Global Protocols as First Class Entities
for Self-Adaptive Agents

Davide Ancona Daniela Briola

Angelo Ferrando

Viviana Mascardi

DIBRIS, University of Genova
Via Dodecaneso 35, 16146, Genova, ltaly
davide.ancona@unige.it,daniela.briola@unige.it,
angelo.ferrando42@gmail.com,viviana.mascardi@unige.it

ABSTRACT

We describe a framework for top-down centralized self-adap-
tive MASs where adaptive agents are “protocol-driven” and
adaptation consists in runtime protocol switch.

Protocol specifications take a global, rather than a local,
perspective and each agent, before starting to follow a new
(global) protocol, projects it for obtaining a local version. If
all the agents in the MAS are driven by the same global pro-
tocol, the compliance of the MAS execution to the protocol
is obtained by construction.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Design; Languages; Reliability

Keywords

Self-adaptiveness; Interaction Protocols

1. INTRODUCTION

Today’s software systems raise many challenges to their
designers as they are required to be more and more au-
tonomous, recoverable and reliable to guarantee the expected
level of the offered services. Achieving all the three goals to-
gether requires to find the right balance between the ability
of the system to operate with a high degree of freedom, in-
cluding its ability to recover to an acceptable state in case
of exceptional situations, and the guarantee of a behavior
compliant with the designers’ requirements.

Self-adaptive systems, namely systems able to modify their
behavior and/or structure in response to their perception of
the environment and the system itself, and their goals [40],
are a widely accepted answer to the increasing need of au-
tonomy and recoverability of modern complex systems.

Reliability can be achieved by enforcing all the system’s
components to respect given patterns of behavior, known to
be safe.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright (C) 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1019

In this paper we address the design and implementation
of self-adaptive multiagent systems where compliance to a
given interaction protocol is guaranteed by construction, al-
lowing agents to operate in a reliable way. In the proposed
framework, agents are driven by first class specifications of
interaction protocols which can change at runtime, making
self-adaptation a side result obtained almost for free.

Adaptation takes place according to the instructions of
agents empowered to request protocol switches and acting
as central controllers. In the most general setting, different
agents could take the role of controller in different moments,
or even in the same moment provided that they coordinate
themselves for controlling the system. In our framework we
assume that there is only one controller agent at a time.
Since switching to a new protocol may require to be in some
safe state!, the protocol’s designer can specify when the
agents are allowed to manage a switch request (and, as a
consequence, when they are not).

The code of “protocol-driven” agents is not generated from
the protocol specification prior to the MAS deployment,
as this would hard wire the protocol-compliant behavior
into the code preventing agents from adapting to protocol
changes. Rather, the agent’s interpreter takes the current
state of the interaction protocol into account to devise which
messages could be sent, allowing the agent to select and send
one of them, or which messages could be received, allowing
the agent to verify whether the received message — if any —
was one among the expected ones and to react in a suitable
way. Changing the executing protocol as the result of an
acceptable protocol switch request causes the interpreter to
call a cleanup procedure and to proceed in the normal way
following the new protocol.

A characterizing feature of our approach is that protocol
specifications take a global, rather than a local, perspective
and each agent, before starting to follow a new protocol,
projects the protocol onto itself by removing the protocol’s
components not involving itself. If all the agents in the MAS
are driven by the same global protocol, the compliance of the
MAS execution to the protocol comes for free.

The paper is organized as follows: Section 2 discusses the
related literature. Section 3 provides a gentle introduction
to our framework. Section 4 provides technical details on

! Consider for example an agent following the protocol “drive
home” who is required by his kid in the backseat to move to
the protocol “look at me, I feel bad...”. Even if looking at the
suffering kid is a high priority protocol to follow, the agent
can move to it only when the car’s speed is low enough, or,
better, the car has been stopped.

protocol specifications and Section 5 discusses self-adaptive
protocol-driven agents. In Section 6 the proposed approach
is explained by means of an example and its feasibility is
demonstrated by the implementation in Jason. Section 7
concludes.

2. RELATED WORK

Our work falls in the research area on self-adaptive sys-
tems which spun off from the wider area of distributed sys-
tems, be them based on web services, software agents, robots,
or on other autonomous entities that need to react to un-
foreseen changes during their execution. Many surveys have
been conducted to identify the main features of self-adaptive
MASs [21, 24, 40, 45, 48] and interesting and original solu-
tions have been proposed by the research community.

Proposals for standardizing the concepts involved in the
self-adaptation process include [29], a meta-model to de-
scribe intelligent adaptive systems in open environments,
and [10], a taxonomy of adaptive agent-based collaboration
patterns, for their analysis and exploitation in the area of
autonomic service ensembles. An analysis of linguistic ap-
proaches for self-adaptive software is presented in [41].

As far as the engineering of self-adaptive systems is con-
cerned, authors either propose new methods and platforms
or extend already existing methodologies. In the first cate-
gory we mention the AMAS theory (Adaptive Multi-Agent
Systems [11]), which identifies design criteria to enable the
emergence of an organization within the system and to guar-
antee the global function of the system even in critical situa-
tions, Unity [43], a decentralized architecture for autonomic
computing based on multiple interacting agents, and DSOL
[18], a declarative approach supporting dynamic service or-
chestration at run-time. As good representatives of the sec-
ond category we may mention [14], based on Gaia [49], and
[19, 36], based on Tropos [7].

The approaches closer to ours focus on formalizing pro-
tocols that the agents may use during their life, including
specific protocols to deal with unforeseen events: in these
approaches agents are usually free to choose, from a bunch
of usable protocols, which one they prefer, maintaining in
this way the freedom to autonomously self adapt to the new
situation but ensuring at the same time that a feasible inter-
action pattern is followed. Our work can be included in this
research field, where we can speak of “protocol enforcement”
or “protocol-driven agents”. There are at least three ways
to obtain a protocol-driven behavior:

1. automatically generating the agent’s code from the
protocol specification in order to ensure the compliance by
construction;

2. monitoring the agents interactions to identify a viola-
tion and enforcing a recovery;

3. making agents capable of directly executing or inter-
preting the formal protocol specification.

Proposals following the first approach received the atten-
tion from the community since the Agent-Oriented Software
Engineering early days. The PASSI methodology [17] al-
lows the designer to generate the agent’s structure and its
internal code starting from UML models and a similar func-
tionality is offered by Prometheus [37]; West2East [12] offers
libraries for both the translation of protocols represented in
FIPA AUML? into different textual notations, and the auto-

2yww.auml . org/auml/documents/ID-03-07-02. pdf.

1020

matic generation of an executable program compliant to the
original interaction protocol; Dsml4Mas [44] can be used to
design protocols following a model-driven approach for gen-
erating executable code from protocol specifications [26].

