
Tasks with Cost Growing over Time and Agent
Reallocation Delays

James Parker
Computer Science and Engineering

University of Minnesota
200 Union St SE, Minneapolis, MN 55455, USA

jparker@cs.umn.edu

Maria Gini
Computer Science and Engineering

University of Minnesota
200 Union St SE, Minneapolis, MN 55455, USA

gini@cs.umn.edu

ABSTRACT

To efficiently complete tasks whose completion costs change pre-
dictably over time requires agents that can take into account these
changes. When there are more agents than tasks the problem is how
to coordinate the allocation of agents to prevent tasks from grow-
ing so much that they become unsolvable. This work focuses on a
subset of cost functions for modeling tasks whose cost grows over
time and provides an optimal solution when agents can be allocated
to tasks instantly. We present both the Latest Finishing First (LFF)
algorithm, which is suitable when the cost of reallocating agents is
high, and the Real-Time Latest Finishing First (RT-LFF) algorithm,
which adapts to agent reallocation delays and new tasks appearing.
These algorithms are compared against the optimal zero travel time
solution with varying delays in reallocation in a simple environ-
ment. We then show how to apply this model to the complex prob-
lem of allocating agents to extinguish fires in the RoboCup Rescue
simulator and show how RT-LFF solves the problem efficiently.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

Keywords

Multi-robot systems, task allocation, coordination

1. INTRODUCTION
Multi-agent systems are getting used in many areas, such as

wide-area surveillance, exploration and mapping, transportation,
and search and rescue. The use of multiple agents provides greater
robustness, flexibility and efficiency over single-agent systems, but
requires coordination between the agents to be successful.

Our work focuses on groups of identical homogeneous agents
that need to be efficiently assigned to tasks. We introduce a gen-
eral model for the interaction between agents and tasks, where the
cost of tasks grows over time. This type of problem can occur in
nature, such as invasive species or forest fires, where if a task is
not completed quickly, then it can become difficult or impossible
to complete later. If too few agents are assigned to these growing
tasks, they will not be able to counteract the growth and the cost
of the task will grow towards infinity. This means that inefficient
assignments could not even produce a feasible solution for all tasks.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We first discuss related work (Section 2), followed by a formal
description of our problem and notation (Section 3). We give the
optimal solution (Section 4) assuming that agents can be instantly
assigned to any task. Zero travel time is a strong assumption when
agents need to physically move to a task, so we relax this constraint
and provide the Latest Finishing First (LFF) algorithm, which is
resistant to variations in the travel time (Section 5). We then ex-
tend LFF to a real-time version, Real Time Latest Finishing First

(RT-LFF), which accounts for changes in the number of agents and
tasks. (Section 6). A comparison between our algorithms, the
optimal and some baseline metrics is given in a simple simulator
(Section 7). We then present a practical application of RT-LFF in
RoboCup Rescue and describe the modeling involved (Section 8),
and evaluate experimentally our work against other methods (Sec-
tion 9). Our contributions are then summarized (Section 10).

2. RELATED WORK
Multi-agent task allocation is a well known NP-hard problem,

giving rise to many different approximate solutions. Two methods
for task allocation have emerged as the main paradigms: threshold
and auction based methods. In threshold methods, agents individu-
ally assess the constraints and their ability to complete each task. If
an agent’s abilities surpass a threshold on the constraints, then the
agent assigns itself to the task. If not, the agent passes the infor-
mation to other agents. An example is [8], which uses distributed
constraint optimization (DCOP) as a basis for task allocation. A
comparison between DCOP and swarm techniques is provided in
[3]. On the other hand, market inspired auction methods typically
require more communication and are more centralized. Zhang et
al. [9] present an auction based approach to form executable coali-
tions, allowing multiple agents from different locations to reach a
task and compete it efficiently. Recently, decentralized applications
have been designed that add flexibility to the system (e.g., [5]). Our
work strikes a balance between distribution and centralization, each
agent is directed to an area by a central authority, but upon reaching
the destination, agents act on their own logic.

Other approaches have been developed, such as modeling task
allocation as a potential game [2]. Sandholm et al. [7] present
a generalized coalition formation algorithm which produces so-
lutions within a bound from the optimal via pruning. The work
in [10] focuses on tasks that require multiple agents to complete,
while simultaneously trying to efficiently use the agent’s resources
and time. Our approach also assumes multiple agents are required,
but we allow the requirements of tasks to change over time.

Our work is most similar to Ramchurn et al. [6], except we re-
formulate the problem so task resources change over time. Instead
of having deadlines for tasks that expire at specific times, we can
consider each task having a minimum agent deadline which means

381

a specific amount of agents must be assigned to the task by this
time in order for the task to be doable. Urban search and rescue is a
major focus of our work and we use the RoboCup Search and Res-
cue Simulator [4], which provides simulations on street and build-
ing maps of real cities. Emergency situations are very time critical
and often lacking in information, as outlined in [1]. Most notably,
when an emergency occurs agents are spatially spread out and must
quickly coordinate with each other to accomplish tasks.

3. PROBLEM DESCRIPTION
Our problem focuses on the assignment of identical homoge-

neous agents to tasks which have a cost that changes over time.
We make no assumptions on the spatial locations of agents or tasks
other than an agent must be on a task’s location in order to apply
work. In order for our methods to be effective, there should be
more agents than tasks since we assume multiple agents must be
assigned to a task. This assumption is not too restrictive. As we
show later in Section 8, one can define a task as a cluster of smaller
subtasks in order for this property to hold.

