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ABSTRACT
This paper proposes a new model, based on the theory of nonlin-
ear dynamical systems, to study the evolution of cooperation in
arbitrary complex networks. We consider a large population of
agents placed on some arbitrary network, interacting with their
neighbors while trying to optimize their fitness over time. Each
agent’s strategy is continuous in nature, ranging from purely co-
operative to purely defective behavior, where cooperation is costly
but leads to shared benefits among the agent’s neighbors. This in-
duces a dilemma between social welfare and individual rationality.
We show in simulation that our model clarifies why cooperation
prevails in various regular and scale-free networks. Moreover we
observe a relation between the network size and connectivity on the
one hand, and the resulting level of cooperation in equilibrium on
the other hand. These empirical findings are accompanied by an an-
alytical study of stability of arbitrary networks. Furthermore, in the
special case of regular networks we prove convergence to a specific
equilibrium where all agents adopt the same strategy. Studying un-
der which scenarios cooperation can prevail in structured societies
of self-interested individuals has been a topic of interest in the past
two decades. However, related work has been mainly restricted to
either analytically studying a specific network structure, or empir-
ically comparing different network structures. To the best of our
knowledge we are the first to propose a dynamical model that can
be used to analytically study arbitrary complex networks.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent systems

General Terms
Theory, Experimentation

Keywords
Evolution of Cooperation, Repeated Games on Graphs

1. INTRODUCTION
Many real-world systems can be described as networks in which

nodes represent individual decision makers and edges represent the
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interactions that occur between them. Examples are wide-spread,
ranging from neural networks in the human brain to communication
networks of hubs and routers that make up the World Wide Web.
Next to these tangible networks, the past decade has seen a strong
increase in interest in the study of social networks, mainly from a
sociological or economic perspective examining how ideas (or like-
wise new technologies) can spread through social communities [6,
14]. This work focusses on the latter, analyzing the evolution of
cooperation in societies of self-interested decision-makers.

A central question in this line of research is how cooperation can
be sustained in a population despite the fact that cooperative be-
havior is costly. Consequently, the paradoxical emergence of mu-
tually beneficial interactions among selfish individuals has attracted
a lot of interest from the Game Theory community in past decades
(e.g., [4, 13, 17, 24]). Most notably, research has focused on the
widely used example of the Prisoner’s Dilemma in order to find out
under what conditions rational decision makers can be incentivized
to cooperate so as to achieve a better joint outcome [1].

The standard Prisoner’s Dilemma model is limited by its binary
nature: only two discrete actions are available - pure cooperation
and pure defection - whereas in many real settings cooperation can
be better thought of as being a continuous trait [17]. Moreover, this
simplification may hide many interesting dynamics of cooperative
behavior, preventing a full analysis of such settings. Therefore, this
work focusses on a continuous version of the Prisoner’s Dilemma
in which the strategy space depicts the individual’s level of cooper-
ation, ranging from fully cooperative to fully defective.

We consider a large population of individuals (or agents) placed
on an arbitrary complex network, interacting with their neighbors
according to the continuous Prisoner’s Dilemma while trying to op-
timise their fitness over time. The agents update their strategy by
adopting, with some probability, the strategy of one of their neigh-
bors depending on their difference in fitness [11]. We propose a
continuous dynamical model that predicts the level of cooperation
of each of the nodes in this network over time, allowing to study
convergence and stability in arbitrary networks. The deterministic
characteristics of this model make it computationally less complex
than traditional binary choice models, allowing to study a broader
range of scenarios numerically. We employ our model to analyze
the evolution of cooperation in a variety of regular and scale-free
networks. The analysis shows that cooperation is promoted for a
range of network settings, and indicates a relation between network
size and connectivity on the one hand, and the resulting level of co-
operation in equilibrium on the other. Moreover, we analytically
study the stability of the model for arbitrary networks. For the spe-
cial case of regular networks, we additionally prove convergence to
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a specific equilibrium where all agents adopt the same strategy.
The remainder of the paper is organized as follows. First, Sec-

tion 2 positions this work within the large body of related research.
Preliminaries on networks, game theory and system modeling and
control are provided in Section 3, laying the foundation for the pro-
posed model, which is introduced in Section 4. Section 5 shows
numerical experiments highlighting the transient and long-term be-
havior of the model. Section 6 presents stability analysis, and Sec-
tion 7 concludes.

