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ABSTRACT
We propose Compatibility Weighted Voting Games, a variant
of Weighted Voting Games in which some pairs of agents are
compatible and some are not. In a Weighted Voting Game
each agent has a weight, and a set of agents can form a
winning coalition if the sum of their weights is at least a
given quota. Whereas the original Weighted Voting Game
model assumes that all agents are compatible, we consider
a model in which the agents’ compatibility is described by a
compatibility graph. We consider power indices, which mea-
sure the power of each agent to affect the outcome of the
game, and show that their computation is tractable under
certain restrictions (chiefly that the agents’ compatibilities
have spectral structure). Through simulations we investi-
gate the effect an agent’s compatibility restrictions has on
its power.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; F.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity

General Terms
Theory, Algorithms

Keywords
cooperative game theory; coalition formation; power indices

1. INTRODUCTION
Selfish agents interacting in a system may have conflict-

ing interests. In domains where the agents must cooperate
to achieve goals, we are interested in quantifying an agent’s
ability to bring about an outcome it desires, or to negotiate
effectively with other agents. Such notions of power play a
key role in cooperative game theory and its applications to
multiagent systems. The distribution of power among the
agents is typically measured by power indices. However, the
popular power indices have been criticized for their assump-
tion that all agents are willing to cooperate [9, 14, 15, 21].
This is unrealistic in many settings, e.g. businesses that
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are fierce competitors, or political parties with conflicting
ideologies that are not willing to form a ruling coalition.

Indeed the distribution of power may vary dramatically
depending on whether certain agents are willing to cooper-
ate. Consider an election in which three political parties,
Parties A, B and C, each win 100 seats in a parliament of
300 seats, and where a majority of 150 seats is required to
form a government. This is a Weighted Voting Game [11]
(WVG), a well-studied coalitional game in which agents have
a number of votes each and a coalition of agents voting to-
gether succeed if they possess enough votes to meet some
quota. Now suppose Party A and Party B have opposing
principles and will never form a coalition government, but
Party C can cooperate with both other parties. The popu-
lar measures of power, that have no notion of compatibility
between the agents, would say that all three parties have
equal power. However we would intuitively expect Party C
to have more power in negotiations to form a government.

Our contribution: We generalize prominent power in-
dices used in cooperative games to account for incompati-
bility between the agents. We augment WVGs with a com-
patibility graph whose edges represent compatible pairs of
agents, and consider a coalition to be feasible iff it is a clique
in the graph. We thus introduce Compatibility Weighted
Voting Games (CWVGs). Our analysis concentrates on
WVGs, but any cooperative game can be augmented in this
way. We give natural generalizations of the Banzhaf in-
dex [8] and the Shapley-Shubik index [26]. We show that
using a fixed-dimensional spectral model for compatibility
allows (1) exact computation of both power indices if the
agent weights are polynomially bounded, and (2) approxi-
mation of the Banzhaf index for general weights. Finally, we
present results of simulations that demonstrate typical re-
lationships between compatibility and power. In particular
we find that decreasing one’s compatibility sharply decreases
one’s power, i.e. that the cost of principles is great.

2. RELATED WORK
There are several existing approaches to incorporating the

concept of compatibility in cooperative games. The model
closest to ours is Myerson’s [21], which has a ‘cooperation
graph’ on the agents, and says a coalition is feasible iff it is
a connected subgraph. By contrast in our model a coalition
is feasible iff it is a clique. Our model is therefore more
expressive in settings where compatibility is not transitive,
as we may specify that agents A and B are compatible, B and
C are compatible, but A and C are not (this is not possible
in the Myerson model). Myerson’s model has been studied

37



for WVGs from an axiomatic [22] and computational [24]
angle. Our computational results apply to the restricted case
of spectral CWVGs, which has the advantage of naturality,
compared to the restrictions often applied to the Myerson
model for the purposes of computation (e.g. requiring that
the cooperation graph is a tree as in [17]).

Other approaches include those of Edelman [14] and Bil-
bao [9], which require that the set of feasible coalitions is
a convex geometry or partition system respectively. Faigle
and Kern [15] introduce a precedence relation on the agents
and require that feasible coalitions ‘obey’ the relation. The
Shapley-Owen value [23] places the agents in an ideological
space, then an ‘issue vector’, representing issues to be voted
on, induces a probability distribution on the voting order of
the agents. Our model has a comparatively simple defini-
tion and intuitive interpretation, and to our knowledge has
not been proposed before. Previous work on agent failures
is also somewhat reminiscent of our work [1, 3, 6], but those
models examine independent agent failures, whereas in our
model a coalition with ‘contradicting’ agents cannot arise.

We are principally concerned with computing power in-
dices for CWVGs. Computing power indices is challenging
even for WVGs, and has attracted much research [2, 4, 5, 7,
11, 19]. We build on the dynamic programming method
for WVGs described in [11, 19], extending it to spectral
CWVGs. We also extend the Monte Carlo method in [2]
to CWVGs.

3. WEIGHTED VOTING GAMES (WVGS)
A Weighted Voting Game (WVG) consists of a set of

agents N = {1, . . . , n}, a set of weights w1, . . . , wn and a
quota q. We assume that the weights and quota are all pos-
itive integers, and that the sum of all the weights is at least
the quota. A coalition is a subset of N . The weight function
w : 2N → Z+ gives the weight of each coalition, defined to
be the sum of the weights of its members: w(S) =

∑
i∈S wi.

The value function v : 2N → {0, 1} gives the value of each
coalition, which is either 0 (losing) or 1 (winning) as follows:

v(S) =

{
1 if w(S) ≥ q
0 o/w

(1)

3.1 Power Indices for WVGs
Here we recall the definitions of the Banzhaf power in-

dex [8, 13] and the Shapley-Shubik power index [25, 26] for
Weighted Voting Games.

