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ABSTRACT
In this paper we present a self-organizing model for open vi-
rtual environments in multi-agent based simulation systems.
Open environments are inaccessible, non-deterministic, dy-
namic and continuous. A virtual environment is partitioned
into areas called cells and is supported by an underlying
autonomic software system consisting of specialized agents
called controllers and coordinators. Controllers manage spe-
cific cells while coordinators monitor and guide controllers
in the execution of their tasks. Controllers and coordina-
tors continuously interact with one another and re-organize
themselves and the environment structure to ensure that
the simulation functional and performance requirements are
met. During the execution of the simulation, virtual agents
are unaware of the partitioned structure of the environment
and the underlying self-organization activities. The experi-
mental results show a significant improvement in the scala-
bility and performance of the simulation system. Moreover,
the emergence of undesired behavior is controlled.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent systems; I.6.8
[Simulation and Modeling]: Types of Simulation—self-
organizing ; D.2.11 [Software Engineering]: Software Ar-
chitectures

General Terms
Algorithms, Design, Experimentation

Keywords
multiagent simulation; decentralized virtual environment

1. INTRODUCTION
Modern Multi-Agent-Based social Simulations (MABS) has
been of interest to researchers and practitioners for over a
decade. The ability to create large-scale virtual societies
where virtual entities are modeled individually and the ef-
fect of their interactions observed globally is valuable for the
study of many important societal issues: the impact of envi-
ronmental changes, the planning of emergency evacuations,
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the spread of contagious diseases, etc. In this paper we focus
on non-distributed situated MABS, i.e., simulation systems
in which virtual agents are situated in a virtual environment
which executes on a single machine.

For social simulations to be meaningful, it is necessary to
implement realistic models for both virtual agents and en-
vironment. A lot of attention has been given to the defini-
tion of accurate models for agents (e.g., behavioral, decision-
making and interactions models). Unfortunately not much
has been done for the definition of virtual environments that
mimic the complexity of real-world environments. The rea-
son is twofold:
1. The construction of realistic virtual environments (also
called open environments) is not a trivial task [12]. Such
environments are a) inaccessible: virtual agents do not have
access to global environmental knowledge but perceive their
surroundings through sensors (e.g., vision, auditory, olfac-
tory); b) non-deterministic: the effect of an action or event
on the environment is not known with certainty in advance;
c) dynamic: the environment constantly undergoes changes
as a result of agent actions or external events; and d) con-
tinuous: the environment states are not enumerable.
2. Realistic simulations involve the execution of a large-
number of sensor-based perception agents in an open envi-
ronment. Unfortunately, limited computational resources
make this goal untenable on a single machine.

A few MABS have proposed models for open virtual envi-
ronments. Most of these models represent the environment
as a single massive component that is managed by one con-
trol unit [7, 13, 19]. Other models decompose the environ-
ment into regions that are also managed by a single control
unit [3,4,21]. In both cases, centralized control creates a bot-
tleneck and limits the scalability of the simulation. On the
other hand, a very limited number of MABS have proposed a
partitioned structure of the environment with control units
managing specific spatial areas [11]. Unfortunately, these
systems do not leverage several of the benefits enabled by
decentralized control.

In an effort to address the challenge related to the execu-
tion of a large number of virtual agents situated in an open
environment, researchers have followed two approaches:
1. Distribution. In distributed MABS, the virtual environ-
ment is partitioned into regions each hosted on a different
machine. While distribution helps to address the problem of
scalability, it introduces greater challenges in the design of
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MABS (e.g., real-time synchronization, cell boundary man-
agement, network latency and capacity). In addition, dis-
tribution requires a deployment infrastructure that is not
available to many.
2. The definition of models that allow the execution of large-
scale MABS on a single machine. Given the limited com-
putational resources available, these models aim to achieve
a balance between result accuracy and execution time effi-
ciency. In [9], Navarro et. al. propose the use of aggre-
gation mechanisms: virtual agents with similar attributes
are either aggregated in their entirety in a single entity with
lower resolution; or parts of the agents (e.g., decision mak-
ing processes) are aggregated while others (e.g., perception)
continue to execute at their initial levels.

