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ABSTRACT

Past research has investigated a number of methods for co-
ordinating teams of agents, but, with the growing number
of sources of agents, it is likely that agents will encounter
teammates that do not share their coordination methods.
Therefore, it is desirable for agents to form an effective ad
hoc team. This research tackles the problem of communica-
tion in ad hoc teams, introducing a minimal version of the
multiagent, multi-armed bandit problem with limited com-
munication between the agents. This abstract summarizes
theoretical results that prove that this problem setting can
be solved in polynomial time when the agent knows the set
of possible teammates, and the empirical results that show
that the problems can be solved in practice.

1. INTRODUCTION

Given the growing number of both software and robotic
agents, effective teamwork is becoming vital to many tasks.
With this increase in numbers of agents, their interactions
with other agents also increases, as does the number of com-
panies and laboratories creating these agents. Therefore,
there is a growing need for agents to be able to cooperate
with a variety of different teammates. This need is addressed
in the area of ad hoc teamwork , where agents are evaluated
based on their ability to cooperate with a variety of team-
mates. Stone et al. [3] define ad hoc teamwork as problems
in which a team cannot pre-coordinate its actions and intro-
duce an algorithm for evaluating ad hoc team agents.
Past work on ad hoc teamwork has focused on the case

where the ad hoc agent cannot (or does not) directly com-
municate to its teammates and can only coordinate by ob-
serving its teammates’ actions. However, in an increas-
ingly interconnected world, it is likely that agents will at
least have some limited communication using a common lan-
guage. This abstract summarizes research that introduces a
minimal domain for investigating teammate communication,
proves that finding optimal behavior for ad hoc teamwork is
tractable in this domain, and shows that these problems are
tractable in an empirical setting.
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2. PROBLEM DESCRIPTION

This abstract summarizes a new multiagent, multi-armed
bandit problem that allows limited communication. The
multi-armed bandit setting is a fundamental problem in re-
inforcement learning, and it has been used to study ad hoc
teamwork without communication [4]. While general mul-
tiagent research focuses on creating a coordinated team to
perform tasks, in ad hoc teamwork, the goal is to create
agents that can cooperate with a variety of possible team-
mates. Specifically, we assume that there are several existing
teams and an ad hoc agent should fit into any of these teams.

We formally define our bandit problem as the tuple G =
(A,C,P, R) where A is a set of two arms {arm0, arm1} with
Bernoulli payoff distributions, c ∈ C is a set of possible
messages and their costs cost(c), P are the players with |P| =
n+1 with n of the agents being a pre-designed team, andR is
the number of rounds. Each round in the problem involves
two phases: (1) a communication phase followed by (2) an
action phase. In both phases, all agents act simultaneously.
In the communication phase, each agent can broadcast a
message of each type to its teammates:

• obs – Send the agent’s last selected arm and payoff
• meani – Send the agent’s observed mean and number

of pulls for armi

• suggest
i
– Suggest that the teammates pull armi

These message types are understood by all of the agents. In
the action phase, each agent chooses an arm and receives a
payoff. The team’s goal is to maximize the sum of payoffs
minus the communication costs. Note that the results in
this work can be generalized to any number of fixed arms,
other discrete distributions, and other messages.

We assume that the ad hoc agent’s n teammates form an
existing team, and therefore are tightly coordinated. Specif-
ically, the team’s behavior can be described as a function
of the team’s knowledge, pooled using the message types
provided above. The team also uses the pulls and successes
that the ad hoc agent has communicated.

3. MODELING THE PROBLEM

When the ad hoc agent knows its teammates’ behaviors,
it can model the bandit problem as a Markov Decision Pro-
cess (MDP). The MDP’s state is composed of the pulls and
observations of the ad hoc agent’s teammates as well as the
messages it has sent. Let K = (p0, s0, p1, s1) be the knowl-
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edge about the arms where pi and si are the number of
pulls and successes of armi. Then, the state is given by the
vector (Kt,Ka,Kc, r, phase, sugg), where Kt is the team’s
knowledge from their pulls, Ka is the ad hoc agent’s knowl-
edge from its pulls, Kc is the knowledge that the ad hoc
agent has communicated, r is the current round number,
phase is the phase of the round (either communication or
action), and sugg is the ad hoc agent’s most recent sugges-
tion. As the n agents on the team are coordinated, their
actions depend on Kt and Kc and not directly on Ka. Given
that there are R rounds and n teammates, we know that
pi and si in Kt are each bounded by nR and pi and si in
both Ka and Kc are each bounded by R. The round r is
bounded by R, there are 2 possible phases of a round, and
3 values for sugg . Therefore, the state space has at most
(nR)4 ·R ·R4 ·R4 · 2 · 3 = 6n4R13 states.
Actions are the ad hoc agent’s selected arms and its mes-

sages. The transition function is composed of the team-
mates’ decisions, the payoff distributions of the arms, and
the effects of the ad hoc agent’s messages. Rewards are a
sum of the arms’ payoffs and the communication costs.