2. RELATED WORK
Many studies have analyzed how behavior evolves in a society of

individuals. On a macro level researchers have studied population
dynamics governed by evolutionary rules such as survival of the
fittest; a well known example of such a dynamical system are the
replicator dynamics, a system of differential equations describing
how different strategic types evolve in a large population under evo-
lutionary pressure [12, 19]. On a micro level studies have looked
at the behavioral change of single individuals as a result of their in-
teractions with the environment or with others; notably this line of
research includes learning approaches such as reinforcement learn-
ing [27] and recently also multi-agent reinforcement learning [5,
29]. These two branches share an interesting common ground: the
replicator dynamics have been related to infinitesimal time versions
of several reinforcement learning algorithms such as learning au-
tomata and Q-learning [3, 28].

However, the study of population dynamics usually assumes
well-mixed populations where all pairs of individuals have an equal
chance of interacting, omitting the possibility of spacial structure.
Recently, researchers have started to investigate situations in which
such spacial structure is present, where the population is repre-
sented by a network indicating with whom each individual can in-
teract. Their aim is usually to establish structural network criteria
under which a ‘beneficial’ outcome is reached for the population
as a whole, e.g. which criteria lead to a cooperative outcome in
the Prisoner’s Dilemma when played on a network. Nowak and
May [20] were the first to study the Prisoner’s Dilemma in a popu-
lation of myopic individuals placed on a grid, and interacting only
with their eight neighbors. They found that under an imitate-best-
neighbor rule, cooperators and defectors can survive simultane-
ously in the network. In a similar fashion, Santos and Pacheco [24]
investigate imitation dynamics on scale-free networks and show
that cooperation becomes the dominant strategy in such networks.
Ohtsuki et al. [21] look at various network topologies and find a
link between the cost-benefit ratio of cooperation and the average
node degree for certain imitation-based update rules. Hofmann et
al. [13] simulate various update rules in different network topolo-
gies and find that the evolution of cooperation is highly dependent
on the combination of update mechanism and network topology.
Cooperation can also be promoted using some incentivising struc-
ture in which defection is punishable [4, 26], or in which players
can choose beforehand to commit to cooperation for some given
cost [10]. Both incentives increase the willingness to cooperate
in scenarios where defection would be individually rational other-
wise. Allowing individuals to choose with whom to interact may
similarly sustain cooperation, e.g. by giving individuals the possi-
bility to break ties with ‘bad’ neighbors and replacing them with
a random new connection. Zimmermann and Eguíliz [32] show
how such a mechanism may promote cooperation, albeit sensitive
to perturbations.

Finally, attempts have been made to bridge these two views, unit-
ing the well-mixed population model of the replicator dynamics
with networked interaction structures. Kearns and Suri [16] extend

evolutionary game theory to networks and show that evolutionarily
stable strategies (ESS) are preserved assuming a random network
and adversarial mutant set or vice versa. Ohtsuki et al. [22] show
that moving from a well-mixed population (or complete network)
to a regular network keeps the structure of the replicator dynamics
intact, only transforming the payoff function to account for local
competition. They observe the coexistence of cooperators and de-
fectors under such settings. This last line of research is most closely
related to the work presented in this paper, however our model is
more general and not limited to specific network structures. More-
over, the proposed model captures the continuous nature of cooper-
ation in real world settings, in contrast to the binary choice between
pure cooperation and defection assumed in most related work pre-
sented here. This allows us to study the evolution of cooperation in
a broader setting.

3. PRELIMINARIES
This section introduces elementary background on Networks,

Game Theory, and System Modeling and Control that forms the
foundation of the work presented in this paper. For an in-depth dis-
cussion of these fields the interested reader is referred to [14], [9],
and [18], respectively.

3.1 Networks
Networks, in the most general sense, can be seen as patterns of

interconnections between sets of entities [6]. These entities make
up the nodes in the network, whereas the edges represent how those
entities interact or how they are related. Formally, a network can
be represented by a graph G = (V,W) consisting of a non-empty
set of nodes (or vertices) V = {v1, . . . , vN} and an N × N adja-
cency matrix W = [wij ] where non-zero entries wij indicate the
(possibly weighted) connection from vi to vj . IfW is symmetrical
the graph is said to be undirected, indicating that the connection
from vi to vj is equal to the connection from vj to vi. In social
networks, for example, one might argue that friendship is usually
mutual and hence undirected; this is the approach followed in this
paper as the interaction is a game, naturally involving both parties.
In general however the relationship between nodes can be asym-
metrical resulting in a directed graph. The neighborhood N of
a node vi is defined as the set of vertices it is connected to, i.e.
N (vi) = ∪jvj : wij > 0. The node’s degree deg(vi) is given by
the cardinality of its neighborhood.