We denote the set of identical homogeneous agents by A =
{a1, . . . , a|A|} and the set of tasks by B = {b1, . . . , b|B|}. For
our problem, we assume |A| > |B| or that B represents clusters
of smaller subtasks to make this inequality true. The set of active
agent assignments is denoted by N t = {nt

1, . . . , n
t
|B|}, where nt

i

is the set of agents from A that are currently working on task bi
at time unit t. An agent can only work on one task at a time, so
nt
i ⊆ A and ∀i 6= j, nt

i ∩ nt
j = ∅. All agents and tasks have a

spatial location in the environment and the travel time, TT (x, y),
between two locations, x and y, is assumed to be computable.

Each identical agent provides the amount of work w per time unit
if the agent has finished traveling to that task. Every task bi ∈ B
has a cost defined with the following recursive relationship:

f t+1
i = f t

i +∆f t
i , (1)

where ∆f t
i has the form:

∆f t
i = hi(f

t
i)− w × |nt

i|, (2)

where f t
i starts at some initial cost f0

i and hi : R>0 → R>0 is a
monotonically increasing function. Here we treat f t

i as a sequence
due to discrete time steps, but it could be treated as a continuous
function if that is a better model for the domain.

If at some time t the cost of task bi, namely f t
i , reaches or passes

zero, we denote this time as cti for the completion time meaning
that at this point the task is complete. For this reason, when f t

i

is non-positive, hi(f
t
i) is assumed to be zero and we do not allow

agents to be assigned to this task, namely |nt
i | = 0 when t > cti.

When hi(f
t
i) > w×|nt

i| this means f t
i is strictly monotonically in-

creasing, which means the task is growing faster than the assigned
agents can reduce it. If this is true, the task will never be completed
and we say cti =∞.

A solution is found at time ts when the last task is completed,
if and only if all bi ∈ B have f ts

i = 0. Using (2), we can write
this solution as f0

i +
∑

t<ts
∆f t

i = 0.1 Since this is true for every
bi ∈ B a solution is reached if and only if:

∑

bi∈B

(

f0
i +

∑

t<ts

(

hi(f
t
i)−w × |nt

i |
)

)

= 0 (3)

1Technically, this solution will be reached when f t
i goes from pos-

itive to negative in f t+1
i since time is discrete. For theoretical ease

we assume t is divisible enough that it is possible to actually reach
zero.

4. OPTIMAL SOLUTION
In our problem the cost of completing a task increases over time,

therefore the goal is to minimize the time the last task is completed,
specifically minimizing ts. Finding the general optimal solution is
very difficult, but we prove the optimal solution can be found by
making the following assumptions:

1. there is a positive correlation between f t
i and hi(f

t
i). Namely,

larger tasks must grow faster than smaller tasks. This is rea-
sonable for domains that have a chain-reaction effect, such
as a stampede. If one animal gets frightened and starts run-
ning, other animals also get frightened and start running. As
more animals start running, f t

i , the rate that additional an-
imals start to run, hi(f

t
i), also increases. Fires are another

example.
2. as a task gets closer to completing, its growth approaches

zero. This is needed for continuity since after a task is com-
plete, we assume it cannot grow and thus hi(x) = 0 for
non-positive x.

3. the task growth functions, hi(f
t
i), are the same for all tasks.

Tasks can have different initial costs, and thus different initial
growth rates.

4. the travel time between any task locations is zero. In some
applications that do not require physical movement this as-
sumption would be correct, but this is rarely the case for
physical agents. Even with zero travel time the growth of
the tasks makes assignment of agents non-trivial.

For example, consider one agent and two tasks b1 and b2 such that
f0
1 << f0

2 but h1(f
t
1) >> h2(f

t
2). This means one task starts

with a small initial cost but grows very rapidly and the other task
has a large initial cost but grows very slowly. The best solution is to
quickly finish b1 to prevent it from growing rapidly and then work
at b2. It takes some time to complete b1 but the change in b2 is not
very significant, so there is not much of a difference between com-
pleting b2 first or second. However, if one tries to first complete b2,
then b1 will have grown considerably by the time b2 is completed
and will take much longer to complete b1 second rather than first.

For ease of the proof, we will define some additional notation.
Note that in (3),

∑

bi∈B
f0
i is a constant and

∑

bi∈B

∑

t<ts
w ×

|nt
i | = p̄ × ts × w × |A|, where p̄ is the average percent of time

the agents are working. We can then rewrite (3) as:
∑

bi∈B

f0
i +

∑

bi∈B

∑

t<ts

hi(f
t
i)− p̄× ts × w × |A| = 0 (4)

This means that
∑

bi∈B

∑

t<ts
hi(f

t
i) is the amount of work added

to the system from time t = 0, which we call Rts or the global re-
gret. We define ∆Rt = Rt −Rt−1 =

∑

bi∈B
hi(f

t
i).

The proofs presented below have the following outline. First
we show that minimizing Rts is an optimal solution with the zero
travel time assumption, because we can assume all agents will al-
ways be assigned and working on some task. Then the only term
left in (4) that depends on the assignments is the middle term,
Rts , namely how the cost function changes based on the assigned
agents. From here it is fairly straightforward to see that by reducing
Rts , ts on the right in (4) can be reduced hence reaching a solution
faster. Then we show this middle term, Rts , can be greedily mini-
mized at each time step. Thus in order to minimize the total growth
accumulated, it is sufficient to assign agents to minimize the cost
growth of all tasks at every time step.

THEOREM 1. Minimizing Rts is an optimal solution when

TT (x, y) = 0 ∀x, y.

