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ABSTRACT
Shared effort games model people’s contribution to projects
and sharing the obtained profits. Those games generalize
both public projects like writing for Wikipedia, where ev-
erybody shares the resulting benefits, and all-pay auctions
such as contests and political campaigns, where only the
winner obtains a profit. In θ-equal sharing (effort) games, a
threshold for effort defines which contributors win and then
receive their (equal) share. (For public projects θ = 0 and
for all-pay auctions θ = 1.) Thresholds between 0 and 1
can model games such as paper co-authorship and shared
homework assignments. First, we fully characterize the con-
ditions for the existence of a pure-strategy Nash equilibrium
for two-player shared effort games with close budgets and
project value functions that are linear on the received con-
tribution and prove some efficiency results. Second, since
the theory does not work for more players, fictitious play
simulations are used to show when such an equilibrium ex-
ists and what its efficiency is. The results about existence
and efficiency of these equilibria provide the likely strategy
profiles and the socially preferred strategies to use in real
life situations of contribution to public projects.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics; K.4.4 [Computers and Society]: Electronic Com-
merce

General Terms
Economics, Theory

Keywords
Competition, Equilibrium, Market, Models, Simulation,
Shared effort games

1. INTRODUCTION
Many real-world situations include a set of people invest-

ing resources in several projects. The revenues from these
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Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
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projects are typically divided based on the individual in-
vestments. Examples of such situations include contribu-
tions to online communities [6], Wikipedia [5], political cam-
paigns [14], paper co-authorship [7], or social exchange net-
works [8]. Another example is a worker in a company who is
investing her time and obtaining some share from the total
revenue of the company. We next look into some impor-
tant special cases of these widespread interactions between
resource investors.

The division of the obtained revenue may differ from one
setting to another, such as sharing profits equally, propor-
tionally, or in some other way. For instance, in several real
life cases, not all contributors receive a (positive) share.
Sharing with a minimum contribution threshold means that
only the ones who contribute at least this threshold, get a
share. This threshold is often present. This threshold might
be fixed, but it may also depend on the investments in the
project. Assigning bonus points to students from home-
work exercises is an interesting example, where one needs to
achieve at least some percentage of the best grade, to ob-
tain the homework’s credits.1 In this example, participants’
utilities (i.e., their gain) are typically equal for anyone who
is above the threshold. Another related example a Colonel
Blotto game (see e.g. [13]). This example is “highly thresh-
olded” because only the player whose effort per project is
maximum collects the complete revenue. Another example
is a company where an employee obtains decision power or
revenue (e.g., an annual bonus) if she has invested sufficient
effort [11]. In conclusion, the interactions where people in-
vest resources in several projects and share the obtained
revenues are common. Therefore, understanding them is
important in order to know how to behave, such that the
total revenue is maximized.

A shared effort game consists of a set of players and a
set of projects. Each player has a budget to invest across
a predefined subset of projects in any manner she desires.
The utility of each player is the sum of the utilities that
she obtains from each project, where the latter depends on
the project’s value. A project’s value is a function of the
investments of the players in a given project. In particular,
we consider a θ-sharing game where a player receives utility
from a project only if her investment is above a threshold
defined by a θ fraction of the maximum investment. In
this paper, we assume the project’s value is always equally
shared among players that invest above this threshold.

1E.g.: http://www.physics.umd.edu/courses/Phys121/
Griffin/grading.html
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We now provide some detailed examples of such interac-
tions. We use them throughout the paper for illustration.

Example 1. Consider two collaborating scientists in a
narrow field. They can work on some papers alone or to-
gether. When they collaborate, the second author has to
contribute comparably with the first one, in order to be con-
sidered as an author.

Example 2. Consider a group of people, each having a
budget of free time. The possible ways to spend this time are:
writing for Wikipedia, coding for Linux, or playing volleyball.
Each project yields some utility to its contributors. Specifi-
cally, writing to Wikipedia gives emotional satisfaction and
respect; Linux provides all the rewards that Wikipedia does
and also a plus for a CV; while playing volleyball yields emo-
tional satisfaction and improves health. We assume that the
total contribution of a project can be expressed by a single
positive real number.

Contributing to projects where only the maximum con-
tributor to a project obtains the project’s value has been
considered in all-pay auctions. They can model lobbying,
single-winner contests, political campaigns, striving for a
job promotion (see e.g. [14]) and to Colonel Blotto games
with two players [13]. One of the measures of efficiency is
the price of anarchy, which is the total utility of the play-
ers in an equilibrium with least total utility relatively to
the optimum total utility (see [9]). The price of anarchy
was bounded in [2], but assuming some very specific condi-
tions (such asN -approximate Vickrey conditions). However,
there is no analysis of the existence of Nash Equilibria (NE)
and their efficiency in the general effort sharing interaction,
where several people invest in projects and share the values
of these projects. As we have seen, these interactions are of
large importance. Therefore, the existence and the efficiency
of equilibria should be analyzed to recommend socially op-
timum behavior to the contributors.
Our paper aims to fill this gap. We do the following.