Several types of networks can be distinguished based on their
structural properties. In a regular network all nodes have exactly
the same degree, e.g. a ring is a regular network of degree 2. In the
special case of a fully connected network the degree equals n− 1,
meaning that all nodes are connected to all other nodes. In con-
trast, many large social, technological or biological networks ex-
hibit a heavy-tailed degree distribution following a power law [2].
In these so-called scale-free networks the majority of nodes will
have a small degree, while simultaneously there will be relatively
many nodes with very large degree. Another model used to de-
scribe real-world networks is the small-world model, that exhibits
short average path lengths between nodes, and high clustering [30].
Finally, random networks are defined by a probability p with which
two arbitrary nodes are connected [7].

3.2 Game Theory
Game theory models strategic interactions in the form of games.

Each player has a set of actions, and a preference over the joint ac-
tion space that is captured in the received payoffs. For two-player
games, the payoffs can be represented by a bi-matrix (A,B), that
gives the payoff for the row player in A, and the column player in
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T, S P, P

)
Figure 1: General payoff bi-matrix (A, B) for two-player two-
action games (left), and the Prisoner’s Dilemma (right).

B, see Figure 1. In this example, the row player chooses one of
the two rows, the column player simultaneously chooses one of the
columns, and the outcome of this joint action determines the pay-
off to both. The goal for each player is to come up with a strategy
(a probability distribution over its actions) that maximizes his ex-
pected payoff in the game. A strategy that maximizes the payoff
given fixed strategies for all opponents is called a best response to
those strategies.

The players are thought of as rational, in the sense that each
player purely tries to maximize his own payoff, and assumes the
others are doing likewise. Under this assumption, the Nash equi-
librium concept can be used to study what players will reasonably
choose to do. A set of strategies forms a Nash equilibrium if no
single player can do better by unilaterally switching to a different
strategy [9]. In other words, each strategy in a Nash equilibrium is
a best response against all other strategies in that equilibrium.

The canonical payoff matrix of the Prisoner’s Dilemma is given
in Figure 1, where T > R > P > S. In this game, jointly both
players would be best off cooperating and receiving rewardR, how-
ever individually both are tempted by the higher payoff T , leaving
the other with the sucker payoff S. As both reason like this, they
end up in the less favorable state of mutual defection, receiving as
punishment P < R, hence the dilemma.

In this work the players are nodes in the network, repeatedly
playing a game with their neighbors. The players have no knowl-
edge of the underlying game, however this repeated interaction al-
lows for adaptation, i.e. to learn a better strategy over time based
on the payoff received. The game used in this paper is more gen-
eral than the games presented in this section, in that the players can
have a continuous strategy defining their level of cooperation, and
payoffs are calculated accordingly (see Section 4). The dilemma
remains, however, which is the main focus of the analysis in Sec-
tions 5 and 6.

3.3 System Modeling and Control
First, models used for representing dynamical systems are intro-

duced. Both control and stability, being the basis of the analysis
performed in this paper, are then detailed.

3.3.1 Modeling Dynamical Systems
A model can be regarded as an accurate mathematical repre-

sentation of the (nonlinear) dynamics of a system. Essentially,
the goal is the discovery of (nonlinear) differential equations de-
scribing the transient behavior of some state variables in a system.
Typically, state representations are collected in a state vector x =
[x1, x2, . . . , xN ]T and control variables (i.e., actions applied to af-
fect the state vector) are collected in a vector u = [u1, u2, . . . , uq]T

where xi and ui denote the ith state and input respectively. A linear
and time invariant system (LTI) can thus be represented by

ẋ = Ax + Bu

where A and B correspond to the dynamic and control matrices,
respectively.

When the system dynamics are nonlinear and/or time varying, as
is the case in this paper, the state space model has to be extended to

a more general form
ẋ1
ẋ2
...
ẋN

 =


f1(t;x1, . . . , xN , u)
f2(t;x1, . . . , xN , u)

...
fN (t;x1, . . . , xN , u)


where the change in the state variables is a nonlinear mapping of the
state variables and the control action. Moreover, each state variable
is governed by its own dynamics. Compactly this can be written in
matrix form as ẋ = f(t; x, u).