382

PROOF. When TT (x, y) = 0 ∀x, y we can assume p̄ = 1, since
agents can instantly move between tasks. Suppose a better solution
f̂ t
i exists, then R̂tŝ =

∑

bi∈B

∑

t<t̂s
hi(f̂

t
i) where t̂s < ts with

R̂t̂s
> Rts . Rewriting (4) for Rts yields:

Rts = w × |A| × ts −
∑

bi∈B

f0
i

Solving (4) for R̂t̂s
in terms of ts:

R̂t̂s
+ w × |A| × (ts − t̂s) = w × |A| × ts −

∑

bi∈B

f0
i

Using our two assumptions, we can then write:

Rts + w × |A| × (ts − t̂s) < R̂t̂s
+ w × |A| × (ts − t̂s)

which implies that Rts satisfied (3) at time t̂s, a contradiction.

THEOREM 2. Minimizing ∆Rt for every time unit t also min-

imizes the global regret, Rts , when (i) TT (x, y) = 0 ∀x, y, (ii)

hi(x) = hj(x) ∀bi, bj ∈ B, (iii) limx→0+ hi(x) = 0, and (iv)
∂2

∂t2
hi(f

t
i) ≥ 0.

PROOF. Due to assumption (ii), we will denote hi(x) with h(x)

to simplify notation. Assume there exists a better solution F̂ , which
differs from the greedy minimization F . This means that at some
time td the better solution must assign agents differently than the
greedy solution. By definition the greedy minimization, F , is a
minimum ∆Rtd at time td, thus ∆Rtd ≤ ∆R̂td , where ∆R̂t =
∑

bi∈B h(f̂ t
i). After time td, F will copy the agent assignments of

F̂ and because TT (x, y) = 0 ∀x, y this is possible from any con-
figuration. Next we prove by induction that

∑

bi∈B f t
i ≤

∑

bi∈B f̂ t
i .

At time td,
∑

bi∈B
f
td
i =

∑

bi∈B
f̂
td
i combined with the fact

that fx
i = f0

i +
∑

t<x
∆fx

i along with F is a greedy choice im-

plies
∑

bi∈B
f td+1
i ≤

∑

bi∈B
f̂ td+1
i , which is the base case in

the induction. If we write f̂ t
i = f t

i + ci, then we can conclude
∑

bi∈B
ci ≥ 0. We then compute f t+1

i as:

f t+1
i = f t

i + h(fi)−w × |nt
i |

and f̂ t+1
i as (nt

i is the same since assignments are copied):

f̂ t+1
i = (f t

i + ci) + h(fi + ci)− w × |nt
i|

If we use the monotonicity of h, then we can see h(fi + ci) =
h(fi) + δi × ci for some δi > 0, basically δi is the slope between
fi and fi + ci. This means:

f̂ t+1
i − f t+1

i = ci + δi × ci

Since ∂2

∂t2
hi(f

t
i) ≥ 0 we know δi ≥ δj when ci > cj ∀i, j as

shown in Figure 1. Thus,
∑

bi∈B
δi × ci ≥ 0 since

∑

bi∈B
ci ≥ 0

as positive ci get a larger δi than negative values and we can con-
clude that

∑

bi∈B
f t+1
i ≤

∑

bi∈B
f̂ t+1
i , the inductive step. Using

a similar logic to extracting the definition of ∆Rt from (3), we drop
∑

bi∈B
f0
i and

∑

t<ts

∑

bi∈B
w × |nt

i | from both sides and get:

Rts ≤ R̂ts

where R̂ts =
∑

bi∈B

∑

t<ts
h(f̂ t

i). This is a contradiction to the

fact that F̂ is a better solution, therefore minimizing ∆Rt at every
time t also minimizes Rts .

Before concluding the proof, we must consider the cases when
F completes a task that F̂ did not and vice versa. If F com-
pletes a task that F̂ did not, then the greedy minimization will

Figure 1: Since the function h(f t
i) is always accelerating, the

slope, δi, will be larger when ci is larger.

assign agents from an already completed task to a random unfin-
ished tasks. This does not invalidate any of the inequalities above.
When F̂ completes a task that F has not, this task will never be
completed by direct mimicry from the greedy minimization solu-
tion, instead this will be finished by the random assignment de-
scribed above. There is no discontinuity in the sums since we re-
quire limx→0+ h(x) = 0, so when a task is completed it simply
disappears from the equations.

5. LATEST FINISHING FIRST
With perfect knowledge about how a task grows, we showed

what assignment is optimal. Taking into account the spatial limita-
tions, we derive the Latest Finishing First (LFF) algorithm, which
uses a heuristic to maintain a stable assignment.

The optimal solution sometimes frequently reassigns agents be-
cause TT (x, y) = 0. When agents require time to move between
different tasks, every time an agent is reassigned to a different task,
p̄ decreases in (4). To address this issue, we introduce Latest Fin-
ishing First (LFF). The inspiration behind LFF is to create an initial
stable assignment that will try to maximize p̄ to 1, thus maximizing
the overall output of agents in the system. Although this maximizes
the right side of (4), there is no guarantee of the effect on the mid-
dle term, Rts . In other words, we will fully utilize all the agents
but may inefficiently assign them.

The LFF algorithm is based on the heuristic of iteratively assign-
ing agents to the task which finishes last, or specifically has the
largest completion time, cti. This causes LFF to have two main
phases, the first when few agents are assigned and multiple tasks
have cti = ∞ since the growth rate of the tasks is greater than the
reduction from assigned agents. At this stage there is often a tie
for tasks with the largest cti, so in order to break the tie an agent
is assigned to whichever task has a larger initial cost, namely f0

i .2

The agent that is actually assigned to this task is selected greedily,
simply the closest unassigned agent to that task. Once this agent is
assigned, cti is updated for this task and this process is repeated un-
til there are no more tasks with cti =∞. If at some point there are
no more unassigned agents and there is still a task with cti = ∞,
then the algorithm is done but some tasks are not completed.