The second approach is discussed for example in [9], where
a mechanisms for monitoring norms is proposed, in [25],
where the global-level adaptation is based on the monitor-
ing of the system’s behavior and on a dynamic reification
of an organizational structure, and in [20], where a form of
agent supervision, which constrains the actions of an agent
so as to enforce certain desired behavioral specifications, is
presented.

We followed the third approach, namely allowing agents to
directly executing or interpreting the protocol. The related
literature we are aware of is all centered around protocols
conceived as first class entities and represented by means
of commitments. For example in [4] commitment protocols
can be directly accessed by the agents, as they are artifacts
available in the platform, whereas in [47] agents use a “com-
mitments plus axioms” protocol representation that enables
them to flexibly accommodate the exceptions and opportu-
nities that may arise at run time. A framework for modeling
and handling exceptions is presented in [30] and in successive
works by Singh et al. [23, 42], where a formal methodology
is proposed to manage, even at run time, expected and un-
expected exceptions in commitment-based MASs. Although
these approaches are close to ours in spirit, commitment pro-
tocols are definitely different from constrained global types,
which are inspired by global and multiparty session types
[13] and include no notion of commitment. Also, extending
existing agent environments or languages by implementing
our framework on top of them should be always possible
as long as these environments meet the few — and almost
mandatory for any MAS — conditions stated in Section 3.
Implementing an approach based on commitment protocols,
instead, requires a paradigm shift, where agents are designed
and implemented adhering to the commitment approach.

In [33, 34, 35] interaction protocols are modeled as exe-
cutable entities that can be referenced, inspected, composed,
shared, and invoked between agents. The RASA formalism
defined in those papers is close to ours, even if its expres-
siveness is lower as no fork operator is supported. Also, no
exploitation of the framework on top of real agent systems
is presented.

As far as self-adaptiveness of protocol-driven agents is con-
cerned, the main sources of inspiration were [15, 16, 38, 39].
In [15] the authors propose a dynamic self-monitoring and
self-regulating approach based on norms to express proper-
ties which allow agents to control their own behavior. In [38]
and [39] agents operating in open and heterogeneous MASs
dynamically select protocols, represented in FIPA AUML,
in order to carry collaborative tasks out. Since the selection
is performed locally to the agent, some errors may occur in
the process. The proposed mechanism provides the means
for detecting and overcoming them.

Our work is similar to [16] both in the formalism used
to represent protocols and in the idea of dynamic protocol
switch, but our solution is actually implemented and thus
must take many more practical aspects - for example what
to do before switching to a new protocol, how to state when
the agent is in a safe state and can actually perform a pro-
tocol switch - into account.

Comparison. To the best of our understanding, none of the
mentioned approaches covers the three stages of starting
from a global description of the protocol, moving to local
versions for the individual agents via projection, and inter-
preting these local versions on an actual agent framework to
drive the agents’ behavior, as we do. One reason why our
approach is different from others, is that the projection func-
tion takes protocol specifications and returns protocol speci-
fications expressed in the same language. Usually, projection
functions return either agent stubs/code (common in the
MAS community) or protocol specifications in a language
suitable for expressing the agent local viewpoint, different
from the language for expressing the global one (common in
the session types community). Having a unique formalism
for protocol specification both at the global and at the local
level is a simpler and more uniform approach.

In the MAS area, when the code of an agent is generated
from a protocol specification, the language used for spec-
ifying the interaction protocol and the language used for
implementing the agents are, again, different. The agent
is “compiled” into some AOP language starting from the
protocol’s specification. On the contrary we do not gener-
ate any agent code into any AOP language. The protocol
specification is interpreted and this gives the flexibility that
meta-programming ensures, demonstrated for example by
the easiness in implementing protocol switch.

Finally, w.r.t. our own previous work, in [1] and [3] (resp.
[2]) we proposed to exploit the interaction protocol formal-
ism (resp. the protocol projection mechanism) as a way
to face (resp. to make more efficient) the runtime verifi-
cation of protocol compliance via monitoring. This paper,
instead, is not concerned with runtime verification and mon-
itoring. Also, issues like self-adaptiveness, protocol driven
agents, protocols as first class entities and protocol switch
are not addressed by [1, 2, 3]. This paper and the previous
ones share the adoption of the same formalism (constrained
global types) and tools (projection and next functions), but
used for definitely different purposes.

3. OUR FRAMEWORK

Our framework addresses top-down self-adaptive systems.
A system of this kind “is often centralized and operates with
the guidance of a central controller or policy, assesses its own
behavior in the current surroundings, and adapts itself if the
monitoring and analysis warrants it. Such a system often
operates with an explicit internal representation of itself and
its global goals’ [46].

In our framework agents able to adapt are “protocol-driven”:
they are characterized by one interaction protocol specified
in some suitable formalism and by three mandatory com-
ponents, the knowledge base, the message queue and the
environment’s representation, that should be directly im-
plemented in the underlying agent framework. As we make
no other assumption on the agent’s architecture, our frame-
work is as general as possible and could be implemented
in any underlying environment or programming language
where these three components are available (namely almost
all the agents’ frameworks, be them BDI-oriented like Jason
[6], or not BDI-oriented like JADE [5]).

Besides protocol-driven agents, also “normal” agents en-
tirely implemented in the underlying framework can be part
of the self-adaptive MAS. For example, since our protocol-
driven agents are implemented on top of Jason, we could

1021

create a MAS were normal Jason agents defined in a stan-
dard way using mental notes, plans, goals, co-exist with
protocol-driven agents which, albeit being implemented as
Jason agents as well, must follow a specific syntax and be-
havior (see Section 6). Normal agents give the possibility
to reuse existing code and to implement behaviors that can-
not be conveniently modeled using an interaction protocol,
for example because they must access legacy code or per-
form complex computations. However, no hypotheses can
be made on their adaptability and reliability.

Being protocol-driven means that the agent behaves ac-
cording to a given protocol. In each time instant, the protocol-
driven agent can make only those internal choices which are
allowed by the protocol in the current state. In case of events
which depend on external choices, the agent can only verify
if the event that took place is compliant with the protocol
and act consequently. Events could be in principle of any
kind but in order to demonstrate the feasibility of our ap-
proach in a neat way, in this paper we limit ourselves to
consider interaction events, where sending events are the re-
sult of an internal choice, whereas reception events are not
under the agents’ control and can be neither prevented nor
forced, but only checked.

Adaptation takes place when the protocol-driven agent
switches to a new protocol on request of the controller agent,
which might follow a MAPE-like loop [27, 46]. In this paper
we make no assumptions on the controller’s internal architec-
ture and functioning. For our purposes, the controller is just
an agent which has the power to request protocol switches
to some protocol-driven agents and which may or may be
not protocol-driven, depending on which type of behavior it
implements and which requirements it must meet.