Definition 1. For a WVG with value function v, the raw
Banzhaf power index of agent i is

ηi(v) =
∑

S⊂N :i∈S

v(S)− v(S \ {i}). (2)

An agent is called critical in a coalition if it can turn the
coalition from winning to losing by leaving it. The raw
Banzhaf power index ηi(v) is thus the number of coalitions
in which agent i is critical. There are the related concepts
of the normalized and the probabilistic Banzhaf index:

Definition 2. For a WVG with value function v, the nor-
malized Banzhaf power index of agent i is

βi(v) = ηi(v)/
∑
j∈N

ηj(v). (3)

Definition 3. For a WVG with value function v, the prob-
abilistic Banzhaf power index of agent i is

β′i(v) = ηi(v)/2n−1. (4)

The normalized Banzhaf index βi(v) is agent i’s share of
the power. The probabilistic Banzhaf index β′i(v) is agent
i’s probability of being critical, if all coalitions are equally
probable.

We now define the Shapley-Shubik power index, which
was introduced in [26] as a special case of the Shapley value
[25] when restricted to WVGs. Let Π be the set of all per-
mutations of N . Given a permutation π ∈ Π and an agent i,
let Sπ(i) be the coalition consisting of all agents who appear
in π before i (including i).

Definition 4. For a WVG with value function v, the Shapley-
Shubik power index of agent i is

φi(v) =
1

n!

∑
π∈Π

v(Sπ(i))− v(Sπ(i) \ {i}). (5)

A permutation of the agents represents the agents joining the
coalition one by one. Given that the sum of all the weights
is at least the quota, every permutation has a unique criti-
cal agent who turns the coalition from losing to winning by
joining. Therefore the Shapley-Shubik power index φi(v) is
the probability that agent i is the critical agent, if the agents
join the coalition in a random order. Note

∑
j∈N φj(v) = 1,

so φi(v) also represents i’s share of the power.

4. COMPATIBILITY WVGS (CWVGS)
We are interested in introducing a notion of compatibility,

describing which agents are able to work together. Therefore
we define a Compatibility Weighted Voting Game (CWVG)
which consists of a set of agents N = {1, . . . , n}, a set of
weights w1, . . . , wn, a quota q, and a compatibility graph G.
N forms the set of vertices of G, and an edge between two
agents indicates that they are compatible. We call a coali-
tion feasible if all pairs of members are compatible, or equiv-
alently, if the coalition forms a clique in G. Let F be the set
of feasible coalitions of G. The weight function w : 2N → Z+

is defined as in Section 3. For CWVGs, we define the value
function v only on feasible coalitions, as we regard infeasible
coalitions as ‘impossible’ and thus they do not have a value.1

The value function is otherwise unchanged: v : F → {0, 1}
satisfies equation (1) for all feasible S ⊆ N .

4.1 Power Indices for CWVGs
We now redefine the power indices from Section 3.1 for

CWVGs, replacing the assumption that all coalitions are
equally likely with the assumption that all feasible coalitions
are equally likely (in the case of the Banzhaf index).

Definition 5. For a CWVG with compatibility graph G
and value function v, agent i’s raw Banzhaf power index is

ηi(G, v) =
∑

S∈F :i∈S

v(S)− v(S \ {i}). (6)

1Alternatively we could give infeasible coalitions value 0,
and use the resulting value function v′ : 2N → {0, 1} to
calculate the power indices given in Section 3.1. However
some agents would have negative indices, and an agent with
index 0 would not necessarily be a null agent (one who is
never able to change the outcome).
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Definition 5 differs from Definition 1 in that we sum over
all feasible coalitions containing i instead of all coalitions
containing i. So ηi(G, v) is simply the number of feasible
coalitions in which agent i is critical.

Definition 6. For a CWVG with compatibility graph G
and value function v, agent i’s normalized Banzhaf power
index is2

βi(G, v) = ηi(G, v)/
∑
j∈N

ηj(G, v). (7)

As in Definition 2, βi(G, v) is agent i’s share of the power.

Definition 7. For a CWVG with compatibility graph G
and value function v, agent i’s probabilistic Banzhaf power
index is3

β′i(G, v) = 2ηi(G, v)/|F |. (8)

The probabilistic Banzhaf power index β′i(G, v) is the prob-
ability that, when a random feasible coalition is selected,
agent i can change the outcome by changing its vote. (That
is: a feasible coalition S ∈ F is chosen at random, then i is
critical if either i ∈ S and i can turn S from winning to los-
ing by leaving, or i 6∈ S and i can feasibly join S, turning it
from losing to winning). To see why Definition 7 is a natural
generalization of Definition 3, note that Definition 3 can be
written 2ηi(v)/2n and interpreted as the probability that,
when a random coalition S ∈ 2N is selected, i can change
the outcome by changing its vote.

We now define the Shapley-Shubik index for CWVGs.
First note that while in a WVG every permutation of the
agents has a unique critical agent, the same is not true in
a CWVG, as it is possible that while adding agents to the
coalition in the order given by the permutation, the coali-
tion becomes infeasible before it achieves the quota. This
motivates the following definition.

Definition 8. For a permutation π = (π1, . . . , πn) of N ,
let feas(π) = {π1, . . . , πk} where k is maximal such that
{π1, . . . , πk} is feasible. Call π effective if feas(π) is winning.

Denote the set of effective permutations by E. In a CWVG,
every effective permutation has a unique critical agent.