The second phase, if reached, starts when all tasks have a finite
completion time, specifically cti < ∞ for all tasks. Ties for a
maximum cti are rare if the time scale of t is sufficiently small,
unless there are two identical tasks with similar unassigned agent

2If there is a tie for tasks with initial costs, then assign an agent to
minimize that agent’s travel time to reach either of these two tasks.

383

locations. If there is a tie, the initial cost can be used to determine
where to assign the agent, similar to the first phase. When the task
is determined, the closest unassigned agent is assigned to that task
and the task’s cti is updated. This process is repeated until there
are no more unassigned agents left and the LFF algorithm finishes.

During this first phase the choice of using the initial cost as a
tie breaker is semi-arbitrary, since no assumptions are made about
hi(f

t
i). However, if there is some correlation between the task

growth functions, then a task with a higher initial cost will take
longer to complete than a smaller task if the number of agents as-
signed is the same. This means tasks with a large f0

i will likely
need more agents assigned, thus this tie breaking attempts to re-
duce overall agent travel time.

Algorithm LFF (Latest Finishing First)

1: while ∃ai ∈ A and ∄j such that ai ∈ n
TT (ai,bj)

j do {Loop
while there are unassigned agents.}

2: Find bi for argmax
bi∈B

cti {Task bi ends last}

3: if ∃bj where cti = ctj then {This is mostly phase one when
there are multiple tasks that never finish.}

4: Find bk for argmax
bk∈B

f0
k with ctk = cti {In this case, we

find the task with the largest initial cost.}
5: Assign argmin

aj∈A and aj unassigned
TT (aj, bk) to bk

6: else

7: Assign argmin
aj∈A and aj unassigned

TT (aj, bi) to bi {If there are

no ties simply assign the closest agent to bi.}
8: end if

9: end while

LFF only provides an initial assignment because the algorithm
ends when all agents are assigned, thus it is well suited when reas-
signment is difficult due to high travel cost or lack of communica-
tion. For example, if forest firefighters deploy deep into the wilder-
ness via parachute, they will be unable to move very effectively
after their initial deployment. In the case of one shot deployment
with a uniform initial assignment cost, LFF provides the optimal
solution. In the next section we consider the case when LFF is
rerun when t 6= 0, which is simply accomplished by replacing n0

i

and f0
i with nt

i and f t
i respectively.

6. REAL-TIME LATEST FINISHING FIRST
This section extends the LFF algorithm to a real-time solution

applicable to a wider range of environments. The LFF algorithm
only does the initial assignment, but after agents are assigned and
the cost of a task is discovered to be different from the initial esti-
mate, it can be advantageous to reassign some agents. LFF assumes
perfect information of all the tasks but the initial task cost can be
incorrect or the function can be an imperfect approximation. Also,
when new tasks are discovered, it is crucial that agents are reas-
signed to the new tasks. The Real-Time Latest Finishing First (RT-
LFF) algorithm can adjust to all these situations while attempting to
maintain the same property as the original LFF algorithm, namely
by trying to assign agents to tasks with high completion times.

For the initial agent assignment RT-LFF simply uses LFF. Every
time period after the initial, RT-LFF attempts to find if there is any
pair of tasks that could reassign an agent from one task to another
to reduce the latest completion time of all tasks. An agent is only
transfered from an original task to a task that finishes later if the
original task will still complete faster, even after transferring the

agent. Let ct−i be the time for task bi to complete with one fewer
agent and ct+j be the time for task bj to complete with one addi-
tional agent including the delay from the agent traveling. An agent
is only reassigned from bi to bj if ct−i < ct+j . Note that this as-
signment strategy is greedy since the original task will not give up
an agent unless it is still better off than the receiving task. Here we
provide a formal definition of the RT-LFF algorithm.

Algorithm RT-LFF (Real-Time Latest Finishing First)

1: Use LFF for initial assignments
2: while t < ts do

3: for bi ∈ B do

4: if ∃bj 6= bi where ct−i < ct+j with argmin
bi

TT (bi, bj)

then

5: Reassign ak ∈ N t
i to bj with argmin

ak

TT (ak, bj)

6: end if

7: end for

8: end while

Another transfer criterion worth considering is when max(cti, ctj)
≥ max(ct−i , ct

+
j). This causes RT-LFF to have a very similar as-

signment to LFF, if it was rerun at that time step, and can cause
assignment thrashing, especially when there is noise or an error
in the growth function. For this reason LFF is used for initial al-
locations only. The task bj would receive benefits from the extra
agent, but the task bi is now behind and might possibly need an
agent transferred back in the future. When the heuristic is greedy,
namely only transfer if ct−i ≤ ct+j , then after a transfer the com-
pletion times of both tasks will be approximately equal, resulting
in less likely future transfers between these two tasks.

Whenever possible, all pairs of tasks are considered and the order
that the pairs are considered can have a significant effect. If one
task is first paired with all other tasks, it will have priority to receive
(or send) agents. Thus, we put newly observed tasks first, then
order the rest of the remaining tasks based on how close they are
to the new task. This ordering causes the new task and closest task
to potentially transfer agents first, then the new task and second
closest task and so forth. This is desirable because it reduces the
travel time of agents assigned to the new task, and since the new
task has no agents assigned, it will likely receive multiple. If the
domain has a large number of agents or fairly indivisible time steps,
it might be useful to transfer multiple agents per pairing or check
pairs multiple times. If a domain has many tasks that are almost
collinear, it might be best to check all pairs of direct neighbors first
before checking pairs that have other tasks between them.