Protocol library

iy N

- L e
Protocol-driven Protocol-driven
H | Normal |’ Normal ‘ Normal
agent agent agent
! ; a 4
h I J A 4 A | 4

Environment }4'

<+———>» Intra-agent communication

] » Access to the environment

<€ -+ Access to the protocol library

Figure 1: Architecture of a top-down, centralized
self-adaptive MAS.

The components of our framework are shown in Figure 1.
The protocol library may be either external, like in the fig-
ure, or hard-wired in the controller’s knowledge base. From
a logical viewpoint this makes little difference. In the first
case, when the controller identifies which protocol the agents
must follow to adapt to a new situation, it communicates
the protocol’s identifier to the agents which will retrieve its
representation from the library. In the second case, it will
send the full protocol’s representation inside the message’s
content.

Protocols in the library always take a global perspective
(namely, a perspective where all the parties involved in the
protocol are managed in a homogeneous way, without tak-

ing the point of view of one of them), but may involve a
subset of the agents in the MAS: the controller may send
different protocols to different subsets of agents, even if this
requires a careful design of such protocols to avoid unwanted
interferences.

Protocol-driven agents interact with all the agents, in-
cluding the controller and normal ones, via message passing.
This requires that the controller and normal agents are mod-
eled in the protocol, making protocol-driven agents aware of
them.

Being protocol-driven does not contrast with the main

agents’ features identified by N. R. Jennings, K. P. Sycara
and M. Wooldridge in [28]:
— Situatedness is achieved by setting the agent’s policies
defining how to select a message to send among the pos-
sible ones and what to do when a message allowed by the
protocol is received. These policies take information coming
from the environment into account and can affect it as a side
effect.

— Autonomy is preserved because protocols usually define
different allowed patterns of interactions, without imposing
the choice of which of them following: the choice is left to
the agent, thus balancing its respect of the protocol and its
autonomy.

— Responsiveness and proactiveness depend on the proto-
col itself. For example, a protocol describing the interactions
between Alice and Bob, where Alice always sends a message
a to Bob and Bob always receives it and does nothing, leaves
room neither for responsiveness in Alice behavior, nor for
proactiveness in Bob’s one. It is up to the protocol designer
to cope with these issues in a proper way.

— Sociality, namely the ability to interact, when appropri-

ate, with other agents and humans, is of course the main
requirement for conceiving communication-intensive agents
like protocol-driven ones and it is the assumption under
which our proposal works.
For supporting a protocol-driven approach to agent pro-
gramming, a formalism for expressing protocols must exist
together with a generate function for identifying the allowed
actions (both sending and receiving) for moving from the
current state of the protocol to the next one. What differ-
entiates the behavior of each agent are the select policy to
select the message to send among the allowed ones, and the
react policy to react to an incoming message. Two more poli-
cies must be defined to state how to manage unexpected mes-
sages and which cleanup actions to perform before switching
from the currently executing protocol to the new one.

We assume that each agent Ag in the MAS is able to
project a global description of a protocol involving many
agents onto a local version by keeping only interactions that
involve Ag. Like the generate function, also the project one
can be provided by some artifact in the MAS or may be
implemented by the agent itself.

If a description of the global protocol that all the agents
in the MAS must respect exists, the local protocol for each
agent can be automatically obtained from the global one.
This allows the whole MAS to respect the global protocol
by construction.

The architecture of a protocol-driven agent is depicted in
Figure 2. The interpreter implements a cycle where it first
checks if there is a protocol switch request and if it can be
managed in the current state of the protocol. If yes, and if
the sender has the power to make such a request - namely, if

1022

Protocol-related Protocol-related data
functions ‘ Current protocol's state ‘

[Current protocol's id |
/

Protocol-driven

Interpreter
/
Agent's main components Policies
‘ Knowledge base ‘ g:Iae(::tt
‘ Message queue ‘ Cleanup
Unexpected
‘ Environment's representation ‘
4 T

[s

‘ Environment ‘

Figure 2: Architecture of a protocol-driven agent.

it is a system’s controller -, a protocol switch is performed af-
ter some cleanup operations. If no protocol switch is foreseen
by the protocol in that moment, or no protocol switch re-
quest has been received, the normal communication actions
that can be performed are generated and, according to the
precedence that the agent gives to receiving or sending (in
case both options are available), one of them is performed.
The environment representation and knowledge base are up-
dated accordingly and the protocol moves to the next state.
In case the received message was not foreseen by the proto-
col, it is managed according to the unexpected policy. An
alarm which is reset any time an action is performed allows
to avoid deadlocks, for example in case the agent gives the
precedence to receiving, but no messages are available in the
message queue. When the alarm expires the agent cannot
wait any longer and selects one of the possible messages to
be sent (if any), forcing itself to adopt a sending precedence.

In order to move from a general description of the frame-
work to its implementation, we need to fix some choices, in
particular the protocol representation formalism (and, as a
direct consequence, the generate and project functions) and
the underlying agent framework. Our implementation in-
stantiates the general one in the following way:

— All the protocol-driven agents use the same protocol
formalism and are able to perform generation and projection
by themselves.

— There is an external protocol library.

— The formalism for expressing protocols is that of “con-
strained global types” introduced in [1, 3] and the generate
function is a variant of the next transition function defined
in those papers.

— The projection algorithm is the one defined in [2]. Pro-
jection can be described as a function IT: T x P(AGS) — T
where T is the set of constrained global types. Given a con-
strained global type 7 and a set of agents Ags as input, II
returns a constrained global type Ta4s which contains only
interactions involving agents in Ags: interactions that do
not involve agents in Ags are removed from 744s.

— The underlying agent’s framework where our self-adap-
tation approach has been experimented is Jason.

4. PROTOCOL SPECIFICATIONS

Protocols are formalized using constrained global types.
States of the protocol are represented by constrained global
types as well, blurring the distinction between “protocol”
and “protocol state”. For requesting a protocol switch we

introduce a special switch performative with a protocol as
content. Like any other interaction, protocol switches may
be allowed in some points of the protocol and not in others,
making it possible for the agents to switch to a new protocol
only at the right time.

A protocol is characterized by its identifier, its specifica-
tion and the definition of interaction types identifying inter-
actions allowed in a specific state of the protocol.

Interactions have the form msg(Sender, Receiver, Perf,
Content). Sender and Receiver are agent identifiers, Perf
is a performative in the agent communication language sup-
ported by the underlying framework (for example, KQML
[32] in Jason and FIPA-ACL [22] in JADE), Content is the
interaction content in some suitable representation language.
This model supports point to point communication only, al-
though a broadcast operator could be defined on top of that.

We use the term “interaction” rather than “message” to
stress that a protocol always represents a global description
of what is expected to go on: the notion of interaction sum-
marizes that one agent sends a message and another is ex-
pected to receive it. From the viewpoint of one single agent
Ag, an interaction corresponds to an incoming message if
Ag is the receiver, and corresponds to a message that Ag is
expected to send, if it is the sender.