Definition 9. For a CWVG with compatibility graph G
and value function v, the Shapley-Shubik power index of
agent i is4

φi(G, v) =
1

|E|
∑

π∈E:i∈feas(π)

v(Sπ(i))− v(Sπ(i) \ {i}). (9)

The Shapley-Shubik power index φi(G, v) is the probability
that agent i is the unique critical agent, if all effective per-
mutations are equally likely. The original Shapley-Shubik
power index is known [16] to satisfy the four axioms of effi-
ciency (the sum of the indices is 1), anonymity (two agents
who make the same marginal contribution to each coalition
have the same power), null player property (null players, who
are never critical, have power 0) and transfer (an additivity-
like property for simple games). If we generalize these four

2If all raw indices are 0, then all βi(G, v) = 0.
3Note |F | > 0 always, as ∅ ∈ F
4If |E| = 0 i.e. there are no feasible winning coalitions, then
all agents have index 0

axioms to CWVGs in the natural way, we find that Defini-
tion 9 satisfies all except transfer (essentially because nor-
malizing over |E| prevents the additivity from working). If
we divide by n! instead of |E| in equation (9), we gain trans-
fer but lose efficiency. We prioritize efficiency.

Note that if the compatibility graph G is a complete graph
(i.e. all agent pairs are compatible) then all the power index
definitions in this section simplify to those of Section 3.1.

An Example: For the example given in Section 1, the
raw Banzhaf indices are ηA(G, v) = ηB(G, v) = 1 and ηC(G, v) =
2 because Parties A and B are critical in only one coalition
each ({A,C} and {B,C} respectively) and C is critical in
both those coalitions. Therefore the normalized Banzhaf in-
dices are βA(G, v) = βB(G, v) = 0.25 and βC(G, v) = 0.5.
The set E of effective permutations contains the permuta-
tions CAB,CBA,ACB,BCA. A is the critical agent in
CAB, B the critical agent in CBA, and C the critical agent
in ACB and BCA. Therefore the Shapley-Shubik indices
are also φA(G, v) = φB(G, v) = 0.25 and φC(G, v) = 0.5.

5. CALCULATING POWER INDICES
It has been shown [20] that computing ηi(v) or φi(v) for

a WVG cannot be done in polynomial time unless P=NP,
via a reduction of the Partition Problem. Therefore the
same holds for computing ηi(G, v) or φi(G, v) for a CWVG
(as a CWVG simplifies to a WVG when the compatibility
graph is complete). However, there exist algorithms based
on Dynamic Programming techniques [19] to compute ηi(v)
or φi(v) for a WVG in O(n2wmax) or O(n3wmax) time re-
spectively, where wmax = maxi∈N wi. We reproduce the
algorithm, using the notation of [11].

5.1 Dynamic Programming method for WVGs
Take a WVG with n agents and quota q. For any 1 ≤ j ≤

n, 0 ≤ W ≤ q − 1, 0 ≤ s ≤ n, define X(j,W, s) to be the
number of size-s subsets of {1, . . . , j} of weight exactly W .
This quantity obeys the following recurrence relation on j.
For all 2 ≤ j ≤ n, 0 ≤W ≤ q − 1, 1 ≤ s ≤ n,

X(j,W, s) =


X(j − 1,W, s)

+X(j − 1,W − wj , s− 1) if wj ≤ W

X(j − 1,W, s) if wj > W

(10)

with initial values:

X(1,W, s) =

{
1 if (W, s) = (w1, 1) or (0, 0)

0 o/w
(11)

for all 0 ≤ W ≤ q − 1, 0 ≤ s ≤ n, and X(j,W, 0) = 1W=0

for all 1 ≤ j ≤ n, 0 ≤W ≤ q − 1.

Theorem 1 (Matsui Matsui [19]). For any WVG with
n agents and maximum weight wmax, we can compute X(j,W, s)
∀ 1 ≤ j ≤ n, 0 ≤W ≤ q− 1, 0 ≤ s ≤ n in O(n3wmax) time.

Proof. By using the recurrence relation and initial val-
ues above, we computeO(n2q) ≤ O(n2∑

i∈N wi) ≤ O(n3wmax)
values of X, each in constant time.

Corollary 1. For any WVG with n agents and maxi-
mum weight wmax, and any 1 ≤ i ≤ n, the Shapley-Shubik
power index φi(v) can be computed in O(n3wmax) time.

Proof. Define a new WVG by removing agent i. The
new game has n′ = n−1 agents. For the new WVG, compute
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X(j,W, s) for all 1 ≤ j ≤ n′, 0 ≤ W ≤ q − 1, 0 ≤ s ≤ n′ as
in Theorem 1. This takes O(n3wmax) time. Now note that
φi(v) = 1

n!

∑n−1
s=0 s!(n− s−1)!Ns where Ns is the number of

size-s coalitions S ⊆ N \{i} of weight q−wi ≤ w(S) ≤ q−1.
For all 0 ≤ s ≤ n−1, Ns =

∑q−1
W=max(0,q−wi)

X(n′,W, s).

Corollary 2. For any WVG with n agents and maxi-
mum weight wmax, and any 1 ≤ i ≤ n, the raw Banzhaf
power index ηi(v) can be computed in O(n2wmax) time.

Proof. Define a new WVG by removing agent i. The
new game has n′ = n − 1 agents. For the new WVG,
calculate the value X(j,W ) = the number of subsets of
{1, . . . , j} of weight exactly W , for all 1 ≤ j ≤ n′ and
0 ≤ W ≤ q − 1. This can be done in O(n2wmax) time
exactly as in Theorem 1 by omitting the variable s. Then
ηi(v) =

∑q−1
W=max(0,q−wi)

X(n′,W ).

5.2 Hardness for general CWVGs
We have seen that for WVGs, the power indices depend

only on the number of coalitions of each weight (and size, for
the Shapley-Shubik index). For CWVGs, the power indices
can be shown to depend only on the number of feasible coali-
tions of each weight (and size). We may hope to calculate
these quantities as in Section 5.1, and obtain a method that
is polynomial in n when the weights are bounded by a poly-
nomial in n. However we show that even if the weights are
bounded by a constant, power indices cannot be computed
in polynomial time unless P=NP.

Definition 10. Let M ≥ 1. RawBz(M) is the decision
problem given by:
Input: A CWVG (G; q;w1, . . . , wn) with wmax ≤M .
Output: Determine whether ηn(G, v) > 0.