We could rerun LFF at every time step instead of using RT-LFF,
but one disadvantage is when there are many more agents than
tasks, attempting to reassign every agent can be more expensive
than checking pairs of tasks. While the greedy criterion of RT-LFF
can cause some inefficiency, we show that the difference between
agent assignment in RT-LFF and rerunning LFF at that time step is
bounded if travel time is zero. Since LFF attempts to maximize the
amount of work each agent provides, this proof shows that agents
in RT-LFF must also be near the maximum amount of work.

THEOREM 3. RT-LFF has at most |B| − 1 agents differently

assigned from the LFF algorithm rerun at any time assuming zero

travel time.

PROOF. We show that RT-LFF can at most have one fewer agent
assigned to each task compared to LFF. This is done by showing it
is impossible for RT-LFF to assign two more agents to any task

384

and reduce the overall finishing time, ts, which LFF minimizes.
Assume that we have two tasks b1 and b2 and let ct++

j be the
time task bj is completed with two additional agents assigned to
it and similarly ct−−

i for two fewer agents. Without loss of gen-
erality assume ct2 < ct1. If RT-LFF did not reassign an agent
from b2 to b1, then ct−2 > ct+1 . We notice that reassigning two
agents from b2 to b1 means ct−−

2 > ct−2 and ct++
1 < ct+1 , but

max(ct−−
2 , ct++

1) > max(ct−2 , ct
+
1) because ct−−

2 > ct−2 and
ct−2 > ct+1 . This means ts is increased by this reassignment, which
means this is not a possible LFF assignment.

Next we show that when using RT-LFF a task b1 would never
receive a single agent from more than one other task without in-
creasing ts. The argument is similar to the first case, only it now
involves task b3. If b2 and b3 did not reassign an agent to b1 under
RT-LFF, then ct+1 < ct−2 and ct+1 < ct−3 . Suppose LFF did have
both b2 and b3 reassign an agent to b1, and without a loss of general-
ity assume ct−2 < ct−3 . Then ct++

1 < ct+1 < ct−2 < ct−3 . This is a
contradiction to how LFF works. Currently ct−3 is the last finishing
and ct++

1 is the fastest finishing, and from the equation above if b1
gave back an agent to b3 then ct+1 < ct−2 . This means the transfer
back has reduced the time of latest finishing task, thus under RT-
LFF b1 will be not assigned an agent from more than one other task
compared to LFF. This implies a task in RT-LFF cannot have more
than one agent under the assignment of LFF for each time step. The
worst case is when |B| − 1 tasks have one agent fewer than LFF’s
assignment and the last task has |B| − 1 too many agents.

7. COMPARISON IN SIMPLE SIMULATION
To empirically test our algorithms, a simplified simulation was

used that has task b1 on one end of a line segment task b2 on the
other. For all the simulations the number of agents remained con-
stant, so we will abbreviate |N t| by |N |. In addition to the opti-
mal solution, we compared LFF and RT-LFF to a “UNIFORM” and
“ALLONONE” baselines. The UNIFORM strategy simply assigns
|N |/2 agents to b1 and the other half of the agents to b2 at t = 0
for the whole simulation. The ALLONONE strategy assigns N to
task b1 until it is completed, then assigns all the agents to b2.

Table 1 compares the completion time of the last task for three
different task cost growth functions with no travel time and 10
agents. The h(x) column shows the growth function without co-
efficients for b1 first then b2. For example, the first row is when
h1(x) = h2(x) = 0.000016×x3 with each agent doing an amount
of w = 0.015 work and initial task costs of f0

1 = 20 and f0
2 = 10.

Coefficients for the growth functions and work rates are small to
shrink the effects of time, thus simulating granular time steps.

h(x) OPTIMAL RT-LFF LFF UNIFORM ALLONONE

x3, x3 310 440 ∞ ∞ 343
x2, x2 260 270 273 626 ∞
x3, x2 943 118 128 128 ∞

Table 1: Completion times of the last task to finish with no

travel times and |N | = 10.

Figure 2 shows the assignments when solving with the same
parameters given above, except w = 0.0015, and there are 100
agents. When an algorithm completes all tasks, the marks in the
figure stop, except the UNIFORM strategy which never completes
task b1. The optimal strategy is to first assign all agents to b1

3This is not guaranteed to be optimal since h(x) is not identical for
all tasks, but does still give the best solution we found.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

A
m

o
u

n
t o

f wo
rk

e
rs

 a
llo

c
a

te
d

Time

Allocation for first task with 100 workers on h(x) = x
3

Optimal
RT-LFF

LFF
Uniform
AllOnOne

Figure 2: Assignments when |N | = 100 for task b1 with no

travel time and b2 has any left over unassigned agents.

since it has a larger initial cost and thus larger growth. Around
t = 120 task b1 has decreased from 20 to about 12.5 while task
b2 has grown from 10 to 12.5. At this point the optimal solution
splits the agents 50/50 between both tasks. The ALLONONE strat-
egy performs very well in this case, because the initial assignment
strategy happens to be identical to the optimal. LFF initially as-
signs 86 and 14 to b1 and b2 respectively, which gives completion
times of ct1 = 387 and ct2 = 664. RT-LFF then balances this as-
signment to 85/15 at time t = 15, yielding new completion times
of ct1 = 573 and ct2 = 600, and at t = 320 finishes balancing the
assignment to 84/16 with ct1 = ct2 = 580. The growth functions
are picked to be barely possible for LFF, causing a large difference
in the initial completion times and RT-LFF’s reassignments to have
such a large impact. This case is shown to demonstrate the maxi-
mum effect of the greedy selection criteria.