3.3.2 Stability & Control of Dynamical Systems
One of the main goals in control theory is the manipulation of the

system’s inputs to follow a reference over time. In other words, this
manipulation feeds back the difference between the state variable
x and the reference point xref at any instance in time. Such a rule,
where u = l(x, xref), is called a feedback controller. Controller
design is a wide-spread field and its discussion is beyond the scope
of this paper. Interested readers are referred to [18]. Here, the
main interest is in stability and convergence analysis of dynamical
systems as this work builds on such results to study certain aspects
of the proposed model (see Section 6). Stability is studied in the
vicinity of equilibrium points (i.e., points where ẋ = 0). In the
following, B(x̄, ε) denotes an open ball centered at x̄ with a radius
ε, that is the set {x ∈ Rd : ||x − x̄|| < ε}, where || · || represents
the L2-norm. The following definition of stability can be stated:

DEFINITION 1 (STABILITY). An equilibrium point xe of a
nonlinear system is said to be stable, if for all ε > 0 there exists a
δ > 0 such that:

x̄ ∈ B(xe, δ) =⇒ f(t; x̄, 0) ∈ B(xe, ε) for all t ≥ 0.

Stability can be studied under different contexts, including Lya-
punov [23], Gershgorin [8, 15], and Jacobian analysis [18]. Defin-
ing and analyzing Lyapunov functions for general networks is com-
plex. Therefore, this paper adopts methods from Gershgorin and
Jacobian analysis for the stability study. Next, each of these are
briefly detailed.

Gershgorin Theorem.
One of the most important ingredients in stability analysis is the

sign of the dynamic matrix eigenvalues. In general, these can not
be computed in a closed form and numerical analysis is required.
Gershgorin disks, however, provide a bound estimate for the eigen-
values of strictly diagonally dominant matrices. Gershgorin’s the-
orem, used later in Section 6.1, is presented next without proof.

THEOREM 1 (GERSHGORIN DISKS [8]). Let A = [aij ] be a
dominant n × n matrix. Then the eigenvalues of A are located in
the union of n disks:{

λ :
∣∣∣λ− aii∣∣∣ ≤∑

j 6=i

|aij |
}
, i, j ∈ {1, 2, . . . , n}

Jacobian Analysis.
Typically, nonlinear dynamical systems exhibit multiple equilib-

ria (i.e. points where ẋ = 0). It is important in such cases to study
stability in the neighborhood of an equilibrium point. Typically,
the Jacobian matrix J of the system is first computed in its general
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form according to

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xN

...
...

. . .
...

∂fN
∂x1

∂fN
∂x2

. . . ∂fN
∂xN


J is then evaluated at the equilibria and its eigenvalues are assessed
for stability. Namely, if the real part of the eigenvalues of J were
negative then the system is stable, else it is said to be unstable.

4. DYNAMICAL MODELING
This section details the continuous dynamical model proposed

in this work. Firstly, the model of a 2-player Continuous Action
Iterated Prisoner’s Dilemma (CAIPD) is derived. This model is
then generalized to the N -player case.

4.1 2-Player CAIPD
In the 2-player continuous action iterated prisoner’s dilemma

(CAIPD) each player can choose a level of cooperation from a con-
tinuous set of strategies.

Let xi ∈ [0, 1] denote the strategy of the ith player with i ∈
{1, 2} representing each player. Here, xi = 0 corresponds to full
defection, while xi = 1 represents full cooperation. A player pays
a cost cxi while the opponent receives a benefit bxi, with b > c. It
is clear that a defector (i.e., xi = 0) pays no cost and distributes no
benefits. The fitness of player i, F (xi), can be thus defined as:

F (xi) = −cxi + bxj (1)

Using (1), the difference between the fitnesses of two players can
be derived as

∆Fji = F (xj)− F (xi)

= −c(xj − xi)− b(xj − xi)
= (−c− b)(xj − xi)

Following the imitation dynamics [11], where each player
switches to a neighboring strategy with a certain probability, the
following strategy evolution law is introduced:

xi(k + 1) = (1− pij)xi(k) + pijxj(k), (2)

where k represents the iteration number and pij = sig(β∆Fji),
with sig(β∆Fji) = 1/(1 + exp(−β∆Fji)) and β > 0. In words,
Equation 2 states that in iteration k a player switches to a neighbor-
ing strategy with a probability pij .