Similarly define NormBz(M), ProbBz(M) and SS(M) as
in Definition 10, replacing ηn(G, v) with βn(G, v), β′n(G, v),
and φn(G, v) respectively. We show NP-completeness of
RawBz(M) for all M via a reduction from the Clique De-
cision Problem (Clique), a well-known NP-complete prob-
lem.

Definition 11. Clique is the decision problem given by:
Input: An undirected graph G = (V,E) and a number k.
Output: Determine whether G contains a clique of size k.

Theorem 2. For all M ≥ 1, RawBz(M) is NP-complete.

Proof. RawBz(M) is in NP, as the witness to a ‘yes’ an-
swer is a feasible coalition in which n is critical. To show NP-
completeness, we show a polynomial-time reduction from
Clique. Given any instance (G, k) of Clique, construct
the following CWVG. Let the set of agents be the vertices
{1, . . . , n} of G plus an extra agent n+1. Let all agents have
weight 1, and the quota be k + 1. Define the compatibility
graph G′ like so: let a pair of agents which are vertices of G
be compatible iff they have an edge in G, and let agent n+1
be compatible with all other agents. Then ηn+1(G′, v) > 0
iff ∃ a clique of size k in G.

Note that as ηn(G, v) > 0 ⇔ βn(G, v) > 0 ⇔ β′n(G, v) >
0 ⇔ φn(G, v) > 0, NormBz(M), ProbBz(M) and SS(M)
are all NP-complete ∀M ≥ 1. This motivates our restric-
tion to CWVGs whose compatibility graphs have spectral
structure.

5.3 Spectral CWVGs
We define the following model of spectral compatibility,

which induces a compatibility graph. Each agent i has a
position pi ∈ [n]m = {1, . . . , n}m in an m dimensional spec-
trum. In a political setting, this could represent m political
issues, and for each issue the parties are ordered from most
enthusiastic to least enthusiastic, or leftwing to rightwing.
Each agent i has a tolerance hyperrectangle [a1

i , b
1
i ] × · · · ×

[ami , b
m
i ] containing the agents it is willing to cooperate with.

(Every agent is contained within its own tolerance hyperrect-
angle). Then two agents are compatible iff each is contained
in the other’s tolerance hyperrectangle. That is, on each is-
sue each agent has an interval of attitudes it will accept, and
two agents are compatible iff they both accept each other on
every issue.5 We say that a CWVG is spectral if its compat-
ibility graph is induced by a spectral model, and m-spectral
if its compatibility graph is induced by an m-dimensional
spectral model. Note that all CWVGs are trivially spectral
for large enough dimension (e.g. allow one dimension for
each incompatible pair of agents).

We extend the algorithm in Section 5.1 to calculate the
power indices for spectral CWVGs. First we present the
algorithm for 1-spectral CWVGs for ease of understanding,
and then we present the generalization to m dimensions.

5.4 Method for 1-spectral CWVGs
In the 1-dimensional case, we streamline the algorithm by

numbering the agents according to their left to right position
on the spectrum. That is, agent i has position i ∈ {1, . . . , n}.
Each agent i has a tolerance interval [ai, bi].

Definition 12. Take a 1-spectral CWVG with n agents.
For all 1 ≤ j, s, l, t ≤ n and 1 ≤W ≤ w(N) let X(j,W, s, l, t)
be the number of size-s feasible coalitions S ⊆ {1, . . . , j} of
weight W , such that l = mini∈S i and t = mini∈S bi.

Remark 1. l is the most leftwing member of S and t is the
most rightwing agent tolerated by all members of S. As we
only define X(j,W, s, l, t) for s ≥ 1 and W ≥ 1, (i.e. not the
empty set) l and t are well-defined. Note also that unless
l ≤ t, X(j,W, s, l, t) = 0.

Theorem 3. For all 2 ≤ j, s ≤ n, 1 ≤ l, t ≤ n and
1 ≤ W ≤ w(N), X(j,W, s, l, t) = X(j − 1,W, s, l, t) + A
where

A =

{
X(j − 1,W − wj , s− 1, l, t) if bj > t∑n
t′=tX(j − 1,W − wj , s− 1, l, t′) if bj = t

(12)

if wj ≤W,aj ≤ l, j ≤ t, and bj ≥ t, and A = 0 otherwise.

Proof. Note we shall often write ‘S ∈ X(j,W, s, l, t)’ to
mean ‘S is counted by X(j,W, s, l, t)’. First observe that the
coalitions counted by X(j,W, s, l, t) are divided into those
that do not contain j and those that do. There are X(j −
1,W, s, l, t) of the former, and let A denote the number of
the latter. We determine A.

If wj > W or aj > l or j > t or bj < t then any coalition
S ∈ X(j,W, s, l, t) cannot contain j, so A = 0. If wj ≤ W
and aj ≤ l and j ≤ t and bj ≥ t, there are two cases:

5This is similar but not the same as an interval graph [10],
where the vertices are intervals and there are edges between
intervals that intersect.
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If bj > t, there is a bijection between {S ∈ X(j,W, s, l, t) :
j ∈ S} and X(j − 1,W − wj , s− 1, l, t):

If S ∈ X(j,W, s, l, t) and j ∈ S, let S′ = S \ {j}. S′ ⊆
{1, . . . , j − 1} is feasible, w(S′) = W − wj , |S′| = s − 1,
mini∈S′(i) = l (as s ≥ 2) and mini∈S′(bi) = t (as bj > t), so
S′ ∈ X(j − 1,W − wj , s− 1, l, t).

Conversely if S′ ∈ X(j−1,W −wj , s−1, l, t) let S = S′∪
{j}. S is feasible, as aj ≤ l and j ≤ t. S ⊆ {1, . . . , j}, w(S) =
W, |S| = s, mini∈S(i) = l (as s ≥ 2) and mini∈S(bi) = t (as
bj > t), so S ∈ X(j,W, s, l, t) and j ∈ S.