1. Characterize the existence of NE in a partial case.

2. Theoretically study its efficiency, when it exists. By
efficiency we mean the optimum total utility divided
by the total utility of a NE.

3. Generalize fictitious play2 to shared effort (infinite)
games.

4. Provide a best response algorithm.

5. Simulate the fictitious play to find Nash Equilibria and
when found - their efficiency.

A shared effort game is infinite3 (even non-countable), the
set of pure strategies being all the possible splits of each
player’s budget to the projects where she may contribute.
We consider only pure equilibria throughout the paper, even
when we do not mention this explicitly.
Our research is organized as follows. After formally defin-

ing shared effort games, we treat the existence and efficiency
of NE theoretically for a subset of games. To investigate ex-
istence and efficiency of NE in some other cases, we develop

2The original fictitious play was proposed by Brown [3].
3I.e. the number of possible strategies is infinite.

and employ fictitious play simulations. That is, we define
a sequence of plays we call Infinite-Strategy Fictitious Play
and simulate it till and if it converges. Eventually, we check
whether this is a NE and if that is the case, what its ef-
ficiency is. The results improve the understanding of the
possible situations that are likely to arise in real life and
suggest strategies to play, in order to maximize the social
welfare.

2. MODEL
To model the situation we have described, we now define

shared effort games, that also appeared in [2]. There are
n players N = {1, . . . , n} and a set of projects Ω. Each
player i ∈ N can contribute to projects in Ωi, where ∅ �

Ωi ⊆ Ω; the contribution of player i to project ω ∈ Ωi is
denoted by xi

ω ∈ R+. Each player i has a budget Bi > 0,
and the strategy space of player i (i.e., the set of her possible

actions) is
{
xi = (xi

ω)ω∈Ωi ∈ R
|Ωi|
+ |∑ω∈Ωi

xi
ω ≤ Bi

}
. The

strategies of all the players except i is denoted x−i.
To define the utilities, each project ω ∈ Ω is associated

with its project function, which determines its value, based
on the total contribution vector xω = (xi

ω)i∈N that it re-
ceives; formally, Pω(xω) : R

n
+ → R+. We assume that ev-

ery Pω is increasing and differentiable, in every parameter.
Sometimes we give an example of a project function that is
a function of a single parameter, like Pω(x) = 2x. In those
cases, we assume that project functions Pω depend only on
the

∑
(xi

ω)i∈N , which can also be denoted by xω when it is
clear from the context. However, in general Pω(xω) : R

n
+ →

R+, unless otherwise stated. The project’s value is dis-

tributed among the players in Nω
Δ
= {i ∈ N |ω ∈ Ωi} accord-

ing to the following rule. From each ω ∈ Ωi, each player i
gets a share φi

ω(xω) : R
n
+ → R+ with free disposal:

∀ω ∈ Ω :
∑
i∈Nω

φi
ω(xω) ≤ Pω(xω). (1)

We assume that the sharing functions are non-decreasing.
We denote the vector of all the contributions by x =

(xi
ω)

i∈N
ω∈Ω. The utility of a player i ∈ N is defined to be

ui(x)
Δ
=

∑
ω∈Ωi

φi
ω(xω).

We now define a specific variant of a shared effort game,
called a θ-sharing mechanism. This variant is both relevant
to many applications and used is the theoretical part. De-
fine, ∀θ ∈ [0, 1], the players who get a share

Nθ
ω

Δ
=

{
i ∈ Nω|xi

ω ≥ θ · max
j∈Nω

xj
ω

}
,

that is those who bid at least θ fraction of the maximum bid
size to ω. We then define the θ-equal sharing mechanism,
where the project’s value is equally divided between all the
users, who contribute at least θ of the maximum bid to the
project.

Definition 1. The θ-equal sharing mechanism, denoted
by Mθ

eq, is

φi
ω(xω)

Δ
=

{
Pω(xω)

|Nθ
ω| if i ∈ Nθ

ω,

0 otherwise.
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Reconsider the example from Section 1 in this model. In
example 1, the scientists are the players and papers are the
projects. Assume that a paper’s total contribution to the
reputation of its authors is proportional to the total invest-
ment in the paper. That is, the project’s functions are linear.
In order to be considered an author, a minimum threshold
of the maximum contribution is required, and a paper’s to-
tal contribution to the authors’ reputation is equally divided
between all its authors. This is a shared effort game with a
threshold between 0 and 1 and equal sharing.
In example 2, the people are the players and Wikipedia,

Linux and volleyball are the projects. To actually receive
these contributions, a person has to invest at least some
minimum contribution. - For instance, one cannot efficiently
contribute to Wikipedia without initially learning the writ-
ing style and the platform. That is, the threshold are posi-
tive. The utilities obtained from each project are not equally
divided, but in a more complicated manner. This is a shared
effort game with a positive threshold and some complicated
sharing functions.