The change ∆xi(k) = xi(k + 1)− xi(k) in strategies between
two iterations k + 1 and k can be rewritten as:

∆xi(k) = xi(k + 1)− xi(k)

= pij
(
xj(k)− xi(k)

)
Assuming infinitesimal changes and using Taylor expansion, the
strategy adaptation law of player i can be written as

ẋi(t) = pij(xj(t)− xi(t)), (3)

In essence, the adaptation law of Equation (3) shows that for high
values of pij , the ith player switches its strategy to the opponent’s
strategy, while for low values of pij it keeps its own strategy.

4.2 N-Player CAIPD
Having introduced the 2-player CAIPD, this section details the

more general N -player case. The N -player CAIPD is defined for a
group ofN players on a weighted graph (Section 3.1) G = (V,W)

where V = {v1, v2, . . . , vN} represents the set of nodes (i.e., each
player is represented by a node), andW = [wij ] denotes the sym-
metric weighted adjacency matrix, where wij ∈ {0, 1} is a bi-
nary variable describing the connection between players i and j,
∀(i, j) ∈ {1, 2, . . . , N} × {1, 2, . . . , N}. Further, wii is assumed
to be zero for all i ∈ {1, 2, . . . , N}.

Let xi ∈ [0, 1] denote the cooperation level of node vi. A net-
work with value x and topology G is defined as Gx = (G, x) with
x = [x1, x2, . . . , xN ]T . Supposing that each node of the network
Gx is a dynamic player with

ẋi = hi(x), (4)

the network Gx can be regarded as a dynamical system in which
the value x evolves according to the network dynamics ẋ = H(x).

Having a general form for the network dynamics, the next step
is to determine hi(·) in Equation 4 for all i ∈ {1, 2, . . . , N}. To
determine hi(·) in its full form, firstly, the ith node/player fitness
needs to be derived. Generalizing the 2-player CAIPD, the follow-
ing can be computed:

F (xi) = −deg(vi)cxi + b

N∑
j=1

wijxj (5)

where deg(vi) is the degree of node vi. In Equation 5, the ith player
pays a cost of cxi for each of its neighbors j (i.e.,−deg(vi)cxi) and
receives a benefit of bxj for all its neighbors j (i.e., b

∑N
j=1 wijxj ,

with wij ∈ 0, 1 indicating whether i and j are connected). There-
fore, the difference between the ith and jth player fitnesses can be
written as:

∆Fji = F (xj)− F (xi)

= c

(
deg(vi)xi − deg(vj)xj

)
+ b

(
N∑

k=1

(wjk − wik)xk

)

Given that the probability of strategy adaptation pij =
sig(β∆Fji), similar to (2) the evolution law for ith player in the
network can be derived as

xi(k+1) =
1

deg(vi)

[
N∑

j=1

(1−pijwij)xi(k)+pijwijxj(k)

]
(6)

The difference equations in (6) can again be converted to differ-
ential equations by assuming infinitesimal k and applying Taylor
expansion, which leads to

ẋi(t) =
1

deg(vi)

[
N∑

j=1

pijwij

(
xj(t)− xi(t)

)]

Therefore, hi(·), introduced in (4), is:

hi(x) =
1

deg(vi)

[
N∑

j=1

pijwij

(
xj(t)− xi(t)

)]
(7)

Applying the same techniques to the overall network, the follow-
ing network dynamics can be derived:

ẋ = H(x) = DA(x)x (8)
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where

A(x) =



−
N∑

j=1

p1jw1j w12p12 . . . w1Np1N

w21p21 −
N∑

j=1

p2jw2j . . . w2Np2N

...
...

. . .
...

wN1pN1 wN2pN2 . . . −
N∑

j=1

wNjpN,j


with pij = 1 − pji, and D = diag(1/deg(vi)) for i =
{1, 2, . . . , N}.

Having derived the dynamical model capable of representing ar-
bitrary complex networks, next a detailed experimental analysis on
various networks is performed.

5. EXPERIMENTS
The dynamical behavior of the proposed model is studied on

two types of networks. Scale-free and regular networks constitute
the benchmarks on which experiments are carried out. The scale-
free networks are generated using the Barabási-Albert model [2],
where node addition follows the preferential attachment scheme.
Namely, starting from a connected subset of nodes, every additional
node is connected to m existing nodes with a probability propor-
tional to the degree of those nodes. In other words, nodes having
higher number of neighbors have a higher probability for attaining
even more neighbors. The regular networks follow the simple rule
that every node in the network has exactly the same degree, i.e.
deg(vi) = deg(vj),∀i, j ∈ {1, 2, . . . , N}.