If bj = t, there is a bijection between {S ∈ X(j,W, s, l, t) :
j ∈ S} and

⋃n
t′=tX(j − 1,W − wj , s− 1, l, t′):

If S ∈ X(j,W, s, l, t) and j ∈ S, let S′ = S \ {j}. S′ ⊆
{1, . . . , j − 1} is feasible, w(S′) = W − wj , |S′| = s − 1,
mini∈S′(i) = l (as s ≥ 2) and mini∈S′(bi) ≥ t (as bj = t), so
S′ ∈

⋃n
t′=tX(j − 1,W − wj , s− 1, l, t′).

Conversely if S′ ∈ X(j − 1,W − wj , s − 1, l, t′) for some
t′ ≥ t let S = S′∪{j}. S is feasible, as aj ≤ l and j ≤ t ≤ t′.
S ⊆ {1, . . . , j}, w(S) = W, |S| = s, mini∈S(i) = l (as s ≥ 2)
and mini∈S(bi) = t (as bj = t ≤ t′), so S ∈ X(j,W, s, l, t)
and j ∈ S.

Theorem 4. For any 1-spectral CWVG with n agents
and maximum weight wmax, we can calculate X(j,W, s, l, t)
∀ 1 ≤ j, s, l, t ≤ n and 1 ≤W ≤ w(N) in O(n5wmax) time.

Proof. We have the initial values

X(j,W, 1, l, t) =

{
1 if ∃i ≤ j : W = wi, l = i, t = bi

0 o/w
(13)

for all 1 ≤ j, l, t ≤ n, 1 ≤W ≤ w(N) and

X(1,W, s, l, t) =

{
1 if W = w1, s = 1, l = 1, t = b1

0 o/w
(14)

for all 1 ≤ W ≤ w(N), 1 ≤ s, l, t ≤ n. Using the initial
values above and the recurrence relation in Theorem 3, we
compute O(n4w(N)) ≤ O(n5wmax) values of X(j,W, s, l, t).
Each value is computed in constant time unless wj ≤ W ,
aj ≤ l, j ≤ t and bj = t, in which case X(j,W, s, l, t) is com-
puted inO(n) time. In the worst case, for each 1 ≤ j ≤ n, for
each wj ≤ W ≤ nwmax, 1 ≤ s ≤ n and aj ≤ l ≤ n we must
calculate X(j,W, s, l, bj) in O(n) time. Therefore we per-
form O(n4wmax) many O(n) computations, and O(n5wmax)
many O(1) computations.

Corollary 3. For any 1-spectral CWVG with n agents
and maximum weight wmax, and any 1 ≤ i ≤ n, we can cal-
culate the Shapley-Shubik index φi(G, v) in O(n6wmax) time.

Proof. Let compat(i) be the set of agents with whom i is
compatible (not including i). Form a new CWVG consisting
only of the agents in compat(i). The new game has n′ ≤ n−1
agents. For the new game, compute X(j,W, s, l, t) for all
1 ≤ j, s, l, t ≤ n′ and 1 ≤ W ≤ w(compat(i)) as described
in Theorem 4. Now (recalling that E is the set of effective

permutations) note that |E|φi(G, v) =
∑n′

s=0 s!(n−s−1)!Ns
where Ns is the number of size-s feasible coalitions S ⊆
compat(i) of weight q−wi ≤ w(S) ≤ q−1. For all 1 ≤ s ≤ n′

Ns =
∑

max(q−wi,1)≤W≤q−1

1≤l,t≤n′

X(n′,W, s, l, t) (15)

and N0 = 1wi≥q. Thus we can compute a single φi(G, v).|E|
in O(n5wmax) time. Then as

∑
j∈N φj(G, v) = 1, φi(G, v) =

φi(G, v).|E|/
∑
j∈N φj(G, v).|E| so we may compute a single

φi(G, v) by computing φj(G, v).|E| for all 1 ≤ j ≤ n, in
O(n6wmax) time.

Corollary 4. For any 1-spectral CWVG with n agents
and maximum weight wmax, and any 1 ≤ i ≤ n, we can cal-
culate the raw, normalized and probabilistic Banzhaf indices
of agent i in O(n4wmax), O(n5wmax) and O(n4wmax) time
respectively.

Proof. To compute ηi(G, v), form a new CWVG consist-
ing only of the agents in compat(i). This game has n′ ≤ n−1
agents. For the new game, we calculate X(j,W, l, t) (the
number of feasible subsets of {1, . . . , j} of weight W , with
leftmost member l and rightmost agent tolerated t) for all
1 ≤ j, l, t ≤ n′ and 1 ≤ W ≤ w(compat(i)). This is done in
O(n4wmax) time as in Theorem 4, by omitting the variable
s. Then6

ηi(G, v) =
∑

max(q−wi,1)≤W≤q−1

1≤l,t≤n′

X(n′,W, l, t) + 1wi≥q. (16)

To compute a single normalized Banzhaf index, we com-
pute all n raw Banzhaf indices. To compute β′i(G, v) =
ηi(G, v)/|F |, first we compute ηi(G, v) in O(n4wmax) time
as above. To compute |F |, for the original game compute
X(j,W, l, t) for all 1 ≤ j, l, t ≤ n and 1 ≤ W ≤ w(N) as in
Theorem 4 by omitting the variable s. This takesO(n4wmax)
time. Then7 |F | =

∑
1≤W≤w(N)

1≤l,t≤n
X(n,W, l, t) + 1.

5.5 Method for m-spectral CWVGs
We present the generalized method form-spectral CWVGs.

Definition 13. Take an m-spectral CWVG with n agents.
For any 1 ≤ j, s ≤ n, 1 ≤ W ≤ w(N), and u, l, r, t ∈
[n]m let X(j,W, s,u, l, r, t) be the number of size-s feasible
coalitions S ⊆ {1, . . . , j} of weight W , such that ∀1 ≤ k ≤
m, uk = maxi∈S a

k
i , lk = mini∈S p

k
i , rk = maxi∈S p

k
i , and

tk = mini∈S b
k
i .