3. THEORY OF NASH EQUILIBRIUM
We study the existence of NE, and when it exists we con-

sider its price of anarchy and stability. First, we consider
some simple sufficiency results. Then, we provide a charac-
terization of the existence of NE for a special case and some
efficiency results. In the next section, simulations help ana-
lyzing some cases that are not treated theoretically. Recall
that we consider only pure equilibria throughout the paper.
First, we obtain the following.

Theorem 1. Suppose the strategy sets are non-empty,
compact and convex. Then, if each φi

ω is continuous and
concave, then a pure NE exists. If we additionally suppose
that the strategy sets are equal to all the payers (in particu-
lar, all Ωis are the same) and that the utility functions are
symmetric, then we also conclude that a symmetric NE ex-
ists above.

Proof. Immediate from Proposition 20.3 in [12] (and of
Theorem 3 in [4], for the symmetric case).
For the non-symmetric case of M0

eq, a stronger result can
be proven.

Theorem 2. The game M0
eq admits a potential. If the

functions Pω are continuous and the strategy spaces are com-
pact, then a pure NE exists.

Proof. Define P : Y → R by P (xω)
Δ
=

∑
ω∈Ω

Pω(xω)
|Nω| . This is

a potential function. the game possesses a pure NE, when-
ever the potential function admits the maximum. In our
case, as these functions are continuous and the spaces are
compact, they always achieve the maximum (see Lemma 4.3
in [10]).

3.1 Characterization for Two Players with
Close Budgets

We now consider the simple case of two players, where
all the project functions are linear with coefficients αm ≥
αm−1 ≥ . . . ≥ α1. We denote the number of projects with
the largest coefficient project functions by k ∈ N, i.e. αm =
αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1. We
call those projects steep. Assume w.l.o.g. that B2 ≥ B1.

Our goal is to characterize the existence of a NE. We
shall need some definitions. We call a project that receives
no contribution in a given profile a vacant project.

Definition 2. A player is dominated at a project ω, if it

belongs to the set Dω
Δ
= Nω \Nθ

ω. A player is suppressed at

a project ω, if it belongs to the set Sω
Δ
=

{
i ∈ Nω : xi

ω > 0
}\

Nθ
ω. That is, a player who is contributing to a project but is

dominated there.

In a NE a player is suppressed at a project if and only if
it is suppressed at any project where it contributes. This is
true since if a player is suppressed at project p but it also
contributes to project q 
= p and is not suppressed there,
then it would like to move its contribution to p to project q.
We introduce several lemmas, before formulating and

proving the characterization. The lemmas describe what
must happen in any NE.

Lemma 1. Consider an equal θ-sharing game with two
players with budgets B1, B2, w.l.o.g., B2 ≥ B1. Assume
0 < θ < 1, and linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g).
Then the following hold in any NE.

1. At least one player contributes to a steep project.

2. Suppose that a non-suppressed player, contributing to
a steep project, contributes to a non-steep project as
well. Then, it contributes either alone or precisely the
least amount it should contribute to achieve a portion
in the project’s value.

3. Suppose we have a NE where both players contribute to
steep projects and are not suppressed. Then, they never
contribute to the same non-steep project together.

Proof. At least one of the players contributes to a steep
project, for the following reasons. If only the non-steep
projects receive a contribution, then take any such project
p. If a single player contributes there, then this player would
benefit from moving to contribute to a vacant steep project.
If both players contribute to p, then if one is suppressed, it
would like to deviate to any project where it would not be
suppressed, and if no-one is suppressed, then a player who
contributes not less would like to contribute to a vacant steep
project instead.

We prove part 2 now. Let i ∈ N be any non-suppressed
player among those who contribute to a steep project,
w.l.o.g. – to project m. Assume first that player j 
= i
is not suppressed. Then, for any non-steep project where
i contributes, it contributes either alone or precisely the
least amount it should contribute to achieve a portion in
the project’s value, because otherwise i would like to in-
crease its contribution to m on the expense of decreasing its
contribution to the considered non-steep project.

Now, consider the case where j is suppressed. Then, even
if j contributes to a non-steep project where i contributes
(and is suppressed there), i still will prefer to move some
budget from this project to m, since i receives the whole
value of m as well. Thus, this cannot be a NE.
To prove part 3, notice that part 2 implies that if both

such players contribute to the same non-steep project, each
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contributes precisely the least amount it should contribute
to achieve a portion in the project’s value. This contradicts
the assumption that θ < 1.