RT-LFF is extremely resistant to variations in travel time com-
pared to ALLONONE. When agents spend 20 time steps to travel
between tasks, the completion time increased for RT-LFF by at
most 4 while ALLONONE increased by at least 27. Both LFF and
RT-LFF attempt to make the completion time of all tasks approx-
imately equal. This means when |N | >> |B| LFF and RT-LFF
have approximately equal performance, but as |N | approaches |B|
the improvements for RT-LFF can become quite significant. The
UNIFORM and ALLONONE strategies can perform well if they
happen to have initial allocations similar to the optimal strategy,
otherwise they are prone to being unable to complete all the tasks.

RT-LFF can also adapt to inaccuracies in the estimation model by
tracking the estimated completion times. When the growth model
is perfect, the predicted completion times are static throughout the
simulation. However, when the model is an approximation the
completion time estimates will change even when no agent is re-
assigned. An example is when there is no travel time and h1(x) =
h2(x) = 0.000012. If the model thinks h1(x) = h2(x) = 0.00001
and underestimates the rate of growth, completion times will in-
crease as simulation progresses and agents will be reassigned when
completion times become too unbalanced. With the real growth
function 20% higher than estimated, RT-LFF was able to complete
in 286 steps where it would have only taken 282 steps if the model
was perfect. When RT-LFF overestimates the growth, the comple-
tion times will decrease without agent reassignment and agents will
be reassigned to balance the completion times.

385

8. FIRES IN ROBOCUP
In this section we focus on the problem of dealing with fires in

RoboCup Rescue and present a way of modeling how fire spreads
and applying RT-LFF. The RoboCup Rescue simulator is designed
for urban search and rescue after an earthquake, where buildings
collapse and fires start in buildings. The environment is very large
(see Figure 3) with upward of 100 agents. The full simulator uses
heterogeneous agents, but for this work we focus only on the agents
that can extinguish fires, i.e. firetrucks. The other agents constantly
search for new fires, and broadcast the location and estimated size
when a new fire is found.

Fires are the most dangerous hazard in RoboCup Rescue. While
a single building on fire can be dealt with quickly, if too many build-
ings ignite the fire becomes very difficult to tackle both due to its
size and re-ignitions of buildings. We present two novel contribu-
tions. First, fire clusters are modeled as single tasks that have a
cost which increases as time passes. Second, we present a method
to estimate the number of buildings on fire in a cluster when only
a few buildings from that cluster have been observed. The RT-LFF
algorithm is then shown to out-perform more naïve algorithms.

8.1 Growth of Fire Clusters
Each building on fire individually has a chance to ignite nearby

buildings based primarily on distance. This means the rate of growth,
h(f t

i), is proportional to the number of current buildings on fire, x:

(a) δx
δt

= g × x (b) x = C × eg×t (5)

Ten simulations with a single fire starting in various locations were
used to empirically evaluate g to be roughly 0.0687. This is a first
order linear differential equation that can be explicitly solved by
separation of variables to yield the well known equation in (5b). A
constant C is introduced by integration to satisfy the initial condi-
tions. Eq. (5a) can be modified to incorporate the fire agents extin-
guishing effect on a fire. If there are n fire agents working on a fire
cluster each extinguishing at a rate w, then the rate of growth of a
fire will be reduced by n× w:

δx

δt
= g × x− n× w (6)

The constant w was also empirically calculated to be about 0.184
by running ten simulations with a single fire agent and tracking the
total number of fires extinguished after 100 cycles. Complications
arise since the intensity of the fire has an effect on the effort re-
quired to extinguish it, which biases w to be higher than the real
value. Agents can extinguish small fires much more quickly than
larger fires, which often causes the agent to repeatedly put out small
fires as they are reignited from nearby larger fires. Nevertheless, w
gives a reasonable estimate for the agents’ capabilities as shown
in Section 9. Since g, n and w are constants, this still is a lin-
ear differential equation which simplifies to the slightly modified
exponential growth function shown in (7).

x =
n×w

g
+ C × eg×t (7)

8.2 Estimating the Size of a Cluster
Running a probabilistic model for every single building to pre-

dict the fire spread would require a large amount of computation
and have a low probability for every possible state. Ideally this
model would be recomputed after every agent reassignment. This
method will not scale and is too complex for a scenario in which
a large amount of information is already missing. For that reason
fires are abstracted into clusters and the macro-level behaviors of
these clusters are analyzed instead.

Figure 3: Pink and blue buildings’ average position determine

the two points on the red fire cluster circle.

The lack of full information in RoboCup Rescue makes cluster-
ing difficult and requires some assumptions to be made. If a large
number of agents were available to circle around the fire cluster
and monitor its growth, then direct clustering could accurately esti-
mate the number of buildings on fire, namely x. However, normally
agents are not able to dedicate this much time to information gath-
ering, so it is necessary to come up with a way of estimating the
size of a fire cluster while only being able to see a few buildings.

If we assume fires spread equally in all direction, a circle is a
good estimate of the area on fire. This circle is found by identify-
ing two points on its edge by first putting the most recently seen
building and the 9 closest burning buildings (or all known nearby
burning buildings if fewer than 9 exist) in a set. Then k-means clus-
tering with k = 2 is run to find two subsets. The average position
of each subset is then used as the two points of the circle, as shown
in Figure 3.

The method for finding the radius can be extended from the ex-
ponential model given in Section 8.1. If x is the number of build-
ings on fire, then we can estimate π × r2 = A× x, where r is the
circle radius and A is the average building area (estimated over all
buildings on the map). This can be rewritten as: x = π×r2

A
which

can then be substituted into (5) yielding:

δr

δt
=

g

2
× r, and r(t) = D × e

g
2
×t (8)

To overestimate the radius of the circle, we initially assume the fire
started at the beginning of the simulation. For example if a fire is
found at time t = 50, we would assume this fire started as a single
burning building, D = 1, at time t = 0. Thus the radius would
simply be r(50). With a radius and two points on a circle, there are
two possible circles and we choose the one with the highest ratio of
burning buildings to total buildings.