Remark 2. lk (or rk) is the k-dimension position of the
most k-leftwing (resp. k-rightwing) member of S. uk (or tk)
is the k-dimension position of the most k-leftwing (resp.k-
rightwing) agent tolerated by all members of S. Note that
unless u ≤ l ≤ r ≤ t, X(j,W, s,u, l, r, t) = 0.

Definition 13 satisfies the following recurrence relation.

Theorem 5. For all 2 ≤ j, s ≤ n, 1 ≤ W ≤ w(N) and
u, l, r, t ∈ [n]m s.t. u ≤ l ≤ r ≤ t, X(j,W, s,u, l, r, t)
satisfies the following recurrence relation over j:
If wj ≤W and l ≤ pj ≤ r and aj ≤ u and t ≤ bj then let

U ={u′ ∈ [n]m : ∀k,u′k ≤ uk with equality if uk > akj }

L ={l′ ∈ [n]m : ∀k, l′k ≥ lk with equality if lk < pkj }

R ={r′ ∈ [n]m : ∀k, r′k ≤ rk with equality if rk > pkj }

T ={t′ ∈ [n]m : ∀k, t′k ≥ tk with equality if tk < bkj },
(17)

6As X(n,W, l, t) is only defined for W ≥ 1, it does not count
the empty coalition. 1wi≥q counts whether agent i is critical
when added to the empty coalition.
7The +1 counts the empty coalition, which is feasible.
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then

X(j,W, s,u, l, r, t) = X(j − 1,W, s,u, l, r, t)

+
∑

u′∈U,l′∈L,
r′∈R,t′∈T

X(j − 1,W − wj , s− 1,u′, l′, r′, t′). (18)

Otherwise X(j,W, s,u, l, r, t) = X(j − 1,W, s,u, l, r, t).

Remark 3. This recurrence relation is essentially similar
to that in Theorem 3. The condition ‘l ≤ pj ≤ r and aj ≤ u
and t ≤ bj’ is necessary for the existence of coalitions in
X(j,W, s,u, l, r, t) that contain j. Just as in Theorem 3 it
is important whether t > bj or t = bj to determine what
values of t′ we need to sum over, here we list the values of
u′, l′, r′, t′ to sum over in U,L,R, T . For example if all of
the inequalities ‘l ≤ pj ≤ r and aj ≤ u and t ≤ bj’ are
strict, then U = {u}, L = {l}, R = {r}, T = {t} and
(18) becomes X(j,W, s,u, l, r, t) = X(j− 1,W, s,u, l, r, t) +
X(j − 1,W − wj , s − 1,u, l, r, t). Complication only arises
when one or more of the inequalities is an equality.

Proof. In this proof we will write ‘S ∈ X(j,W, s,u, l, r, t)’
to mean ‘S is counted by X(j,W, s,u, l, r, t)’. First note
that X(j,W, s,u, l, r, t) is divided into coalitions that do
not contain j (there are X(j − 1,W, s,u, l, r, t) of these)
and those that do. If wj > W or l 6≤ pj or pj 6≤ r or
aj 6≤ u or t 6≤ bj, then ∀S ∈ X(j,W, s,u, l, r, t), j 6∈ S. So
X(j,W, s,u, l, r, t) = X(j−1,W, s,u, l, r, t). If wj ≤W and
l ≤ pj ≤ r and aj ≤ u and t ≤ bj then define the function

f : {S ∈ X(j,W, s,u, l, r, t) : j ∈ S} →⋃
u′∈U,l′∈L,
r′∈R,t′∈T

X(j − 1,W − wj , s− 1,u′, l′, r′, t′) (19)

by f(S) = S \ {j}. We show this is a bijection. First,
it is well-defined: ∀S ∈ X(j,W, s,u, l, r, t) s.t. j ∈ S,
S \ {j} ⊆ {1, . . . , j − 1} is feasible with weight W − wj
and size s − 1. We have aj ≤ u so ∀k either aj

k < uk ⇒
maxi∈S\{j} ai

k = uk, or aj
k = uk ⇒ maxi∈S\{j} ai

k ≤ uk.
Therefore maxi∈S\{j} ai ∈ U . Similarly mini∈S\{j} bi ∈ T ,
mini∈S\{j} pi ∈ L and maxi∈S\{j} pi ∈ R. Therefore f(S)
is in the codomain of f given in equation (19).

Secondly, f is clearly injective. Finally, we show f is sur-
jective: for any S′ ∈ X(j − 1,W − wj , s− 1,u′, l′, r′, t′) for
some u′ ∈ U, l′ ∈ L, r′ ∈ R, t′ ∈ T , let S = S′ ∪ {j}. Every
member of S′ tolerates j (u′ ≤ u ≤ l ≤ pj ≤ r ≤ t ≤ t′) and
j tolerates every member of S′ (aj ≤ u ≤ l ≤ l′ ≤ r′ ≤ r ≤
t ≤ bj) so S is feasible. S ⊆ {1, . . . , j} is of weight W and

size s. Now, maxi∈S ai
k = max(u′

k
,aj

k). As u′ ∈ U , u′ ≤ u

and ∀k either u′
k
< uk ⇒ uk = aj

k so max(u′
k
,aj

k) = uk,

or u′
k

= uk so as aj
k ≤ uk, max(u′

k
,aj

k) = uk. So
maxi∈S ai = u. Similarly mini∈S bi = t, mini∈S pi = l,
and maxi∈S pi = r. So S = S′ ∪ {j} ∈ X(j,W, s,u, l, r, t)
and f(S) = S′. This completes the proof that f is bijective.

To obtain equation (18), it remains to observe that the
size of the codomain of f given in equation (19) is equal to
the sum in equation (18).