Lemma 2. Consider an equal θ-sharing game with two
players with budgets B1, B2. W.l.o.g., B2 ≥ B1. Assume
0 < θ < 1, and linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g).
If B1 ≥ θB2, then the following hold in any NE.

1. Each player contributes to every steep project.

2. A non-steep project receives the contribution of at most
one player.

Proof. Since B1 ≥ θB2, no player is suppressed, because
a suppressed player would prefer to contribute to a project
where it would not be suppressed, and at any project, a
player which concentrates all its value there is not sup-
pressed.
Every steep project receives a positive contribution from

each player, since otherwise, the player who does not con-
tribute to some steep project, will profit from contributing
there exactly the threshold value, while leaving at least the
threshold values at all the projects where it contributed.
There is always a sufficient surplus to reach the threshold
because B1 ≥ θB2.
We next prove the second part of the lemma. Since both

players are non-suppressed contributors to steep projects,
then, according to part 2 in Lemma 1, we conclude that
there exist no non-steep projects where j and i contribute
together.

We shall need another definition.

Definition 3. A 2-steep project is a project that is the
most profitable among the non-steep ones.

We are now ready to characterize the existence of a NE
in shared effort games with two players.

Theorem 3. Consider an equal θ-sharing game with two
players with budgets B1, B2. W.l.o.g., B2 ≥ B1. Assume
0 < θ < 1, and linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g). For B1 ≥ θB2, this game has a
pure strategy NE if and only if the following both hold.4

1. 1
2
αm−k+1 ≥ αm−k,

2. B1 ≥ kθB2;

The idea of the proof is as follows. To show existence of an
equilibrium under the assumptions of the theorem, we just
give a strategy profile and prove that no unilateral deviation
is profitable. We show the other direction by assuming that
a given profile is a NE and deriving the asserted conditions.
To do this, we first use the lemmas we have just presented
in order to limit the possibilities for an equilibrium profile.
We prepend the following technical lemma.

Lemma 3. Consider an equal θ-sharing game with two
players with budgets B1, B2. W.l.o.g., B2 ≥ B1. Assume
0 < θ < 1, and linear project functions with coefficients

4If αm−k does not exist, consider the containing condition
to be vacuously true.

αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g). Assume that no player is sup-
pressed anywhere, and player j does not contribute to a non-
steep project p. Consider player i 
= j.
Then, the following hold.

1. If 1
2
αm ≥ αp, then it is not profitable for i to move

any budget δ > 0 from any subset of the steep projects
to p (or to a set of such non-steep projects).

2. If 1
2
αm > αp, then it is (strictly) profitable for i to

move any budget δ > 0 from p to any subset of the
steep projects. If j is suppressed after such a move,
then requiring 1

2
αm ≥ αp is enough.

3. If 1
2
αm < αp and it is possible to move δ > 0 from any

subset of the steep projects to p, such that i received and
still receives half of the value of these steep projects,
then it is (strictly) profitable for i.

Proof. Before moving, player i obtains in total∑
q∈Ω ( 1

2
or 1)αm · (x1

q + x2
q

)
.

We begin by proving part 1. Assume 1
2
αm ≥ αp. If i

moves δ > 0 from the steep projects to p, then its util-
ity from the steep projects decreases by at least 0.5αmδ,
and its utility from p increases by αpδ. The total change is
(−0.5αm + αp)δ, and since 1

2
αm ≥ αp, this is non-positive.

We prove part 2 now. Moving δ from p to a subset of the
steep projects decreases the utility of i by αpδ and increases
it by at least 0.5αmδ, and since 1

2
αm > αp, the sum of

these is (strictly positive). If j is suppressed by such this
move, then the increase is more than 0.5αmδ, thus requiring
1
2
αm ≥ αp is enough.

To prove part 3, assume that 1
2
αm < αp, and let δ >

0 be an amount that is possible to take from some of the
steep projects where i receives half of the value so as to
keep receiving a half of the new value. Then, moving this δ
to p decreases i’s utility from the steep projects by 0.5αmδ
and its utility from p increases by αpδ. The total change
is (−0.5αm + αp)δ, and since 1

2
αm < αp, this is (strictly)

positive.
We are now set to prove the theorem.
Proof. (⇒) We prove the existence of NE under the

conditions of the theorem. Suppose that B1 ≥ kθB2 and
1
2
αm−k+1 ≥ αm−k. Let both players allocate 1/kth of their

respective budgets to each of the steep projects. We prove
now that this is a NE. With this profile, each player receives
k · 1

