptor chains.

6.1 Comparison to Design Patterns
Interceptor chains are a variation of the Chain of Respon-

sibility (CoR) design pattern in Gamma et al. [7]. Vinoski
[15] describes many uses of CoR. Servlet filters and filter
chains [1] are a widely used example of CoR. But we know
of no uses of CoR that support bidirectional flows. Nor do
we know of a multi-interceptor design construct like ours.

Interceptor chains enable all the uses of servlet filters plus
others. Servlet filter chains encourage servlet designers to
consider moving function between a servlet and its filters
(like ADI), and reordering filters within the chain (like DC).
But servlet filters give no attention to the coordinated design
of filters in different servlets (like PDI). Servlet chains do not
support bidirectional flows.

Our interceptors are a bidirectional variant of the Bridge
design pattern [7], also called a protocol bridge. Where a
protocol bridge is a custom implementation, our small, pre-
programmed interceptors are incrementally composed and
refactored.

The Compatible Change pattern [5] describes a number
of refactorings. The Service Refactoring pattern [5] applies
only to service implementations, not interactions. Neither
are mechanically applied.

6.2 Comparison to Agent Designs
In the traditional agent-only approach to agent design,

evolution is subject to the vicious circle described in the
introduction. Even when an agent designer decides to sup-
port a new protocol, implementation changes delay deploy-
ment. Agent designers can waste both time and effort im-
plementing protocols that are never widely adopted. Using
refactorings and interceptor chains breaks the vicious circle.
Protocol designers dynamically update interceptor chains,
essentially eliminating deployment delay. Agent designers
spend time and effort implementing only after a protocol is
widely adopted.

We demonstrated our approach by prototyping interac-
tion evolution via interceptor chains in the popular agent
platform JADE [3]. Jason, using the AgentSpeak language,
is another popular agent platform. Our reaction’s onClause,
ifClause, and doClause are similar to an AgentSpeak plan’s
triggering event, context, and body, respectively. Both can
send and receive “internal messages” (e.g., init) and call
user-defined functions. Whereas beliefs, desires and inten-
tions (BDI) are fundamental for autonomous functions in
AgentSpeak, interceptor chains are not autonomous, so BDI
does not apply. The primary problem these platforms have
with evolution is that all computation occurs in designer-
written agents, so all changes require designer effort, which
can be expensive. It appears impossible in general to de-
fine mechanical refactorings that correctly and dynamically
evolve JADE behaviors or AgentSpeak plans. We can de-
fine mechanical interceptor chain refactorings only because
interceptor chains have a simple structure, reducing the de-
signer’s burden.

Agent UML (AUML) [10] informally describes agent in-
teraction protocols (AIP), and promotes them as a means
to define protocol interactions. However, Odell et al. [10]
note that AIPs describe only one enabled sequence of mes-
sage interactions. We formally define protocols as sets of
guarded statements that capture all enabled message se-
quences. Guarded statements enable a relatively direct con-
version [8] to modern model checkers such as MCMAS [9]
and NuSMV [4]. Gerard and Singh [8] describe protocol re-
finement, but do not provide any guidance for constructing
subprotocols. This paper describes both refactorings and a
methodology to incrementally evolve interactions.

6.3 Comparison to Other Work
Quenum et al. [11] compose an agent from functional and

interaction models via unification. They recreate (recon-
figure) roles anew, in isolation, for each interaction model;
we incrementally evolve (refactor) all agents in a protocol
simultaneously.

Robinson and Purao [12] describe protocol invariants us-
ing OCL, which is based on predicate calculus and linear
temporal logic, but they provide no rules to rewrite OCL
statements. Because we use a simple reaction-based archi-
tecture, we can mechanically modify interceptor chains.

Fowler [6] refactors code; Wang et al. [16] refactor com-
mitments; we refactor interactions.

Baldoni et al. [2] identify and discuss the important prob-
lem of patching agents to maintain interoperability. Seguel
et al. [13] describe protocol adaptors (interceptor chains)
to resequence messages between a pair of agent. We use a
declarative approach in contrast with these two operational
approaches. Neither approach supports as many protocol
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changes as our refactorings, and they construct protocols
rather than incrementally refactor them.

Serban and Minsky [14] describe an infrastructure for chang-
ing a distributed system while it is running. Their laws and
controllers roughly correspond to our protocols and intercep-
tor chains. They enable changes on running systems, where
we consider changes only while the system is quiesced. Their
users must manually design, write and test a completely new
set of laws for a set of interacting agents; our designers ex-
pend less effort by incrementally evolving existing intercep-
tor chains using a library of predefined refactorings. They
provide no guidance on how to design and construct laws;
we provide a methodology for refactoring interactions.

6.4 Comparison of Mechanistic Capabilities
In Table 2 we list various related approaches and whether

they mechanistically support PDI, ADI, and DC style changes.
PDI indicates the protocol can be changed by renaming mes-
sages, adding middlemen, and so on. ADI indicates the
messages an agents sends or receives can be changed. DC
indicates the internal organization of the interceptor chain
equivalent can be changed, or is NA if no equivalent exists.

Approach PDI ADI DC

Our Approach Yes Some Yes
Chain of Responsibility (F) [7, 15] No Yes No
Servlet Filter (F) [1] No Yes No
Protocol Bridge [7] No No No
Compatible Change [5] No No No
JADE [3] No No NA
Quenum et al. [11] No Yes NA
OCL [12] No No NA
Fowler [6] No Yes NA
Wang et al. [16] NA NA NA
Baldoni et al. [2] Some Yes NA
Seguel et al. [13] Some No No
Serban & Minsky [14] No No No

Table 2: Compares representative agent and inter-
action programming approaches to mechanistically
apply PDI, ADI, and DC changes. Some means par-
tial support. (F) means unidirectional flow is from
protocol to agent.

6.5 Future Directions
This work opens up interesting directions for future re-

search. The current chain functionality is in a separate
agent and requires minor changes to the way normal JADE
agents send messages. Producing a modified JADE middle-
ware that includes an interceptor chain component, whose
contents can be changed at run time, supporting unmodified
JADE programming patterns, would better enable evolution
of service-oriented systems.

Replace the current extreme kill assertion with more flexi-
ble mechanisms that enable restricting a sender’s, or relaxing
a receiver’s, private guard, capturing the “send less; receive
more” intuition [2]. This will require careful tracking of valid
events at every point throughout an interaction.

Provide formal verification of the soundness of our refac-
torings, possibly adapting techniques applied to protocols
[8] as well as traditional model checkers [9, 4].
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