Theorem 6. For any m-spectral CWVG with n agents,
maximum weight wmax, we can calculate X(j,W, s,u, l, r, t)
for all 1 ≤ j, s ≤ n, 1 ≤ W ≤ w(N) and u, l, r, t ∈ [n]m in
O(24mn4m+3wmax) time.

Proof. We have initial values

X(1,W, s,u, l, r, t) = 1(W,s,u,l,r,t)=(w1,1,a1,p1,p1,b1) (20)

for all 1 ≤W ≤ w(N), 1 ≤ s ≤ n and u, l, r, t ∈ [n]m, and

X(j,W, 1,u, l, r, t) = 1∃i≤j:(W,u,l,r,t)=(wi,ai,pi,pi,bi) (21)

for all 1 ≤ j ≤ n, 1 ≤ W ≤ w(N), and u, l, r, t ∈ [n]m.
We use these and the recurrence relation in Theorem 5 to
compute the required values of X(j,W, s,u, l, r, t).

For any particular values of (j,W, s,u, l, r, t), if wj > W or
l 6≤ pj or pj 6≤ r or aj 6≤ u or t 6≤ bj then X(j,W, s,u, l, r, t)
is calculated in O(1) time. Otherwise, X(j,W, s,u, l, r, t) is
calculated in O(nα) time, where 0 ≤ α ≤ 4m is the number
of equalities in ‘l ≤ pj ≤ r and aj ≤ u and t ≤ bj’. Now,
∀0 ≤ α ≤ 4m, the number of values of (j,W, s,u, l, r, t)
such that there are α equalities is O(

(
4m
α

)
n4m+3−αwmax).

So ∀0 ≤ α ≤ 4m we compute O(
(

4m
α

)
n4m+3−αwmax) val-

ues of X in O(nα) time each. So the total complexity is
O
(∑4m

α=0

(
4m
α

)
n4m+3wmax

)
= O(24mn4m+3wmax).

Corollary 5. For any m-spectral CWVG with n agents,
for any 1 ≤ i ≤ n we can calculate the raw Banzhaf, normal-
ized Banzhaf, probabilistic Banzhaf, and Shapley-Shubik in-
dices of agent i in O(24mn4m+2wmax), O(24mn4m+3wmax) ,
O(24mn4m+2wmax) and O(24mn4m+4wmax) time respectively.

Proof. The proof is the same as for Corollaries 3 and
4, by using Theorem 6 and omitting the variable s when
calculating the Banzhaf indices.

The complexities in Corollary 5 do not equal those in Corol-
laries 3 and 4 when m = 1, as in the 1-dimensional case we
streamline the algorithm by ordering the agents from left to
right, which can only be done for at most one dimension in
the m-dimensional case (and results in a messy algorithm).
Corollary 5 shows that for m-spectral CWVGs, we can cal-
culate each of the power indices in O(p(n)wmax) time where
p(n) is a polynomial that depends on m. We anticipate
that most applications would only require a few dimensions,
(for example a political model would probably need no more
than five) and so consider Corollary 5 to be very useful.

6. APPROXIMATING POWER INDICES
The results in the previous section are useful only for suf-

ficiently small weights, so we also examine approximating
power indices. For WVGs they have been approximated by
Monte Carlo methods [2, 19]. To approximate the prob-
abilistic Banzhaf index β′i(v), samples are taken from the
space of coalitions S ⊆ N \ {i} and we test whether i is
critical. Similarly, to approximate the Shapley-Shubik in-
dex φi(v) samples are taken from the space of permutations
Π and we test whether i is critical. [2] determines how many
samples are needed to construct a confidence interval of de-
sired accuracy and confidence level. Unfortunately it seems
that in order to approximate the probabilistic Banzhaf index
β′i(G, v) = 2ηi(G, v)/|F | for CWVGs, we must sample uni-
formly from the space F of feasible coalitions. This is hard:
for arbitrary compatibility graphs, uniformly generating fea-
sible coalitions (cliques) cannot be done in polynomial time
unless RP=NP (Theorem 1.17 of [27]). However we show
that for spectral CWVGs, feasible coalitions can be gener-
ated efficiently. We do this by transforming our counting
algorithm from the previous section into a uniform genera-
tion algorithm, using a technique from [18] (Theorem 3.3).
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Theorem 7. For any m-spectral CWVG with n agents,
there exists an algorithm to uniformly generate feasible coali-
tions of the game, which has complexity O(24mn4m+1) for
the pre-procedure, and then O(n4m+1) per sample.

Proof. We wish to count feasible coalitions of any weight
and size, so we may simply consider X(j,u, l, r, t) = the
number of non-empty feasible subsets of {1, . . . , j} such that
∀1 ≤ k ≤ m, uk = maxi∈S a

k
i , lk = mini∈S p

k
i , rk =

maxi∈S p
k
i , and tk = mini∈S b

k
i . By Theorem 6, we can

calculate X(j,u, l, r, t) for all 1 ≤ j ≤ n, u, l, r, t ∈ [n]m in
O(24mn4m+1) time by omitting the variables W and s.