2
αm · B1+B2

k
= 1

2
αm · (B1 + B2). For player i, moving

δ > 0 to some non-steep projects is not profitable, according
to part 1 of Lemma 3. Another possible deviation is reallo-
cating budget among the steep projects. Since B1 ≥ kθB2,
we conclude that B2 ≤ B1

kθ
, so 2 is not able to suppress 1

(and the other way around is impossible, even more so) and
therefore - only reallocating among the steep projects will
not increase the profit. The only deviation that remains to
be considered is a simultaneous allocating δ > 0 to some
non-steep projects and reallocating the rest of the budget
among the steep ones. Any such potentially profitable de-
viation can be looked at as two consecutive deviations: first
allocating δ > 0 to some non-steep projects, and then reallo-
cating the rest of the budget among the steep ones. Part 1 of
Lemma 3 shows that bringing back all δ > 0 from non-steep
projects to the steep ones, without getting suppressed any-
where (which is possible since B1 ≥ θB2) will always bear a
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non-negative profit. Therefore - we can ignore the last form
of deviations. Therefore, this is a NE.
(⇐) We show the other direction now. We now assume the

existence of a NE and derive the conditions of the theorem.
Assume that a given profile is a NE.
Since B1 ≥ θB2, then according to Lemma 2, each player

contributes to every steep project. Suppose to the contrary
that 1

2
αm−k+1 < αm−k. Let i be a player that contributes

to m more than its threshold there, and let j be the other
player. Then, by part 3 of Lemma 3, all non-steep projects
with coefficients larger than 0.5αm must get positive contri-
bution from j, for otherwise i would profit by transferring
there part of its budget from m. Therefore, the non-steep
projects with coefficients larger than 0.5αm receive no con-
tribution from i, according to Lemma 2.
Therefore, for all the steep projects - player j contributes

exactly its threshold value, while i contributes above it.
Also, i contributes nothing to any non-steep project: we
have shown this for the non-steep projects with coefficients
larger than 0.5αm, now we show for the rest. If i contributed
to a non-steep project with coefficient at most 0.5αm, it
would be profitable for him to deviate to a steep one, ac-
cording to part 2 of Lemma 3 (when the coefficient is exactly
0.5αm, we use the fact that j would be suppressed by such
a deviation).
We assume that B1 ≥ θB2, and thus, for any i 
= j we

have

θBj ≤ Bi ⇐⇒ Bj − θBi ≤ Bi

θ
− θBi

⇐⇒ Bj − θBi ≤ Bi − θ2Bi

θ
.

Thus, a non-steep project with coefficients larger than 0.5αm

receives from j at most Bi−θ2Bi
θ

, and since i can trans-

fer to that project Bi − θ2Bi without losing a share at
the steep projects, i can transfer exactly θ-share of j’s
contribution there and profit thereby. This profitable de-
viation contradicts our assumption and we conclude that
1
2
αm−k+1 ≥ αm−k.
It is left to prove that B1 ≥ kθB2. According to part 2 of

Lemma 3, there are no contributions to non-steep projects,
since they would render the deviation to the steep projects
profitable, unless 1

2
αm−k+1 = αm−k, in which case a 2-steep

project can get a positive investment from one player. Thus,
the players’ utility is at most the same as when each steep
project obtains contributions from both players, and other
projects receive nothing. Thus, each player’s utility is at
most k ·(αm/2)(B1+B2

k
) = (αm/2)(B1+B2). If 2 could devi-

ate to contribute all B2 to a steep project while suppressing
1 there, player 2 would obtain αm(B2 + y), for some y > 0.
This is always profitable, since

B2 ≥ B1 ⇒ B2 + 2y > B1

⇐⇒ αm(B2 + y) > (αm/2)(B1 +B2).

Thus, since we are in a NE, 2 may not be able to suppress
i and therefore B2 ≤ B1

k
1
θ

⇒ B1 ≥ kθB2. And we have
proved that the conditions of the theorem hold.
The proof of the necessity of the conditions of this theo-

rem relays on the lemmas that describe structure of a NE,
that are not easily generalized for n > 2. However, some
of the sufficiency conditions can be proven analogously for
a general n.

Theorem 4. Consider an equal θ-sharing game with n ≥
2 players with budgets Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the
order is w.l.o.g.), and linear project functions with coeffi-
cients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥
. . . ≥ α1 (the order is w.l.o.g).
This game has a pure strategy NE if Bn−1 ≥ θBn and the

following both hold.5

1. 1
n
αm−k+1 ≥ αm−k,

2. B1 ≥ kθBn;

Proof. It is analogous to the proof for n = 2. All the players
equally divide their budgets among all the steep projects.