A pictorial illustration of the change in the network’s topology
as a function of its average node degree ζ is shown in Figure 2. Fig-
ures 2(a), 2(c) and 2(e) illustrate this change for scale-free networks
following a power law degree distribution. It is clear that as ζ in-
creases so does the network’s link density. In regular graphs, how-
ever, all nodes have equal degrees leading to an evenly distributed
link density with an increase in ζ, as shown in Figures 2(b), 2(d)
and 2(f).

Two sets of experiments are conducted. Firstly, Section 5.1 stud-
ies the effect of the network’s connectivity/topology on cooperation
promotion and convergence. The transient behavior of scale-free
networks is analyzed. Results show that: (1) the proposed model
promotes cooperation, and (2) convergence is achieved under dif-
ferent parametric settings. Secondly, in Section 5.2 the interest is
in the long-term behavior on a broader spectrum of networks. Both
scale-free and regular networks are considered. Results again con-
firm convergence and cooperation promotion in both types of net-
works.

In all simulations, each individual is initiated to either pure co-
operation (i.e., xi = 1) or pure defection (i.e., xi = 0). The cost
of cooperation is set to c = 1 and the benefit, b, is set to 4. Finally,
β = 1 is used for the sigmoidal function defining the probability of
strategy adaptation.

5.1 Transient Behavior
The transient behavior of scale-free networks is investigated on

different network topologies, initial conditions, and sizes. It is
essential to note that the proposed model incurs factors of mag-
nitude of lower computational complexity compared to the tradi-
tional techniques available elsewhere, see Section 2. This allows
to simulate the model exactly. In other words, the behavioral re-
sults, shown in Figure 3, are attainable through only one run of the
model.

(a) Scale-free, ζ = 2 (b) Regular, ζ = 2

(c) Scale-free, ζ = 4 (d) Regular, ζ = 4

(e) Scale-free, ζ = 20 (f) Regular, ζ = 20

Figure 2: Scale-free and Regular graphs with various average de-
grees ζ.

State variable trajectories (i.e, xi, for i ∈ {1, . . . , n}) are plotted
over time for different sizes and average degrees of the network.
Firstly, trajectory results on relatively small networks with varying
average degree ζ are shown in Figures 3(a) and 3(b). It is clear that
trajectories converge to pure cooperation for small average degrees
(i.e., ζ = 2). The percentage of cooperators decreases with an
increase of ζ, see Figure 3(b). It is interesting to note, however,
that contrary to the binary case (Section 2), some percentage of
cooperation can still be sustained due to the continuous nature of
the model.

The transient behavior is also investigated for larger (i.e., N =
1000) scale-free networks, as shown in Figure 3(c), where sim-
ilar conclusions can be drawn. Finally, the expected coopera-
tion level among all network nodes is investigated for large (i.e.,
N = 1000) scale-free networks with different structural charac-
teristics. For different initial fractions (i.e., 20%, 50% and 80%)
of cooperators and defectors that are randomly placed at different
positions in the network, the cooperation level is calculated using
E(x) = 1

N

∑N
i=1 xi. Averaged cooperation levels are then col-

lected and plotted in Figures 4(a)-(d) for ζ = 2, 6, 10 and 20,
respectively. It is again clear that lower average degrees ζ promote
cooperation, whereas higher values lead to defection.

Another interesting aspect of the model is interpretability. Gen-
erally speaking, internal node dynamics are hardly interpretable
from game theoretic models. Using our proposed model, study-
ing the transient behavior of the network can uncover internal dy-
namics and insights about the system. For instance, in Figure 3(a)
damped oscillations can be seen in the cooperation levels of sev-
eral individuals. Such analysis might uncover correlations between
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(a) N = 20, ζ = 2 (b) N = 20, ζ = 4

(c) N = 1000, ζ = 6

Figure 3: Transient behavior of sample Barabási-Albert scale-free
graphs with various average degrees.

the nodes’ dynamical behaviors and their positions on the graph.
Furthermore, a link to the discrete case can be made. Intuitively,
the continuous model is related to the study of the game theoretic
models in expectation. In discrete terms, if the value of cooperation
attained from the proposed continuous model is, say, 0.9 (i.e., for
all nodes xi = 0.9), e.g., Figure 4(a), then in 90% of the discrete
algorithm runs cooperators will dominate while in the other 10%
defectors win.