This radius is the worst case possibility, so we incorporate new
information to refine the estimate. For all buildings in the circle,
we check their status at the last time viewed and neglect buildings
never seen. If there is a conflict between past information and the
assumption that the fire started at time t = 0, we assume the center
of the circle is still the same and recompute D for a radius that
satisfies the information. This new initial condition gives a smaller
radius to be fit on the two circle points. This process is repeated
until there is no conflicting information.

386

8.3 Assignment to Fire Clusters
When assigning agents to clusters the goal is to extinguish all

fires as quickly as possible. Eq. (7) can be solved for t when x = 0,
yielding the completion time, ct, as shown in (9). If the constant C
is nonnegative, then the fire is growing faster than the n agents can
extinguish it, thus ct =∞. When C is negative, (9) is computable
and will give the time when the fire will be fully extinguished.

ct = (ln
n×w

g ×−C
)/g (9)

Algorithm RoboCup RT-LFF with hi(x) = x

Require: Ci, Cj , n
t
i , n

t
j , w, g, t {For task bi, Ci is the integration

constant from Eq. 7 and nt
i is the number of agents working at

time t. A similar relationship exists for bj , Cj and nt
j . w is the

task completion rate of an agent, g is the growth rate of fires.}
1: change← true

2: while change do

3: change← false

4: for i = 1 to |B| do

5: ct−i ← (ln
(nt

i−1)×w

g×−Ci
)/g {Compute the time to extin-

guish fire i with one fewer agent than currently assigned.}
6: for j = 1 to |B| do

7: x̂j ← nt
j ×w/g+Cj × eg×(t+TT (bi,bj)) {Before the

agent from fire cluster i arrives to cluster j, compute
the effect of the agents already there.}

8: Ĉj ← (x̂j − (nt
j + 1) × w/g)/(eg×(t+TT (bi,bj)))

{Once the agent from cluster i arrives, we need to re-
compute Cj .}

9: ct+j ← (ln(nt
j +1)×w/(g×−Ĉj))/g {Finally com-

pute when fire j is fully extinguished.}
10: if ct−i < ct+j then

11: Transfer an agent from i to j
12: nt

i ← nt
i − 1

13: n
t+TT (bi,bj)

j ← n
t+TT (bi,bj)

j + 1
14: change← true

15: end if

16: end for

17: end for

18: end while

In the adaption of RT-LFF to RoboCup Rescue, hi(x) = x for
all tasks. Normally in RoboCup Rescue no fire clusters are known
initially, so when the first fire cluster is found all agents are assigned
to that cluster. As discussed in Section 6, how many times and in
what order pairs of clusters are considered has an effect on the per-
formance of RT-LFF. When a new fire cluster is found, multiple
agents may need to be transfered from the old clusters, so the al-
gorithm runs until no more useful transfers exist. Newly found fire
clusters are labeled b1 to have the first chance of receiving agents
from other clusters, which are ordered by increasing distance from
this new task to reduce the traveling time.

9. RESULTS
In this section, we show the validity of our exponential model

and RT-LFF by empirical evaluation in RoboCup Rescue. First,
we show how the exponential model accurately fits the real fire
growth data. Then the model is used to estimate the time a fire is
extinguished and compared against the real time it took for agents
to extinguish the fire. Finally RT-LFF is compared against the
ALLONONE and UNIFORM strategies and a “CLOSEST” strategy
which simply assigns agents to the closest unfinished task.

9.1 Model Fitting
A single fire was tracked over 5 simulations on two maps and the

actual number of fires is compared against the exponential function
in Figure 4. This approximation is reasonable, except it slightly
underestimates the fires between t = 40 and t = 60.

Figure 4: Real fire count compared to exponential.

The estimate of fire cluster size described in Section 8.2 was
tested by assigning a static amount of firetrucks to extinguish the
fire cluster and comparing the estimated and real extinguish time.
The estimated size of the cluster is recomputed every time step and
increases in accuracy as more of the environment is observed. For
worst case analysis the real extinguish time is compared against the
estimated extinguish time when the fire cluster is first discovered. A
histogram of 54 fires extinguished with the relative error is shown
in Figure 5 with a mean error of 0.0268 and standard deviation of
0.2526. The distribution is close to Gaussian and fairly unbiased
at overestimating or underestimating. Some error may be due to
imprecise empirically derived constants in the modeling equation
or a lack of incorporating the intensity in the model.

Figure 5: Relative error of extinguish time when a cluster is

first discovered.

9.2 Comparison of Assignment Strategies
Each map was run with 5 simulations and the time the last fire

was extinguished is reported in Table 2. A fixed number of non-
firetruck agents randomly search the environment for new tasks and
broadcasts the locations when seen. The agents searching the envi-
ronment are unable to interact with any of the tasks directly. The

387

Map RT-LFF CLOSEST UNIFORM ALLONONE

Berlin 118.2 165 141.4 189
Virtual City 95.8 115 162.0 109

Table 2: Average completion times of the last task for two maps

in RoboCup Rescue Simulation.

UNIFORM and ALLONONE strategies described in Section 7 were
reimplemented for the RoboCup Rescue Simulator. The UNIFORM

strategy does not only assign initially as in Section 7, but will reas-
sign an approximately equal number of agents to all tasks when a
new task is discovered. Also a “CLOSEST” strategy is implemented
for RoboCup, where agents go to the closest known unfinished task,
work until the task is complete and then go to the next closest task.