Since there may be various Nash Equilibria, it is impor-
tant to analyze their efficiency. We consider the price of
anarchy (PoA) that is the ratio of the worst NE’s efficiency
to the optimum possible one, and the price of stability (PoS)
that is the ratio of the best NE’s efficiency to the optimum
possible one.

Theorem 5. Consider an equal θ-sharing game with two
players with budgets B1, B2. W.l.o.g., B2 ≥ B1. Assume
0 < θ < 1, and linear project functions with coefficients
αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g).6

Assume that B1 ≥ θB2 and the following both hold.

1. 1
2
αm−k+1 > αm−k,

2. B1 ≥ kθB2;

Then, there exists a pure strategy NE and there holds:
PoA = PoS = 1.

Proof. According to the proof of Theorem 3, equally di-
viding all the budgets between the steep projects is a NE.
Therefore, PoS = 1.

Consider any NE. By Lemma 2, each player contributes to
all steep projects and if it contributes to a non-steep project,
then it is the only contributor there. Then, according to
part 2 of Lemma 3, there can be no contribution to a non-
steep project, since a deviation to a steep project would be
profitable. Therefore, PoA = 1. We have fully proven the
theorem.
We now generalize some of the efficiency results for a gen-

eral n ≥ 2.

Theorem 6. Consider an equal θ-sharing game with n ≥
2 players with budgets Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the
order is w.l.o.g.), and linear project functions with coeffi-
cients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥
. . . ≥ α1 (the order is w.l.o.g).7

Assume that Bn−1 ≥ θBn and the following both hold.

1. 1
n
αm−k+1 > αm−k,

2. B1 ≥ kθBn;

5If αm−k does not exist, consider the containing condition
to be vacuously true.
6If αm−k does not exist, consider the containing condition
to be vacuously true.
7If αm−k does not exist, consider the containing condition
to be vacuously true.
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Then, there exists a pure strategy NE and there holds:
PoS = 1.

Proof. According to proof of Theorem 4, equally dividing
all the budgets between the steep projects is a NE. There-
fore, PoS = 1.

4. SIMULATION
For a wide subset of shared effort games, the question

when a game possesses at least one NE is still unanswered.
To study this, we generalize the fictitious play, originally
suggested by Brown [3] for mixed extensions of finite games,
and simulate it to find a NE.
In order to be able to simulate this, we must be able to find

a best response to a given opponents’ profile, if it exists. A
best response of a player is a best strategy for her, given all
the other players’ strategies. The set of all the best responses
of player i to the profile x−i of other players is denoted
BR(x−i).

If best responses exists long enough throughout the sim-
ulation, such that a candidate for a limit of the empirical
distributions has been found, we check whether this candi-
date is a NE. Thereby, our simulations may find a NE for
some games but never assert that no NE exists.

4.1 Infinite-Strategy Fictitious Play for
Shared Effort Games

Since the classical fictitious play is defined for mixed ex-
tensions of finite games, and we are dealing with pure infi-
nite games, a generalization is in order. The intuition of our
generalization is to consider a strategy as a combination of
several contributions of the whole budget, each to a single
project.

Definition 4. Given a shared effort game
with players N , budget-defined strategies Ai ={
xi = (xi

ω)ω∈Ωi ∈ R
|Ωi|
+ |∑ω∈Ωi

xi
ω ≤ Bi

}
and utili-

ties ui(x)
Δ
=

∑
ω∈Ωi

φi
ω(xω), define a Infinite-Strategy

Fictitious Play (ISFP) as the following set of se-
quences. Consider a (pure) strategy in this game,
i.e. ((xi(1))i∈N = ((xi(1)ω)ω∈Ωi)

i∈N , and define re-
cursively, for each i ∈ N and t ≥ 0:

xi(t+ 1)
Δ
=

txi(t) + BR(x−i(t))

t+ 1
, (2)

where for each strategy in BR(x−i(t)) we obtain another se-
quence in the ISFP.
We say that an ISFP converges to x∗ ∈ R+

n, if at least
one of its sequences converges to x∗ in every coordinate.

Since BR(x−i(t)) is a set, there may be multiple ISFP
sequences. For an ISFP to be defined, we need that
BR(x−i(t)) 
= ∅, that is the utility functions attain a maxi-
mum. Since the functions are, generally speaking, not upper
semi-continuous, they may sometimes not attend a maxi-
mum, rendering the ISFP undefined.
In ISFP, all the plays obtains equal weights. In the other

extreme, a player just best-responds to the previous strategy
profile of other players, thereby attributing the last play with
the weight of 1 and all the other plays with 0. In general,
we define an α− ISFP play as in Definition 4, but with the

the following formula instead

xi(t+ 1)
Δ
=

αtxi(t) + BR(x−i(t))

αt+ 1
, (3)

Now, we turn to solve the algorithmic problem of finding
whether a best response exists, and if yes, what it is.