5.2 Long Term Behavior
Clearly from the previous experiments, the proposed model con-

verges. Here, we are interested in analyzing the long-term dynami-
cal behavior. Specifically, the values to which state variables even-
tually converge are studied in both regular as well as scale-free net-
works. Networks of different sizes N ∈ {20, 100, 200, . . . , 800}
and average node degrees ζ ∈ {2, 4, . . . , 20} are considered.

For each specific setting, 100 random initial populations with
equal number of cooperators and defectors are simulated and the
average final level of cooperation is computed. Results are reported
in Figures 5(a) and 5(b) for scale-free and regular networks, re-
spectively. These results not only show the convergence values,
they also indicate that for both network types, highest coopera-
tion promotion is attained for low average degree and large pop-
ulations. Note that the slightly lower final cooperation level for
regular graphs of degree ζ = 2 can be explained by the fact that a
connected regular network of degree 2 can only be a cycle. There-
fore it misses many of the structural properties of higher degree
networks such as clustering, which hinders the evolution of cooper-
ation. Moreover, by comparing Figures 5(a) and 5(b), it can be seen
that the highest cooperation level achieved in scale-free networks
(i.e., E(x) = 0.75) is larger in value compared to that achieved in
regular networks (i.e., E(x) = 0.65). This result is in accordance
with the notion that scale-free networks promote cooperation due
to their power law degree distribution [24].

Finally, we compare our model with the binary iterated pris-
oner’s dilemma model introduced in [11], with game parameters

(a) N = 1000, ζ = 2 (b) N = 1000, ζ = 6

(c) N = 1000, ζ = 10 (d) N = 1000, ζ = 20

Figure 4: Average cooperation level in scale-free networks with
N = 1000 and various average degrees.

c = 1, b = 4 and β = 1. This model is also similar to the models
in [24, 25] except for minor differences in the design of the prob-
ability function. Figure 5(c) shows that using this binary model,
cooperators have significantly less chance to survive in scale-free
networks. In regular networks, cooperation goes extinct in all sce-
narios. Therefore, it is clear that our proposed dynamical model
is better able to explain why cooperation can prevail in complex
social networks.

6. STABILITY ANALYSIS
Having performed the above experimental analysis, various

properties of the model/network are apparent. For instance, it is
clear that the model converges when all players adopt the same
strategy. In this section, we amend these experimental results by
developing mathematical tools explaining such behavior. Gersh-
gorin disks are used as the first step to analyze the long term stabil-
ity of any arbitrary network. Due to the time varying nature of the
state matrix DA(.), insights on the required conditions for system
stability of the system will be provided. Finally, Taylor lineariza-
tion and Jacobian analysis are used to prove equilibrium point sta-
bility for regular networks.

6.1 Long Term Stability
To analyze long term stability of the proposed model we start

by studying the eigenvalues of the system. This study builds on
the Gershgorin theorem, introduced in Section 3.3, for estimating
eigenvalues of a matrix. From (7) and (8) it is clear that the rows
of the state matrix sum to zero and therefore, the matrix is diago-
nally dominant. Theorem 1 can be used to find the ranges of the
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(a) Scale-Free Network (b) Regular Network

(c) Scale-Free network with binary
model

Figure 5: Long term expected cooperation level in Regular net-
works.

eigenvalues as∣∣∣λ− aii∣∣∣ ≤∑
j 6=i

|aij | i ∈ {1, . . . , N}

−
∑
j 6=i

|aij |+ aii ≤ λ ≤
∑
j 6=i

|aij |+ aii

Therefore, it can be seen that for any row of matrix DA(.) we have

−2
∑
i6=j

wijpij ≤ λ ≤ 0

Knowing that wij ∈ {0, 1} and pij ∈ [0, 1], it can be concluded
that the eigenvalues are nonpositve. According to [31] it is plausi-
ble that when the DA(.) matrix changes sufficiently slow and has
small variations, the eigenvalues can be used to analyze its stability
(i.e., system x converges to a nonzero but bounded vector). Further
study of the general time varying DA(.) matrix is beyond the main
scope of this paper. However, next we provide a proof of equilib-
rium point stability for the special case of regular networks.

6.2 Regular Networks
We start with the following proposition:

PROPOSITION 1 (REGULAR NETWORKS). For a regular
network GReg

x , x? = [α, . . . , α]T for α ∈ [0, 1] is a stable
equilibrium point.