Having pre-computed these values, we can construct an
algorithm Count, that takes as input a function f : {x +
1, . . . , n} → {0, 1}, for some 1 ≤ x ≤ n − 1, such that
f−1(1) is a feasible coalition, and returns the number of fea-
sible coalitions S ⊆ N such that S is an extension of f (that
is, ∀i ∈ {x + 1, . . . , n}, i ∈ S ⇔ f(i) = 1). This is equal to
the number of feasible coalitions S ⊆ {1, . . . , x} such that
S ∪ f−1(1) is feasible. So, letting u = mini∈f−1(1) pi, l =
maxi∈f−1(1) ai, r = mini∈f−1(1) bi, and t = maxi∈f−1(1) pi

(the minima and maxima are taken coordinatewise), we have8

Count(f) =
∑

u′≤u,l′≥l,
r′≤r,t′≥t

X(x,u′, l′, r′, t′) + 1. (22)

Having pre-computed the X(j,u, l, r, t) values, computing
Count has complexity O(n4m). Next, we use Count to
construct a recursive algorithm UGen that takes as input
a function f : {x + 1, . . . , n} → {0, 1}, for some 0 ≤ x ≤ n,
(with x = n meaning f = ∅) such that f−1(1) is a feasible
coalition, and uniformly generates a feasible coalition S ⊆ N
such that S is an extension of f . Having pre-computed the

Algorithm UGen(f)

if domain(f) = N then
return f−1(1)

else
f0 ← (x, 0) ∪ f ; f1 ← (x, 1) ∪ f
if f−1

1 (1) is feasible then
N0 ← Count(f0); N1 ← Count(f1)

return

{
UGen(f0), with probability N0/(N0 +N1)

UGen(f1), with probability N1/(N0 +N1)

else
return UGen(f0)

end if
end if

X(j,u, l, r, t), calling UGen(∅) (which uniformly generates
a member of F ) has time complexity O(n4m+1).

We may now give a result for constructing a confidence in-
terval for the probabilistic Banzhaf power index that corre-
sponds to a similar result for WVGs (Theorem 3, [2]).

Theorem 8. For any m-spectral CWVG with n agents,
any 1 ≤ i ≤ n, required accuracy ε > 0 and confidence level
1−δ, we can construct a confidence interval with width 2ε of

the form [β̂′i−ε, β̂′i+ε] which contains the correct probabilistic
Banzhaf index β′i(G, v) with probability at least 1 − δ. The

8‘+1’ counts the empty coalition

required number of samples is k = ln 2
δ
/2ε2. After a pre-

procedure with complexity O(24mn4m+1), each sample can
be generated in O(n4m+1) time.

Proof. For each sample S ∈ F , we check whether agent
i is critical. Let X1, . . . , Xk be the k Bernoulli trials corre-
sponding to the k samples, so Xj = 1 iff i is critical in the jth

trial, and 0 otherwise. Let β̂′i = (
∑k
j=1 Xj)/k. To show that

we achieve the required accuracy and confidence, we follow
the argument given in [2], which uses Hoeffding’s inequality.

We find that if k ≥ ln 2
δ
/2ε2 then P(|β̂′i − β

′
i(G, v)| ≥ ε) ≤ δ.

The complexity results follow from Theorem 7.

Theorem 8 shows that for m-spectral CWVGs we can build
a confidence interval for β′i(G, v) with accuracy ε and con-
fidence 1 − δ in time O(p(n) ln(1/δ)/ε2), where p(n) is a
polynomial that depends on m. Note that Theorem 8 does
not require bounds on the weights (unlike our results for
computation). Unfortunately this technique cannot easily
be applied to approximating the Shapley-Shubik index for
CWVGs: to do so we must sample uniformly from E (i.e.
count E); whereas F can be counted efficiently using Theo-
rem 6 and omitting the variable W , to count E we do need
information about weight, and so this cannot be done.

7. SIMULATIONS
We now present the results of simulations demonstrating

the relationship between compatibility and power in some
typical settings. Figure 1 shows the relationship between
an agent’s power and its degree in the compatibility graph.
It was produced by 10,000 tests. For each test, a random
Erdős-Rényi graph with 10 vertices and edge probability 0.8
was generated, each agent’s weight was independently gener-
ated uniformly between 1 and 20, and the quota was taken
to be w(N)/2. The normalized Banzhaf index was com-
puted for all agents, and categorized by degree. Figure 1
shows, for each degree, the mean normalized Banzhaf index
for agents of that degree. We see that for agents of high
degree, power decreases sharply with each collaborator lost.
The plot for the Shapley-Shubik index is similar. Figures 2
and 3 show how an agent’s power is affected by its position
and the width of its tolerance interval,in a 1-spectral CWVG
with 11 agents. They were produced by 10,000 tests. For
each test, each agent’s weight was independently generated
uniformly between 1 and 20 then the quota was taken to be
w(N)/5. For each agent, the width of the tolerance interval
bi−ai was independently generated uniformly between 0 and
10,then the positioning of the interval was chosen uniformly
from the possible choices.The normalized Banzhaf index was
computed for all agents, and categorized by both position
and width of tolerance interval. Figures 2 and 3 show the
mean normalized Banzhaf index for agents of given position
or tolerance interval width. Figure 2 confirms that central
agents have more power, and indicates that small shifts in
position near the centre do not greatly affect power. Figure 3
shows that increasing one’s tolerance interval increases one’s
power, and that the increase is greater for smaller widths.

8. CONCLUSIONS AND FURTHER WORK
Compatibility Weighted Voting Games are a natural gen-

eralization of Weighted Voting Games, for which we have
defined power indices that are computationally tractable un-
der certain well-motivated restrictions. See the rightmost
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Table 1 Summary of complexities for computing the Banzhaf
and Shapley-Shubik power indices

Restrictions WVGs CWVGs
None not Poly(n) not Poly(n)

unless P=NP unless P=NP
Weights are poly. in n Poly(n) not Poly(n)

unless P=NP
Weights are poly. in n

and game is N/A Poly(n)
m-spectral, fixed m

column of Table 1 for a summary of our results regarding
computation, and note that unlike those results, our ap-
proximation result for the Banzhaf index does not rely on
bounds on the weights. We have shown that these power in-
dices are strongly affected by restrictions on compatibility,
i.e. that the cost of principles is great. Further work could
take several directions. Although we have devised an ef-
ficient approximation scheme for the probabilistic Banzhaf
index, it remains to be seen whether a similar scheme for
the Shapley-Shubik index exists. Other power indices such
as the Deegan-Packel index [12] could be generalized for
CWVGs and their properties analyzed. Lastly our concept
of compatibility and the associated power indices could eas-
ily be applied to all simple monotonic games.
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