4.2 Best Response in a 2-project Game with
Partially Convex and Weakly Monotone
Share Functions

Let the projects be Ω = {ψ, ω}. For a player i ∈ N ,
given all the other players’ strategies a−i ∈ A−i, we would
like to find a best response. From the weak monotonicity of
the share functions, we may assume w.l.o.g. that the best
responding player contributes all her budget. Then, a strat-
egy is uniquely determined by the contribution to project ψ
and we shall write xi for xi

ψ, meaning that xi
ω = Bi − xi.

In the following theorem, consider Mθ
eq sharing functions

that define what player i obtains from each project, given
other players’ strategies a−i. Let Di

0 < Di
1 < . . . < Di

m

and W i
0 < W i

1 < . . . < W i
l be the jumps of φi

ψ and φi
ω

respectively. (The first points in each list are the mini-
mum contributions to projects ψ, ω, respectively, required
for i to obtain a share. The other points are the points
at which another player becomes suppressed at the respec-
tive project.) The possible discontinuity points of the to-
tal utility of i are thus Di

0 < Di
1 < . . . < Di

m and
Bi − W i

l < . . . < Bi − W i
1 < Bi − W i

0 . Denote the dis-
tinct points of these lists merged in the increasing order by
L.

Theorem 7. Let all the contributions of the players in
N \{i} be fixed as they are given, and consider xi as the only
variable. Assume Mθ

eq sharing and a convex project value
functions. Let LBi denote the points of the list L that are on
[0, Bi], together with 0 and Bi, and let MBi be LBi with an
arbitrary point added between each two consecutive points.
Then, the maximum of the one-sided limits at the points of
LBi and of the values at the points of MBi yields the utility
supremum of the responses of player i. This supremum is a
maximum (that is a best response exists) if and only if it is
achieved at a point of MBi .

Proof. The utility of i is ui(xi) = φi
ψ(x

i) + φi
ω(Bi − xi).

Consider the open intervals between the consecutive points
of LBi . On each of these segments, the function φi

ψ(x
i)

is convex, being proportional to the convex project value
function, and φi

ω(Bi − xi) is convex because the function
Bi − x is convex and concave and φi

ω is convex and weakly
monotone. Therefore, the utility is also convex, as the sum
of convex functions.

Therefore, the utility’s supremum of each convexity inter-
val is achieved as the one-sided limit of at least on of its edge
points. This supremum can be a maximum if and only if it
is not larger than the maximum of the utility at an inter-
val edge point or at an internal point of an interval (in the
last case, the utility is constant on this interval, from the
convexity).

4.3 The Simulation Method
For each of the considered shared effort games, α− ISFP

are run, for several αs. Theorem 7 shows how to find whether
a best response exists, and if yes, what it is. If at least once
in the process of simulating an α−ISFP, there exists no best
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response, then we either stop this attempt or approximate
the supremum and continue. While running an α − ISFP,
we stop at a convergence or after a predefined number of
iterations. In any case, after stopping, we check whether
the final distribution is a NE, employing Theorem 7 to find
a best response for each player; a profile is a NE if and
only if each player has a best response and reacts by a best
response. If the final distribution is not a NE, then this
attempt does not solve this game; otherwise, a NE has been
found.
To conclude, we never state here that a game does not

possess a NE. We only may assert the existence of a NE.

4.4 Simulation Settings
We consider some cases that are not covered by the the-

oretical analysis. That is, where θ 
= 0 and also when theo-
rem 3 does not hold. We consider only the θ-equal 2-project
case, since in this case we know how to calculate the best
response. We work with several cases of 2 and 3 players
and with some setting of players’ budgets and the threshold
value. For each such number of players, we consider several
linear utility functions for each of the projects, with the co-
efficients 0.1, 0.2, . . . , 2.0. For each such game, we generate
30 fictitious plays by randomly and independently picking
original history for each player, uniformly from the possible
histories. While simulating, when there are multiple best
responses, we choose one which is closest to the current be-
lief state of the fictitious play. If, in at most 100 iterations,
we reach an iteration, where each of the players’ history
changes less than ε = 0.001 from its previous value, then
we consider the process to have converged. In any case, we
check whether profile we have arrived at is a NE. For each
found NE, we calculate its efficiency by dividing its total
profit by the optimum possible total profit.
We plot whether a NE has been found for various combi-

nations of the parameters. For a found NE, its efficiency is
shown as well.