In this paper we propose a model1 for the execution of large-
scale MABS on a single host. In our approach, agents exe-
cute their behaviors and are not subjected to any external re-
source optimization mechanism (e.g., aggregation/disaggre-
gation). The open environment which has a decentralized
structure is supported by an underlying self-organizing sys-
tem consisting of micro- and macro-level specialized agents.
The specialized agents continuously interact with one an-
other and re-organize the environment structure to ensure
that both the functional and performance simulation re-
quirements are met. During the execution of the simula-
tion, virtual agents are unaware of the partitioned structure
of their environment and the self-organization activities oc-
curring at the supporting system layer.

We have implemented the architecture and algorithms in
DIVAs, a large scale simulation framework used for the de-
velopment of simulation systems. The experimental results
show the superiority of the proposed self-organizing archi-
tecture over the non self-organizing decentralized architec-
ture. The self-organizing virtual environment is scalable,
performs better, and the emergence of undesired behavior is
controlled.
The rest of the paper is organized as follows: in Section 2
we discuss related work. In Section 3 we discuss the envi-
ronment model. This is followed by a detailed presentation
of the self-organizing algorithms in Section 4. In Section 5
we discuss the implementation of the self-organizing model
and algorithms, then present the experimental results.

2. RELATED WORK
A virtual open environment plays a critical role in a sit-
uated MABS. It provides the “physical” conditions for the
virtual agents to exist, maintains the state of the environ-
ment objects, responds to external stimuli, enforces physical
laws and informs agents about changes in the virtual world.
Agents in an open environment do not have access to global
information but perceive their surroundings through sensors.
Agent perception is directly related to the structure of the
environment and the mechanisms that allow the transfer of
environmental data to agents.

Virtual environment structures and their control mech-
anism are classified as centralized or decentralized. Envi-
ronments with a centralized structure are designed as one
massive component that can be globally or partially per-
ceived (i.e., agents have access to global knowledge but can

1In the remainder of this paper, the term “model” is used to
refer to concepts and architecture.

perceive some environmental information) [7, 10, 13, 15, 19].
These environments are managed by a single control unit.
These systems are unfit to simulate realistic scenarios where
agents are expected to act solely upon the information they
have perceived. In addition, the large amount of environ-
mental data to be processed by agents limits the size and
complexity of the simulation.

Environment with decentralized structures are partitioned
into multiple distinct regions that are managed in a central-
ized or decentralized fashion. In a partitioned environment,
the amount of data sent to virtual agents is drastically re-
duced. This naturally lowers the computational cost. De-
centralized structures with central control have been widely
used to implement simple 2D environment models in which
agents have access to global [2,3,16,20,21] or partial knowl-
edge [4]. For all MABS in this category, the centralized
control creates a bottleneck and limits the scalability of the
simulation.

The limitation of centralized control is addressed in envi-
ronments with decentralized structure and control. In [11],
Pelechano et al. discuss HiDAC, a crowd evacuation simula-
tion system used to model realistic flow of people in evacu-
ation scenarios. The environment represents a set of rooms,
each corresponding to an environment cell. In order to ob-
tain environmental information, HiDAC agents query the
cell in which they are situated. The division of the envi-
ronment into rooms simplifies the perception problem: the
presence of walls eliminates the need for boundary cases,
e.g., when agents belonging to a cell are able to perceive
other cells.

In order to address the problem of building large-scale re-
alistic simulations executing on a single machine, Navarro
et al. [9] propose an agent aggregation/disaggregation ap-
proach at a resolution level called mesoscopic. Agents are
decomposed into processes, each representing a skill (e.g.,
navigation, perception). Based on the value of an aggrega-
tion utility, some of the agent processes are aggregated while
others continue to run at their initial levels. While the con-
cept is interesting and the experimental results are strong
(scenarios with 1,000 agents in a highly dynamic environ-
ment and 10,000 agents in a less interactive environment ex-
ecuting on a single machine), due to the proprietary nature
of the simulator used to test the model, several important
evaluation features are unclear: the problem of determining
which agents are to be aggregated/disaggregated seems to
be done by a central unit which would normally constitute
a bottleneck for large scale dynamic MABS; it is unclear
whether the environment is open; it is unclear how agent
perception is implemented (the authors only mention the
use of Smart Objects) and whether the approach can accom-
modate senses other than vision. In addition, as stated by
the authors, the proposed approach does not lead to compu-
tational gains when the environment is highly dynamic and
interactions between agents and environment are intensive.