PROOF. It is clear that the point x? = [α, . . . , α]T is an equilib-
rium point of Equation 8 since ẋ = DA(x)|x? = 0. Next, a proof
that x? is stable has to be achieved to conclude the proposition. For
that we start by computing the Jacobian matrix J. Please note that
in what comes next a regular network is adopted and therefore all
nodes have the same degree d. Starting with the diagonal entries
[DA]ii, the following is derived:

∇xi

[
− 1

d

N∑
j=1

wijpij
]

= −1

d
∇xi

N∑
j=1

sig(β∆Fji)wij

= −1

d

N∑
j=1

∇xisig(β∆Fji)wij

= −β
d

N∑
j=1

wijsig(β∆Fji)(1− sig(β∆Fji))

∇xi

[
F (xj)− F (xi)

]
= −β

d

N∑
j=1

wijsig(β∆Fj,i)(1− sig(β∆Fj,i))
[
bwij + cd

]
Evaluating the above around the equilibrium point yields:

∇xi

[
− 1

d

N∑
j=1

wijpji
]∣∣∣

x?
= − 1

4d

N∑
j=1

wij

[
bwij + cd

]
Next, the derivations of the off-diagonal entries [DA]ij , i 6= j are
detailed:

∇xj

1

d
wijpij = wij∇xj sig(β∆Fji)

=
β

d
wijsig(β∆Fji)(1− sig(β∆Fji))∇xj ∆Fji

=
β

d
wijsig(β∆Fji)(1− sig(β∆Fji))∇xj

[
F (xj)− F (xi)

]
=
β

d
wijsig(β∆Fji)(1− sig(β∆Fji))

[
− cd− bwij

]
Evaluating the above around x? yields:

∇xj

[1

d
wijpi,j

]∣∣∣
x?

=
β

4d
wij

(
− cd− bwij

)
Therefore, the Jacobian of DA can be written as:

J =
β

4d


−

N∑
j=1

w1j(cd+ bw1j) . . . −w1N (cd+ bw1N )

...
. . .

...

−wN1(cd+ bwN1) . . . −
N∑

j=1

wNj(cd+ bwNj)


An equilibrium point x? is stable if and only if all eigenvalues

of the Jacobian matrix have negative real parts or, equivalently, if
the Jacobian matrix is negative definite. Considering that J is a
symmetric matrix, νTJν, where ν = [ν1, ν2, . . . , νN ]T can be any
non-zero column vector of N real numbers, can be calculated as:

νTJν =
β

4d


−
∑N

j=1 w1j(cd+ bw1j)(ν1 + νj)

−
∑N

j=1 w2j(cd+ bw2j)(ν2 + νj)
...

−
∑N

j=1 wNj(cd+ bwNj)(νN + νj)


T 

ν1
ν2
...
νN


= − β

4d

N∑
i=1

N∑
j=1

wij(cd+ bwij)(vi + vj)
2 < 0

Therefore νTJν is always negative for any non-zero column vector
ν. Therefore, J is a negative definite matrix. This concludes that
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all eigenvalues of J are negative, which means the equilibrium x?

is a stable equilibrium.

This leads to the following theorem for regular networks:

THEOREM 2 (STABILITY IN REGULAR NETWORKS). For a
regular network GReg

x , x? = [α, . . . , α]T for α ∈ [0, 1] is a stable
equilibrium point.

7. CONCLUSIONS
This paper has introduced a novel model to study the evolution

of cooperation in arbitrary complex networks. This model offers
three advantages over existing approaches. (1) To the best of our
knowledge, it is the first dynamical model that can be used to ana-
lytically study arbitrary complex networks. (2) It allows for a con-
tinuous level of cooperation, in line with many real settings that do
not merely offer a binary choice between cooperation and defec-
tion. (3) The deterministic nature of the proposed model makes it
computationally less complex than binary choice models, allowing
to study a broader range of scenarios numerically.

Numerical simulations have been performed on a variety of reg-
ular and scale-free networks. These show that the proposed model
promotes cooperation for a broad range of settings, clarifying why
cooperation can prevail in natural societies. The results also indi-
cate a positive relation between the network size and the level of
cooperation in equilibrium on the one hand, and an inverse relation
between connectivity and cooperation on the other. Additionally, a
study of stability has been presented for arbitrary networks; more-
over, regular networks have been shown to converge to a specific
equilibrium where all agents adopt the same strategy.
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