4.5 Results and Conclusions
The results appear in Fig. 1. For two players with far

away budgets (B1 < θB2), a NE exists when the project
function coefficients are not too close to one another. For
θ = 0.5, an equilibrium exists also when the project func-
tions are exactly the same, since player 2 can just dominate
player 1 everywhere. When a NE exists, the efficiency is
quite high, it begins with 9.14 and increases are the project
functions become closer to each other.
For three players, the following behavior takes place. A

NE exists besides a cone in the graph, that is except when
the project functions are quite close to each other. Only
in once case do NE exist also when the project functions
are exactly the same. When the budgets are relatively close
(within the factor of θ), and a NE exists, the efficiency is
close to optimum. When the budgets are far away and a
NE exists, its efficiency drops from somewhere in the in-
terval [0.8, 0.6] when the project function coefficients are
quite close, to somewhere in the interval [0.68, 0.53] when
the project functions differ the most.

5. RELATED WORK
The price of anarchy is the lowest total utility of a NE

divided by the optimum total utility of any strategy pro-
file. Under very specific, but somewhat artificial conditions

θ

(a) B1 = 1, B2 = 10,
θ = 0.2.

θ

(b) B1 = 1, B2 = 10,
θ = 0.5.

θ

(c) B1 = 2, B2 = 2, B3 = 4,
θ = 0.5.

θ

(d) B1 = 2, B2 = 3, B3 = 10,
θ = 0.5.

θ

(e) B1 = 2, B2 = 5, B3 = 15,
θ = 0.5.

θ

(f) B1 = 2, B2 = 2, B3 = 4,
θ = 0.2.

θ

(g) B1 = 2, B2 = 2, B3 = 4,
θ = 0.9.

θ

(h) B1 = 2, B2 = 4, B3 = 4,
θ = 0.5.

Figure 1: The simulation results for various parameters.
Bold black color means that Nash Equilibrium has not been
found. For all the other cases, the efficiency, a value in
[0, 1], is shown in the appropriate color, according to the
color maps.

(N -approximate Vickrey conditions and θ = 0), Bachrach et
al. [2] have shown that the price of anarchy (PoA) is at most
the number of players. They also show upper bounds for
convex project functions, where each player receives at least
a constant share of its marginal contribution to the project’s
value. In this paper, we use study more general θ ∈ [0, 1]
sharing mechanisms without these conditions, an we pro-
vide precise conditions for existence and efficiency results.
Anshelevich and Hoefer [1] considered an undirected graph
model, where the nodes are the players and each player splits
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its budget between its adjacent edges in minimum effort
games (where the edges are the projects), each of which
equally rewards both sides by measure of the project’s suc-
cess (i.e., duplication instead of division). They proved the
existence and the complexity of funding a NE and found
that the PoA is at most 2. A related setting of multi-party
computation games appeared in [15]. There, the players are
interested in reducing their own cost. This differs from our
work, since they consider utility minimization and different
strategical setting, that is “computing the correct value or
free-riding”.
To conclude, there has been no research of our problem’s

NE in the general case.

6. CONCLUSIONS AND FUTURE WORK
This paper considered shared effort games where players

may contribute to some given projects, and subsequently
share the profits of these projects, conditionally on the al-
located effort. The paper studied existence and efficiency of
the NE of these games, arriving at the following results. In
these games, a NE exists if utility functions are continuous
and concave, and the strategy sets are non-empty, compact
and convex. We also characterized the existence of NE in
a subcase of shared effort games and considered the price
of anarchy and stability. In some cases when a NE existed
and the budgets were close, the price of anarchy and price
of stability was found to be 1. That is, all the NE in those
cases are socially optimum. For the shared effort games
that have not been analyzed theoretically, we simulated fic-
titious play, to estimate the existence of NE. To this end,
we generalized the fictitious play and described some of the
best responses of a player to the other players’ strategies.
In the cases where we found a NE, we also estimated its
efficiency. For two players, a NE is usually almost of the
optimum efficiency. For three players, the efficiency of a NE
can be suboptimal, as we saw in Section 4.5. In general, we
found some cases where we characterized the existence of
NE and found its efficiency, when existed.
The current approach has its limitations, providing a num-

ber of interesting directions for future work. First, we would
like to extend our theoretical characterization of the exis-
tence of NE for far away budgets, and also for more than two
players and to non-linear project functions and to find the
price of anarchy and stability in the cases where a NE exists.
Next, extending simulations for more than two projects and
finding precise new methods to locate NE would improve
our understanding of the various NE. Considering existence
and efficiency of mixed Nash equilibria is also interesting.
The theoretical analysis of efficiency implies that in the

analyzed cases for two players with close budgets, regulation
is not needed, since the price of anarchy is 1. The price
of anarchy is very high also for two players with far away
budgets. For three or more players, some regulation may
improve the total utility, though it does not go below 0.52
in all the considered cases. To conclude, we have analyzed
the existence of NE and provided some practical insights as
to when regulation should be used to improve efficiency.
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