For requesting a protocol switch, msg(Sender,Receiver,
switch,Protocol) is used: Sender, which must have the
power to request a protocol switch to Receiver, wants that
Receiver starts behaving according to Protocol as soon as
possible (we will explain what “as soon as possible” means
in Section 5).

Interaction types add an abstraction level between the ac-
tual interactions taking place in the MAS and the protocol
specification. For example, ask_enter_treasure (hobbitl)
is the interaction type of msg(hobbitl,bilbo,ask,enter_-
treasure). We state that msg(hobbitl, bilbo, ask, en-
ter_treasure) € ask_enter_treasure(hobbitl) and we
use the latter in the protocol specification.

If more than one hobbit, say hobbit1, hobbit2 and hob-
bit3, could ask Bilbo to enter the treasure room and the
protocol did not need to distinguish among them, we could
introduce an interaction type ask_enter_treasure not de-
pending on the hobbit, and state that the three interactions
msg (hobbitl,bilbo,ask,enter_treasure), msg(hobbit2,
bilbo,ask,enter_treasure) and msg(hobbit3,bilbo,ask,

enter_treasure) have interaction type ask_enter_treasure.

When the protocol is in a state where ask_enter_treasure
is allowed, any actual interaction msg(hobbit;,bilbo,ask,
enter_treasure), with i € {1, 2, 3}, can take place.

The protocol specification PrSpec represents a set of pos-
sibly infinite traces of interactions and is defined on top of
the following operators:

e)\ (empty trace), representing the singleton set {e} con-
taining the empty trace € of interactions.

o IntType™:PrSpec (sequence with producer), representing
the set of all traces whose first interaction Intr matches the
interaction type IntType (Intr € IntType), and the remain-
ing part is a trace in the set represented by PrSpec. The
integer n specifies the least required number of times Intr
€ IntType has to be “consumed” to allow a transition la-
beled by Intr. Each occurrence of a producer interaction
type must correspond to the occurrence of a new interac-
tion; in contrast, consumer interaction types correspond to
the same interaction specified by a certain producer interac-

1023

tion type. The purpose of consumer interaction types is to
impose constraints between branches of the fork operator,
without introducing new interactions.

e IntType:PrSpec (sequence with consumer), representing
the set of all traces where Intr € IntType, and the remain-
ing part is a trace in the set represented by PrSpec. IntType
must match with a producer IntType™ interaction type avail-
able in another fork branch of the protocol.

e PrSpeci+ PrSpecs (choice), representing the union of the
traces of PrSpeci and PrSpecs.

e PrSpeci| PrSpecs (fork), representing the set obtained by
shuffling the traces in PrSpeci with the traces in PrSpecs.
e PrSpecy-PrSpeca (concat), representing the set of traces
obtained by concatenating the traces of PrSpec; with those
of PrSpecs.

Section 6 provides examples of protocols represented using
this formalism.

The focus of [1, 3] was on testing whether the actual inter-
actions in the MAS were compliant with the protocol speci-
fication. To define the operational semantics of the protocol,
and to implement the monitoring activity, a next transition
function was defined as:

next: Pr x Intr — Pr
Next takes a protocol and the sniffed interaction Intr, and
returns a new protocol where only the PrSpec component
changed to represent the new state (if any) where the pro-
tocol can move given that Intr took place. To make some
examples,
next(a®:Pr, a)=Prif a €
next(Pri+Pra, a)=Pr if next(Pri, a)=Pr or next(Pra, a)=Pr

In protocol-driven agents, the purpose of the protocol is
no longer to test the acceptability of an interaction which
already took place, but rather to generate all the interactions
which are allowed in the current protocol state in order to
drive the agent’s behavior. This goal can be easily achieved
by generating all the interactions which are allowed solutions
of mezxt, given the current state of the protocol. We define a
generate function

generate: Pr — P(Intr x Pr)

which takes one protocol Pr and returns the set of couples
of interactions and protocols, { (Intri,Pr1), (Intrs,Pra), ...,
(Intrn,Pry) } such that next(Pr, Intr;) = Pr;.

Given the agent Ag who calls generate, we indicate with
InMsgs the interactions returned by generate where Ag is
the receiver, and with OutMsgs the interactions returned by
generate where Ag is the sender. Intuitively, InMsgs are the
messages that Ag expects in that protocol’s state (it cannot
decide which one among them to receive, but it can verify
that the received message is one of them), and OutMsgs are
the messages that Ag can decide to send. All the interactions
returned by generate are associated with the state where the
protocol would move if that interaction took place, in order
to properly update the protocol’s state.

5. SELF-ADAPTIVE PROTOCOL-DRIVEN
AGENTS

A protocol-driven agent Ag is characterized by the follow-
ing components:
e A unique agent identifier.
e A knowledge base KBase supporting the operations 7K (is
knowledge formalized as K available in KBase, and which
actual value is associated with it?), +K (add knowledge
formalized as K to KBase) and —K (remove knowledge for-

malized as K from KBase). We assume that the knowledge
base includes information on

1. the precedence policy stating which kind of communica-
tive action (sending, prec(send), or receiving, prec(rec))
the agent should give the precedence to, in case the pro-
tocol’s state allows interactions of both kinds. Like any
other piece of knowledge in the knowledge base, this infor-
mation may change during time. However, some protocols®
work only when the agents involved in them follow consis-
tent precedence policies, and changing the policy at runtime
may lead to deadlocks or unwanted behaviors;

2. the timeout timeout (T) stating for how long the agent
can wait for being able to either sending or receiving a mes-
sage; the agent’s alarm is set to T any time a communicative
action takes place and expires after T time units;

3. the list of agents who, in Ag’s opinion, have the power
to impose a protocol switch (empowered(AgList)). This list
can change at runtime, for example because the trust of Ag
towards some agents changes.

e A representation Env of the environment supporting ex-
ternal actions that the agent performs on the environment
via effectors, and sensing actions performed by the agent
via sensors. As customary, we make no assumptions on how
sensors and effectors are implemented and we leave out from
our investigation how the environment representation is kept
consistent with the actual environment’s state.
e The currently executing protocol Pr, whose syntax has
been introduced in Section 4.
e A message queue MsgQueue storing interactions Intr cor-
responding to incoming messages that still have to be pro-
cessed. The syntax of Intr is given in Section 4. Switch
protocol requests have highest priority and always reach the
top of the queue, when pushed into it. These messages are
the only ones which are not tagged as “unexpected” when
received in a protocol’s state where they were not expected.
In this case, they are locally stored* and managed as soon as
the protocol reaches a state where a switch protocol request
can be accepted.
e A received message reaction policy, stating how to update
the knowledge base and the environment’s representation
as a consequence of the reception of one incoming message
among the allowed ones (as returned by the generate func-
tion). The policy implementation may require to perform
internal or sensing actions and, as a side effect, may affect
the agent’s knowledge base and the environment. No com-
municative actions can be performed as part of the policy.
react: Intr X KBase X Env — KBase X Env
e An outgoing message selection policy, stating which out-
going interaction (if any) among the allowed ones the agent
will perform. The selection policy depends on the knowledge
base and on the environment’s representation and affects
both of them. Like for the reaction policy, its implemen-

3For example the protocol where Alice sends an arbitrary
number of “ping” to Bob who answers with the same number
of “pong”; and then the protocol starts again, requires a
synchronization between Alice and Bob in such a way that
Bob avoids answering as soon as it receives a “ping” message,
because Alice might want to send more “ping”s: Alice should
give the precedence to sending and Bob to receiving.