Berlin is a large map with no fires in the middle of the map,
which required both the ALLONONE and CLOSEST strategies to
reassign many agents to the other side of the map. When the AL-
LONONE strategy discovers a new task, it is added to the end of
the current task list. This behavior caused agents to cross the map
multiple times as new fires were discovered on alternate sides of
the map. The UNIFORM strategy spreads agents equally, which
reduces the amount of travel for the agents, but unlike LFF can-
not estimate the growth of fires to more efficiently assign agents.
RT-LFF reassigns agents much more frequently than in Section 7,
due to approximations in both the cost growth function and initial
size estimates. If the cost growth function is an underestimate for a
task, the completion times will become unbalanced and will cause
RT-LFF to assign more agents to that task. This behavior lets RT-
LFF handle imperfect estimations of hi(f

t
i) by detecting when a

discrepancy arises.
Virtual City as seen in Figure 3 has three fires that are almost

collinear. This allows the CLOSEST strategy to have a reasonable
distribution of agents, and since the fires near the corners get ex-
tinguished first there is only a short distance to move to the next
closest task. One of the fire grew more quickly since it was ac-
tually started from two individual fires that were close together.
When the fire was identified, the initial fires had overlapped and
were clustered as a single task. The UNIFORM strategy poorly as-
signed for this fire, while RT-LFF was able to compensate for the
error in the model. ALLONONE did quite well since this critical
task was assigned all agents after the first task completed.

On both maps RT-LFF was able to complete all tasks in about
85% of the time next best strategy and was statistically significant
from other strategies on both maps. The major random factor for all
maps was the difference in time when new tasks were discovered
by the exploring agents. The CLOSEST and ALLONONE strategy
are both very resistant against changes to the discovery time. AL-
LONONE would simply add this new task to the end of the list,
so the algorithm would perform no differently if the new task was
discovered almost immediately or right before the last known task
was completed. For the CLOSEST strategy an agent does not reas-
sign until its task is complete, thus the agent acts on this knowledge
only slightly faster than AllOnOne. RT-LFF and UNIFORM almost
always immediately reassign agents when a new task is discovered,
but RT-LFF was able to minimize variance in completion time by
properly assigning more agents when a task was discovered later.

10. CONCLUSIONS AND FUTURE WORK
This paper addresses task allocation with multiple agents, where

each task has a cost that changes over time. This adds substantial
complexity and requires more coordination between agents. We

limited the investigation of cost changes to a general family of func-
tions in order to reduce the complexity. We presented the Latest
Finishing First (LFF) algorithm, which maximizes the amount of
time agents work and attempts to finish all tasks at the same time.
We went on to present a real-time solution, RT-LFF, which im-
proves LFF for partially observable spaces and is resistant to noise
or errors in the model.

While RT-LFF’s heuristic is able to compensate for errors in
hi(f

t
i), it might be possible to start with an assumption about the

growth function but refine the coefficients for that particular task
as the simulation progresses. Another possibility to explore is to
include heterogeneous agents into the model. The choice of met-
ric for evaluating an algorithm when the task cost functions change
is also an open question, especially when no solution exists. One
metric would be to minimize the total cost over all time, regardless
of how many tasks are completed. Perhaps if there is one large task
and many smaller tasks, it would be best to maximize the number of
tasks completed by finishing all the smaller tasks while completely
ignoring the large task.

Acknowledgment: Work supported in part by NSF IIS-1208413
and the Safety, Security, and Rescue Research Center at the Uni-
versity of Minnesota (NSF IIP-0934327).

11. REFERENCES
[1] Álvaro Monares, S. F. Ochoa, J. A. Pino, V. Herskovic,

J. Rodriguez-Covili, and A. Neyem. Mobile computing in
urban emergency situations: Improving the support to
firefighters in the field. Expert Systems with Applications,
38(2):1255 – 1267, 2011.

[2] A. Chapman, R. A. Micillo, R. Kota, and N. Jennings.
Decentralised dynamic task allocation using overlapping
potential games. The Computer Journal, 2010.

[3] P. R. Ferreira, Jr., F. dos Santos, A. L. C. Bazzan, D. Epstein,
and S. J. Waskow. RoboCup Rescue as multiagent task
allocation among teams: experiments with task
interdependencies. Journal of Autonomous Agents and

Multi-Agent Systems, 20(3):421–443, 2010.
[4] H. Kitano and S. Tadokoro. RoboCup rescue: A grand

challenge for multiagent and intelligent systems. AI

Magazine, 22(1):39–52, 2001.
[5] M. Nanjanath, A. Erlandson, S. Andrist, A. Ragipindi,

A. Mohammed, A. Sharma, and M. Gini. Decision and
coordination strategies for RoboCup rescue agents. In Proc.

SIMPAR, pages 473–484, 2010.
[6] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and

N. R. Jennings. Coalition formation with spatial and
temporal constraints. In Proc. Int’l Conf. on Autonomous

Agents and Multi-Agent Systems, pages 1181–1188, 2010.
[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and

F. Tohmé. Coalition structure generation with worst case
guarantees. Artificial Intelligence, 111(1–2):209–238, 1999.

[8] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.
Allocating tasks in extreme teams. In Proc. Int’l Conf. on

Autonomous Agents and Multi-Agent Systems, pages
727–734, 2005.

[9] Y. Zhang and L. E. Parker. Task allocation with executable
coalitions in multirobot tasks. In Proc. IEEE Int’l Conf. on

Robotics and Automation, 2012.
[10] X. Zheng and S. Koenig. Reaction functions for task

allocation to cooperative agents. In Proc. Int’l Conf. on

Autonomous Agents and Multi-Agent Systems, pages
559–566, 2008.

388