In this paper we propose an orthogonal approach to Navarro
et al. We present a self-organizing model for virtual environ-
ments that can be used to improve the scalability and per-
formance of MABS executing on a single machine. In this
model, agent execution is not altered. The decentralized
environment is supported by an underlying self-organizing
system that reorganizes the environment structure to en-
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sure that both the simulation accuracy and performance are
met. Our proposed model improves on the state of the art
in virtual open environments as follows: 1) it can be used
to create any type of spatial environment; 2) virtual agents
perceive their surroundings through advanced multi-sensory
perception mechanisms (e.g.,vision, auditory, olfactory) [1];
3) The underlying autonomic structure is orthogonal to the
simulation and virtual agents are unaware of its execution;
4) the performance and scalability of the simulation surpass
static centralized and decentralized solutions.

In the next section we give an overview of the autonomic
reference architecture at the basis of this work.

3. A SELF-ORGANIZING MODEL FOR VIR-
TUAL ENVIRONMENTS

In order to manage a large virtual environment efficiently, it
is necessary to partition the space into smaller defined areas
called cells (see Figure 3). Each cell is managed by a spe-
cialized agent called a controller [1].

Cell Function Management
A controller is responsible for a) managing environmental
information about its cell; b) informing its neighboring cell
controllers of propagating events; and c) providing each lo-
cal virtual agent with its perceivable portion of the envi-
ronment. We refer to these responsibilities as cell function
management.

In the self-organizing model, agents and environment in-
teract continuously using the Action Potential/Result (APR)
model [17], an enhancement of the influence/reaction model
proposed by Ferber [5]. In APR, agents receive the state
of the cells they can perceive; using their sensors, they de-
termine what can actually be sensed; they decide which ac-
tions to perform; and send their intended actions to their
cell controllers. The controllers receive the action potentials,
combine them, resolve conflicts, determine the new states of
their cells and send the updated states to their respective
agents (see Figure 1). This entire process represents one
simulation cycle. A detailed description of the APR model
can be found in [17].

Virtual Agent
StimuliEnvironment

State

External
Stimuli

AgentsAgentsVirtual Agents

EnvironmentEnvironmentCell Controllers User

Figure 1: Agent environment interactions

When an agent receives environmental data from cell con-
trollers, its perception sensors filter out any information that
is not perceivable. This filtering can be computationally in-
tensive when the amount of irrelevant information is large.
Therefore it is a cell controller’s responsibility to ensure that
only the smallest aggregate of cells whose bounds fully con-
tain the agent’s perception range is passed on to the agent
(e.g., cells c3, and c4 in Figure 2). This is a computationally
intensive task that involves combining the agent intended
actions to ensure that the results of these intentions are le-
gal with respect to the laws of the environment; processing

boundary cases; updating the cell state; and sending the rel-
evant information to the agents [17]. Detailed discussions on
agent perception can be found in [8].

C1 c2

c3 c4

Visible region
Audible region

Figure 2: Range of perception within multiple cells

Cell Performance Management
In highly dynamic scenarios, a large number of agents may
find themselves concentrated in only a few cells. The un-
even workload distribution among controllers may lead to
1) a delayed simulation cycle and 2) a waste of computa-
tional resources. In order to address these issues, we need
to supplement the controller’s responsibilities with simula-
tion performance management. In other words, in addition
to managing their cells and providing their agents with per-
ceivable information, each cell controller has to make sure
that a) its workload is under nominal capacity and b) the
performance requirements (e.g., simulation cycle time) are
met. If the performance constraints are not met, a con-
troller has to re-organize its cell by performing one of two
actions: splitting its cell, transferring a portion of its agents,
and spawning a new controller to manage the new cell; or
merging its cell with another cell and releasing its resource.
While at every simulation cycle both functional and perfor-
mance tasks are executed by controllers, in this paper, we
focus our discussions on the controller’s performance man-
agement role.