4We assume that agents cannot have more than one pending
protocol switch request at a time. Although the assumption
is strong, it allows us to keep the algorithm simple. It can
be relaxed using a queue of pending requests instead of a
variable.

1024

tation may rely on internal and sensing actions but not on
communicative ones. The selection policy returns null in
case either there are messages allowed by the protocol but
none of them can be sent for reasons wired into the agent’s
selection function, or there are no messages at all.

select: P(Intr x Pr) x KBase X Env —

((Intr x Pr) J {null}) x KBase x Env
e A cleanup policy stating what actions the agent should
perform before switching to another protocol.

cleanup: KBase x Env — KBase x Env
e An unexpected message management policy stating what
to do when a normal message not foreseen by the protocol is
received, or when a switch message is sent by an agent who
has not the power to act as a controller. The policy may
vary according to the protocol currently under execution.

unezxpected: Intr x KBase X Env — KBase X Env
The operational semantics of protocol-driven agents is given
by the following interpreter which can call the generate and
project functions.

For clarity of the presentation, we leave the knowledge
base and environment components out of the arguments and
return values of react, select, cleanup, unexpected. All these
functions take the current knowledge base and environment
and can update them.

Let KBaseo, Envg, Pro, MsgQueueg be the initial knowl-
edge base, environment, global protocol and message queue
of Ag, respectively. A SwitchMsg variable is used to store
the pending protocol switch request. An alarm (the Al vari-
able) is initially associated with the Timeout value set by the
agent’s designer. A mechanism for checking whether the Al
expired should be available.
Following Prolog’s syntax, we use the
variables whose value does not matter.

wo»

symbol to identify

Initialization
KB = KBaseg; En = Envg; Pr = project(Prg, {Ag}); MQ =
MsgQueueg; SwitchMsg = null; ?timeout(T); Al = set(T);

Interpreter
while true {
/* C1: If a switch protocol request has been received, it is as-
signed to SwitchMsg and removed from the message queue */
if (top(MQ) mgs(S, Ag, switch, PrSwitch))
SwitchMsg = pop(MQ);

/* The couples (interaction, next prot. state) allowed in the cur-

rent state of the protocol are generated. For sake of presentation,

we divide them into those involving incoming messages (InMsgs)

and those involving messages that can be sent (OutMsgs) */
InMsgs |J OutMsgs = generate(Pr);

/% C2: If the reception of a switch protocol request is allowed in
the current state of the protocol, and there is such a request, it
is managed: SwitchMsg is reset */
if (SwitchMsg == mgs(S, Ag, switch, PrSwitch) A
(mgs(S, Ag, switch, PrSwitch),) € InMsgs)
{ SwitchMsg = null;

/* C2.1 If the sender has the power to request a proto-
col switch, then the cleanup actions are performed according to
the “cleanup” policy, the protocol is changed to the projection of
PrSwitch onto Ag, and the current interpreter cycle is exited,
otherwise the protocol switch request is managed by the “unex-
pected” policy */

if (?empowered(AgList) A S € AgList)

/* Protocol switch */

{ cleanup(); Pr = project(PrSwitch, {Ag}); }

else unexpected(mgs(S, Ag, switch, PrSwitch));

continue;

}

/* Note that, if condition C2 is not met, namely either there is
no switch request or the protocol does mot allow to manage it,
nothing is done. If there is a switch request, it remains associ-
ated with variable SwitchMsg for being managed later, when the
protocol will allow it */

/* C3: If the message queue is empty, the alarm has expired, and
there are no messages to send, the agent is stuck: the interpreter
exits its main loop */
if (empty(MQ) A expired(Al) A select(OutMsgs) == null;)
break;

/% C4: If the message queue is empty, the alarm has not expired,
and the agent gives the precedence to reception, the current in-
terpreter cycle is exited in the hope that, at the next one, some
message will be available in the message queue; there is no risk
to always remain in this condition as the alarm sooner or later
will expire */
if (empty(MQ) A —expired(Al) A ?prec(rec))
continue;

/* C5: If the message queue is not empty and the top message is
not among those expected by the protocol (condition (top(MQ),-)
¢ InMsgs which includes the case InMsgs == 0), the message is
unezxpected. It is popped and managed according to the agent’s
“unezpected” policy */
if (~empty(MQ) A (top(MQ),) ¢ InMsgs)
{ Msg = pop(MQ); unexpected(Msg); continue; }

/* C6: If the message queue is not empty, the top message is
among the expected ones (this condition is superfluous but allows
us to name the Pry, component for successive use) and either the
agent gives the precedence to reception and the current state of
the protocol allows to receive messages, or the agent gives the
precedence to sending but there are no messages to send, the first
message in the queue is popped, the knowledge base and envi-
ronment are updated according to the “react” policy, the protocol
moves to the new state Pryp and the alarm is reset */

if (mempty(MQ) A (top(MQ),Pry) € InMsgs A
(?prec(rec) V (?prec(send) A select(OutMsgs)

{ Msg = pop(MQ); react(Msg); Pr = Pry;

?timeout(T); Al = set(T); continue; }

null))

/* C7: The interpreter reaches this point if either the agent gives
the precedence to sending, or it cannot wait for receiving mes-
sages because the message queue is empty and the timeout ex-
pired: the outgoing message selection is performed according to
the “select” policy; the result of the selection cannot be null oth-
erwise C3 would have been verified; the selected message is sent;
the protocol moves to the next state; the alarm is reset */

(Msg,Pryn) = select(OutMsgs); send(Msg);

Pr = Pry; ?timeout(T); Al = set(T); }

6. IMPLEMENTATION

The implementation of our framework in Jason is avail-
able at www.disi.unige.it/person/MascardiV/Software/
selfAdaptiveAgents.html. The agent_protocol_interp-
reter.asl file, which each protocol-driven agent in the MAS
must include, contains the Jason code implementing the in-

1025

terpreter defined in Section 5 together with the project and
generate functions. To make the prototype simpler, the spec-
ifications of all the available protocols are defined in a pro-
tocol_library.asl file, included by each agent which has
then direct access to the protocols definitions.