4. THEORETICAL ANALYSIS

In this section, we investigate the complexity of planning
to optimally cooperate with teammates that are drawn from
a continuous set of stochastic behaviors. We consider a
small number of possible behaviors, specifically ε-greedy and
UCB(c). For these behaviors, ε is the probability of taking a
random action, and c is the scaling factor of the confidence
bound. Therefore, the ad hoc agent must maintain a belief
distribution over values of ε, values of c, and p the proba-
bility of the teammates being ε-greedy. The ad hoc agent
knows that ε, c are uniformly distributed over [0, 1], and it
starts with an initial estimate of p.
To analyze this problem, we model it as a POMDP based

on the MDP described in Section 3. In this setting, the be-
lief space has three partially observed values: ε, c, and p.
The belief distribution over these values can be represented
succinctly. The distribution of c can be represented using
a minimum and maximum value, updated using linear pro-
gramming, ε can be represented using a beta distribution,
and p can be represented using a single real. As shown in [1],
a POMDP can be solved approximately in polynomial time
given a covering set. Lemma 1 states that the covering set
can be calculate and is polynomial, so Theorem 1 follows.

Lemma 1. The belief space of the resulting POMDP has
a δ-covering with size poly(R,n, 1/δ).

Theorem 1. Consider an ad hoc agent that can observe
its teammates’ actions, knows the true arm distributions,
and knows that its teammates are drawn from a known, con-
tinuous set of ε-greedy and UCB teammates. This agent can
calculate an η-optimal behavior in poly(n,R, b, 1/η) time.

5. EMPIRICAL EVALUATION

This section investigates whether the problem is empiri-
cally tractable in addition to being theoretically tractable.
Calculating the exact optimal behavior becomes impracti-
cal as the number of rounds and arms grow, so we ap-
proximate the optimal behavior using Partially Observable
Monte-Carlo Planning (POMCP) [2].
The evaluations use 100 trials with teams where ε, c, and

the arms’ success probabilities are selected randomly uni-
formly between 0 and 1. This randomness is fixed across

the settings to allow for paired statistical tests. As the ad
hoc agent does not know its teammates’ behaviors, it ini-
tializes its beliefs by sampling both types of behaviors with
random parameter values. The results are normalized by the
average reward if every agent continuously pulled the best
arm. Statistical significance is tested with a paired Student-
T test with p < 0.05. Points where POMCP is significantly
better than all other methods are denoted with “+”.

We compare three behaviors of the ad hoc agent:
• NoComm - Always pulls the best arm and does not

communicate
• Obs - Always pulls the best arm and communicates

its last observation
• POMCP - Plans using POMCP

These tests use 3 arms, 10 rounds, and 7 teammates to test
how our approach scales to bigger problems than are theoret-
ically proven. Furthermore, the costs for sending messages
are randomly selected for each run, and all agents are in-
formed of the costs. Costs of communicating are randomly
selected from the range [0,m|c|], where |c| is size of the mes-
sage (3 for mean, 2 for obs, and 1 for sugg).
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Figure 1: Normalized rewards with varied message costs with a
logarithmic x-axis. Significance is denoted by “+”

Figure 1 presents the results when the ad hoc agent co-
operates with teams that are ε-greedy or UCB, with varied
message costs. The results indicate that the agent can effec-
tively plan its actions, significantly outperforming the base-
lines. The improvement of POMCP diminishes as the cost
of messages rises because affecting the teammates becomes
more costly. When the ad hoc agent knows the correct be-
havior type, the results are similar to knowing that either
ε-greedy or UCB teams are possible.

6. CONCLUSION

Past research on ad hoc teamwork has largely focused on
scenarios in which the ad hoc agent cannot directly com-
municate with its teammates. This work addresses this gap
by investigating an agent that reasons about communicating
in ad hoc teams. To this end, this abstract summarizes a
new minimal domain with communication, shows that the
problem can be optimally solved in polynomial time, and
analyzes an empirical approach to solving the problem.
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