Each agent must provide the definitions of the react, se-
lect, cleanup, unexpected policies and the beliefs related to
precedence between sending and receiving, timeout, empow-
ered agents. Given P the name of the initial protocol, the
agent behavior is determined by the following piece of code
(one initial goal and one plan, using Jason’s terminology):

Istart.

+!start : true <- !execute(protocol(P)).

Calling 'execute starts the protocol-driven interpreter de-
fined in agent_protocol_interpreter.asl.

In order to show the potential of our approach, we imple-
mented an example where agents are freely inspired by char-
acters from the Lord of the Rings. The purpose of this toy
example is to explain how our approach works in practice,
in a simplified and fictitious scenario. Extensions of con-
strained global types have been used to model real MASs in
real domains [31]: more complex problems in more challeng-
ing settings like control access policies, e-commerce, ambient
intelligence, resource allocation, can be addressed using con-
strained global types for protocol-driven agents as well.

The notation used for specifying protocols is the one in-
troduced in Section 4. We describe the normal protocol
bh involving Bilbo and the hobbits, whereas, for space con-
straints, we do not specify Frodo’s, Folco’s and Sam’s normal
behavior that we assume to be governed by fr, fo, sa pro-
tocols. The exceptional protocol ef involves Bilbo, Frodo,
Folco and Sam. Gandalf acts as the controller of the MAS
and may require a protocol switch from the normal protocol
to the exceptional one.

Protocol involving Bilbo and the hobbits. To en-
ter the treasure room, any hobbit must ask Bilbo and must
respect his decision to either let him in or not. In the first
case the hobbit thanks Bilbo and visits the room; in the
second case he expresses his disappointment and may either
start the protocol again, or give up. Bilbo allows in only
one hobbit per day so the only knowledge he needs to check
and update is related to whether one hobbit already entered
the room today or not. Of course Bilbo can adopt other
policies for deciding when and why allowing the hobbits in.
We made experiments with different ones.

The branch of the protocol specifying the interactions
between Bilbo and Hobbitl is modeled by the following
global type with only producer interaction types of the form
IntType®, written as IntType~0 in the code excerpt, mean-
ing that they require no consumer (see Section 4) to syn-
chronize with.

Hobbit1Branch =
ask_enter_treasure (hobbit1) ~0:
((ok_enter (hobbit1) ~0:thanks (hobbitl) ~0:1lambda) +
(no_enter (hobbit1) "0:grunt (hobbitl) ~0:
(lambda+hobbitiBranch)))

The branches for all the other hobbits are the same as
Hobbit1Branch apart from the presence of hobbit2, hobbit3,
..., instead of hobbit1.

The ask_enter_treasure(H) interaction type holds for
interactions msg(H, bilbo, ask, enter_treasure) where

H is the sender, who must be one among the hobbits, bilbo
is the receiver, ask is the performative, enter_treasure is
the content.

This request may be followed (sequence operator :) ei-
ther by an interaction of type ok_enter(H) stating that H
can enter the room, followed by a thanks by H, and then
conclude (lambda), or (choice operator +) by Bilbo’s refusal
to let H in (no_enter (H)) followed by an expression of dis-
appointment by H (grunt (H)), followed by either the hobbit
branch protocol again, or lambda.

The BilboHobbits global type has as many different bran-
ches as the hobbits with whom Bilbo is expected to inter-
act. The fork operator | is used to specify interleaving
among interactions in these branches, which are also put
in interleaving with (switch(bilbo,ef)~0:lambda) where
msg(gandalf,R,switch,Pr) € switch(R, Pr). This means
that msg(gandalf,bilbo,switch,ef) is allowed to be re-
ceived in any moment:

BilboHobbits

(((Hobbit1Branch|Hobbit2Branch) |
Hobbit3Branch) | ...) | (switch(bilbo,ef)~0:1lambda).

Once projected onto Bilbo, BilboHobbits returns Bilbo-
Hobbits itself as Bilbo is involved in any interaction and
none can be discarded. When projected onto hobbitj, Bil-
boHobbits returns Hobbit jBranch which drives the behavior
of the j-th hobbit.

Exceptional Protocol. If an emergency takes place,
Bilbo should ask Frodo to help him moving the treasure to
a safer place. If Frodo can help Bilbo, he gives a positive an-
swer, otherwise he asks Sam and Folco (no matter in which
order). Only after these interactions take place (concatena-
tion operator *), all the agents are ready to manage a new
switch request from Gandalf, asking them to recover to their
normal protocol. The ExceptionalFlow protocol, identified
by ef, is specified by the following constrained global type:

ExceptionalFlow
(ask_help(bilbo,frodo) "0:
((ok_help(frodo,bilbo) "0:lambda) +
(cannot_help(frodo,bilbo) ~0:
(ask_help(frodo,sam) ~0:lambda |
ask_help(frodo,folco)~0:lambda))))*Recover,

Recover

((switch(frodo,fr) ~0:lambda) |
(switch(bilbo,bh) "0:1lambda) |
(switch(sam,sa)~0:lambda) |
(switch(folco,fo) ~0:1lambda))

Gandalf acts as the controller. The protocol that drives
his behavior is

Gandalf =

((switch(frodo,ef) ~0:lambda) |
(switch(bilbo,ef) ~0:1lambda) |
(switch(sam,ef) ~0:1lambda) |
(switch(folco,ef)~0:1lambda)) * Recover

where Recover is defined as in the ExceptionalFlow pro-
tocol. The decision of sending messages to Frodo, Bilbo,
Sam and Folco is fired by the (paranormal) perception of a
crowd of ogres coming near to the treasure room. After that
(concatenation operator *) Gandalf sends a message to all
the agents to switch back to their normal behavior. The con-
straint that when one protocol switch message is associated

1026

with the SwitchMsg variable, no other switch request can
enter the message queue, is respected. In fact Frodo, Bilbo,
Sam and Folco are able to manage switch requests at any
time: as soon as they receive the first request by Gandalf
they manage it and set SwitchMsg to null. When Gandalf
sends the second request, they keep it in SwitchMsg until
they complete the management of the exceptional situation
and become ready to switch back to their normal life.

We experimented our framework on the above example
testing different situations and observing the correct ex-
pected behavior in all of them. In particular, we made ex-
periments where

— Bilbo lets the hobbits in;

— Bilbo does not allow the hobbits to enter the treasure
room;

— Bilbo receives a protocol switch request from an agent
which has no power to make it, and ignores it;

— Bilbo receives requests from the hobbits while he is ex-
ecuting the exceptional protocol, and ignores them;

— Frodo helps Bilbo;

— Frodo does not help Bilbo who involves Sam and Folco.

7. CONCLUSIONS AND FUTURE WORK

We have presented a framework for protocol-driven self-
adaptive systems and its instantiation along the two follow-
ing dimensions: formalism for representing protocols (con-
strained global types) and underlying agent’s framework (Ja-
son). The two main technical contributions of the paper are

1. the definition of protocol-driven agents and

2. the ability of changing behavior at runtime by switching
from one protocol to another one; the protocol switch ability
is a consequence of having protocols as first class entities.

The combination of features 1 and 2 with projection en-
sures that a protocol-driven agent Ag; whose behavior is
driven by the protocol II(G, { Ag:1 }) obtained from projection
by a protocol GG, will be compliant by construction with all
the agents driven by protocols II(G, {Ag2}), II(G,{Ags}),
..., II(G,{Agn }) that derive from G as well. Besides compli-
ance to a global protocol, our approach supports the ability
to adapt to new situations by protocol switching. These fea-
tures seen together, and actually implemented on top of the
Jason framework, contribute to the originality of our work.

In order to better assess the pros and cons of our proposal,
we plan to select some standard scenario context, for exam-
ple from e-commerce, and develop the same scenario using
our proposed framework and using standard protocols with
standard control actions (timeouts, exceptions, ...).

A positive aspect of our framework is that it should be
possible to add it on top of all the agent environments and
languages providing the basic building blocks for represent-
ing the agent knowledge, environment and message queue
with a non negligible, but still limited, effort. We are work-
ing for verifying such a claim by instantiating our framework
on JADE. A monitor implementing the next function on con-
strained global types has already been integrated in JADE
[8]. We will start from that implementation to build the gen-
erate function and the protocol-driven interpreter around it.

Acknowledgments. This work has been partially sup-
ported by the MIUR PRIN Project CINA: Composition-
ality, Interaction, Negotiation, Autonomicity for the future
ICT society, prot. 2010LHT4KM.

REFERENCES

1]

[10]

[11]

D. Ancona, M. Barbieri, and V. Mascardi.
Constrained global types for dynamic checking of
protocol conformance in multi-agent systems. In S. Y.
Shin and J. C. Maldonado, editors, Proceedings of the
28th Annual ACM Symposium on Applied Computing,
SAC ’18, Coimbra, Portugal, March 18-22, 2013,
pages 1377-1379. ACM, 2013.

D. Ancona, D. Briola, A. El Fallah Seghrouchni,

V. Mascardi, and P. Taillibert. Efficient verification of
MASSs with projections. In F. Dalpiaz, J. Dix, and

B. van Riemsdijk, editors, Engineering Multi-Agent
Systems - Second International Workshop, EMAS
2014, Revised Selected Papers, volume 8758 of Lecture
Notes in Computer Science. Springer, 2014.

D. Ancona, S. Drossopoulou, and V. Mascardi.
Automatic generation of self-monitoring MASs from
multiparty global session types in Jason. In

M. Baldoni, L. A. Dennis, V. Mascardi, and

W. Vasconcelos, editors, Declarative Agent Languages
and Technologies X - 10th International Workshop,
DALT 2012, Valencia, Spain, June 4, 2012, Revised
Selected Papers, volume 7784 of Lecture Notes in
Computer Science, pages 76-95. Springer, 2012.

M. Baldoni, C. Baroglio, and F. Capuzzimati.
2COMM: A commitment-based MAS architecture. In
M. Cossentino, A. El Fallah Seghrouchni, and

M. Winikoff, editors, Engineering Multi-Agent
Systems, volume 8245 of Lecture Notes in Computer
Science, pages 38-57. Springer Berlin Heidelberg,
2013.

F. L. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. Wiley,
2007.

R. H. Bordini, J. F. Hiibner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, 2007.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203—-236, 2004.
D. Briola, V. Mascardi, and D. Ancona. Distributed
runtime verification of JADE multiagent systems. In
D. Camacho, L. Braubach, S. Venticinque, and

C. Badica, editors, Intelligent Distributed Computing
VIII - Proceedings of the 8th International Symposium
on Intelligent Distributed Computing, IDC 2014,
Madrid, Spain, September 3-5, 2014, volume 570 of
Studies in Computational Intelligence, pages 81-91.
Springer, 2014.

N. Bulling, M. Dastani, and M. Knobbout. Monitoring
norm violations in multi-agent systems. In Proceedings
of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS ’13, pages
491-498, Richland, SC, 2013. International Foundation
for Autonomous Agents and Multiagent Systems.

G. Cabri, M. Puviani, and F. Zambonelli. Towards a
taxonomy of adaptive agent-based collaboration
patterns for autonomic service ensembles. In
Collaboration Technologies and Systems (CTS), 2011
International Conference on, pages 508-515, 2011.

D. Capera, J. George, M.-P. Gleizes, and P. Glize. The

1027

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

22]

23]

(24]

AMAS theory for complex problem solving based on
self-organizing cooperative agents. In Enabling
Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on, pages
383-388, 2003.

G. Casella and V. Mascardi. West2East: Exploiting
WED Service Technologies to Engineer Agent-Based
SofT'ware. Int. J. Agent-Oriented Softw. Eng.,
1(3/4):396-434, 2007.

G. Castagna, M. Dezani-Ciancaglini, and L. Padovani.
On global types and multi-party session. Logical
Methods in Computer Science, 8(1), 2012.

L. Cernuzzi and F. Zambonelli. Dealing with adaptive
multi-agent organizations in the Gaia methodology. In
J. Miiller and F. Zambonelli, editors, Agent-Oriented
Software Engineering VI, volume 3950 of Lecture
Notes in Computer Science, pages 109-123. Springer
Berlin Heidelberg, 2006.

C. Chopinaud, A. El Fallah-Seghrouchni, and

P. Taillibert. Automatic generation of self-controlled
autonomous agents. In Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, pages
755-758, 2005.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri.
Self-adaptive monitors for multiparty sessions. In 22nd
Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP
2014, pages 688-696. IEEE, 2014.

M. Cossentino. From requirements to code with the
PASSI methodology. Agent-oriented methodologies,
3690:79-106, 2005.

G. Cugola, C. Ghezzi, and L. Pinto. DSOL: a
declarative approach to self-adaptive service
orchestrations. Computing, 94(7):579-617, 2012.

F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Adaptive
socio-technical systems: a requirements-based
approach. Requirements Engineering, 18(1):1-24, 2013.
G. De Giacomo, Y. Lespérance, and C. Muise. On
supervising agents in situation-determined ConGolog.
In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’12, pages 1031-1038, Richland, SC, 2012.
International Foundation for Autonomous Agents and
Multiagent Systems.

G. Di Marzo Serugendo, M.-P. Gleizes, and

A. Karageorgos. Self-organization in multi-agent
systems. Knowl. Eng. Rev., 20(2):165-189, 2005.
FIPA. FIPA ACL message structure specification.
Approved for standard, Dec. 6", 2002, 2002.

S. N. Gerard and M. P. Singh. Evolving protocols and
agents in multiagent systems. In Proceedings of the
2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS ’13, pages
997-1004, Richland, SC, 2013. International
Foundation for Autonomous Agents and Multiagent
Systems.

M.-P. Gleizes. Self-adaptive complex systems. In

M. Cossentino, M. Kaisers, K. Tuyls, and G. Weiss,
editors, Multi-Agent Systems, volume 7541 of Lecture
Notes in Computer Science, pages 114-128. Springer
Berlin Heidelberg, 2012.

[25]

[30]

31]

[34]

Z. Guessoum, M. Ziane, and N. Faci. Monitoring and
organizational-level adaptation of multi-agent systems.
In Autonomous Agents and Multiagent Systems, 2004.
AAMAS 2004. Proceedings of the Third International
Joint Conference on, pages 514-521, 2004.

C. Hahn, I. Zinnikus, S. Warwas, and K. Fischer.
Automatic generation of executable behavior: A
protocol-driven approach. In M.-P. Gleizes and

J. Gomez-Sanz, editors, Agent-Oriented Software
Engineering X, volume 6038 of Lecture Notes in
Computer Science, pages 110-124. Springer Berlin
Heidelberg, 2011.

IBM Corp. An architectural blueprint for autonomic
computing. IBM Corp., USA, 2004.

N. R. Jennings, K. P. Sycara, and M. Wooldridge. A
roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems,
1(1):7-38, 1998.

T. Juan and L. Sterling. The ROADMAP meta-model
for intelligent adaptive multi-agent systems in open
environments. In P. Giorgini, J. Miiller, and J. Odell,
editors, Agent-Oriented Software Engineering IV,
volume 2935 of Lecture Notes in Computer Science,
pages 53-68. Springer Berlin Heidelberg, 2004.

A. U. Mallya and M. P. Singh. Modeling exceptions
via commitment protocols. In Proceedings of the
Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’05, pages
122-129, New York, NY, USA, 2005. ACM.

V. Mascardi, D. Briola, and D. Ancona. On the
expressiveness of attribute global types: The
formalization of a real multiagent system protocol. In
M. Baldoni, C. Baroglio, G. Boella, and R. Micalizio,
editors, AI*IA 2013: Advances in Artificial
Intelligence - XIIIth International Conference of the
Ttalian Association for Artificial Intelligence, Turin,
Italy, December 4-6, 2013. Proceedings, volume 8249 of
Lecture Notes in Computer Science, pages 300-311.
Springer, 2013.

J. Mayfield, Y. Labrou, and T. Finin. Evaluation of
KQML as an agent communication language. In
ATAL, pages 347-360. Springer Verlag, 1995.

T. Miller and P. McBurney. Using constraints and
process algebra for specification of first-class agent
interaction protocols. In G. M. P. O’Hare, A. Ricci,
M. J. O’Grady, and O. Dikenelli, editors, Engineering
Societies in the Agents World VII, 7th International
Workshop, ESAW 2006, Dublin, Ireland, September
6-8, 2006 Revised Selected and Invited Papers, volume
4457 of Lecture Notes in Computer Science, pages
245-264. Springer, 2006.

T. Miller and P. McBurney. Annotation and matching
of first-class agent interaction protocols. In
Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’08, pages 805-812, Richland, SC,
2008. International Foundation for Autonomous
Agents and Multiagent Systems.

T. Miller and P. McBurney. Propositional dynamic
logic for reasoning about first-class agent interaction
protocols. Computational Intelligence, 27(3):422-457,
2011.

1028

(36]

37]

(38]

39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

M. Morandini, F. Migeon, M.-P. Gleizes, C. Maurel,
L. Penserini, and A. Perini. A goal-oriented approach
for modelling self-organising MAS. In H. Aldewereld,
V. Dignum, and G. Picard, editors, Engineering
Societies in the Agents World X, volume 5881 of
Lecture Notes in Computer Science, pages 33—48.
Springer Berlin Heidelberg, 2009.

L. Padgham, J. Thangarajah, and M. Winikoff.
AUML protocols and code generation in the
Prometheus Design Tool. In Proceedings of the 6th
International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS’07, pages
270:1-270:2, New York, NY, USA, 2007. ACM.

J. G. Quenum, S. Aknine, O. Shehory, and S. Honiden.
Dynamic protocol selection in open and heterogeneous
systems. In Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Intelligent Agent
Technology, Hong Kong, China, 18-22 December 2006,
pages 333-341. IEEE Computer Society, 2006.

J. G. Quenum, F. Ishikawa, and S. Honiden. Protocol
selection alongside service selection and composition.
In 2007 IEEE International Conference on Web
Services (ICWS 2007), July 9-13, 2007, Salt Lake
City, Utah, USA, pages 719-726. IEEE Computer
Society, 2007.

R. de Lemos, H. Giese, H. A. Miiller, et al. Software
engineering for self-adaptive systems: A second
research roadmap. In R. de Lemos, H. Giese, H. A.
Miiller, and M. Shaw, editors, Software Engineering
for Self-Adaptive Systems II, volume 7475 of Lecture
Notes in Computer Science, pages 1-32. Springer,
2013.

G. Salvaneschi, C. Ghezzi, and M. Pradella. An
analysis of language-level support for self-adaptive
software. ACM Trans. Auton. Adapt. Syst.,
8(2):7:1-7:29, 2013.

M. P. Singh. Interaction-oriented programming;:
Concepts, theories, and results on commitment
protocols. In Proceedings of the 19th Australian Joint
Conference on Artificial Intelligence: Advances in
Artificial Intelligence, AT'06, pages 56, Berlin,
Heidelberg, 2006. Springer-Verlag.

G. Tesauro, D. M. Chess, W. E. Walsh, R. Das,

A. Segal, I. Whalley, J. O. Kephart, and S. R. White.
A multi-agent systems approach to autonomic
computing. In Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS 04, pages
464-471, Washington, DC, USA, 2004. IEEE
Computer Society.

S. Warwas and C. Hahn. The DSML4MAS
development environment. In Proceedings of The 8th
International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’09, pages
1379-1380, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent
Systems.

D. Weyns and M. Georgeff. Self-adaptation using
multiagent systems. Software, IEEE, 27(1):86-91,
2010.

Y. Brun, G. Di Marzo Serugendo, C. Gacek, et al.
Engineering self-adaptive systems through feedback

loops. In B. H. C. Cheng, R. de Lemos, H. Giese,

P. Inverardi, and J. Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 48—-70.
Springer, 2009.

P. Yolum and M. Singh. Reasoning about
commitments in the event calculus: An approach for
specifying and executing protocols. Annals of
Mathematics and Artificial Intelligence,
42(1-3):227-253, 2004.

1029

(48]

(49]

F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi,
and M. Puviani. On self-adaptation, self-expression,
and self-awareness in autonomic service component
ensembles. In Self-Adaptive and Self-Organizing
Systems Workshops (SASOW), 2011 Fifth IEEE
Conference on, pages 108—113, 2011.

F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing multiagent systems: The gaia
methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317-370, 2003.