As shown in Figure 3, the self-organizing system includes
an additional category of specialized agents called coordi-
nators. A coordinator’s role is to ensure that the simula-
tion performance requirements for the set of controllers it
supervises are met. The definition of coordinators is nec-
essary since purely decentralized reorganization can lead to
undesired behavior and performance. This is illustrated in
Section 5.4. Nevertheless, it is important to note that co-
ordinators are centers of knowledge and advice rather than
centers of control. From a behavioral perspective, since a
coordinator can oversee a limited number of cell controllers,
when its load increases or decreases, it either spawns a new
coordinator and passes part of its load on to it, or merges
its load with another coordinator and destroys itself.

During the execution of the simulation, the self-organizing
system has to find a balance between multiple competing
objectives: a) reduce the agent perception cost; b) reduce
the cost incurred by a controller to determine which por-
tion of the environment is perceivable by an agent. We re-
fer to this as the controller perception processing cost ; c)
reduce the context switching cost; and d) reduce the hier-
archy self-organization cost. Automating the trade-off be-
tween competing objectives is hard to achieve and is still
unsupported in most current systems [6]. While considering
self-organization exclusively from a computational resource
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Figure 3: Self-organizing environment

utilization perspective (i.e., load balancing) is possible, it is
less obvious to do so in the presence of competing goals [6].

4. A SELF-ORGANIZING SYSTEM
We start this section by defining the concepts integral to
the model discussed above, then present self-organization
algorithms.

4.1 Definitions
Controller workload: A controller ck’s workload (Wck (t))
corresponds to the amount of work a controller has to per-
form to: a) manage its local environmental information such
as objects and b) provide its local agents with their perceiv-
able portion of the environment. As such, Wck (t) is defined
as:

Wck (t) = agentsck (t) · w1 + objectsck (t) · w2

where agentsck (t) is the effort needed to manage agents lo-
cated in ck’s cell at time t; objectsck (t) is the effort needed
to manage the environment objects in ck’s cell at time t; w1

and w2 are weights; w1, w2 ∈ [0, 1].
Given that it takes more processing power to handle agent
perception than environment objects, w1 > w2. These weig-
hts can be calibrated by the user of the simulation.

Simulation Resources: In the simulation, controllers are
run as threads. Therefore, the maximum number of con-
trollers Γ available for the simulation depends on the com-
puter’s processing power. For example, in case of a PC using
a core i7 with 12 processors, we have found that Γ = 64. This
corresponds to the maximum number of threads that can be
run by the computer before context switching overhead leads
to performance degradation.

At initialization time, Γ is assigned to the initial coordina-
tor. As the simulation evolves and controllers and coordina-
tors are created and destroyed, the distribution of Γ among
coordinators adapts to the simulation’s computational need.

At any point in time, Γ =
∑|CO|
i=1 γcoi(t) where γcoi(t) cor-

responds to the number of threads assigned to coordinator
coi at time t and |CO| is the total number of coordinators
in the simulation.

Coordinator workload: A coordinator coi’s workload,
Wcoi represents the workload necessary to oversee a number
of controllers or coordinators.

Urgency Function: The urgency function Uck is used by
a coordinator to determine which controller ck requires im-
mediate assistance. It is defined as:

Uck (t) = Wck (t) + ρck (t) · wρ

where Wck (t) is the workload of ck, ρck (t) is the average
workload of ck’s neighboring controllers and wρ is a weight
having a value between [0, 1]. ρck (t) is defined as:

ρck (t) = 1
N

N∑
n=1

Wck,n(t),

where Wck,n is the workload of adjacent controllers and N
is the total number of surrounding cells.

To illustrate the use of Uck , consider the scenario where
two non-neighboring controllers c1 and c2 are overloaded,
i.e., given a threshold α, Wc1(t) > α, Wc2(t) > α, and
Wc1(t) ≈Wc2(t). If the average workload ρc1(t) around c1
is greater than the average workload ρc2(t) around c2, then
Uc1(t) > Uc2(t) and c1 will have a higher priority in getting
assistance from the coordinator.

4.2 Algorithms for Self-Organization
At initialization time, a newly created virtual environment
consists of a single cell cell1. The self-organizing system
assigns a single controller c1 to that cell. Then coordinator
co1 is created, its available resources are set to Γ, and c1 is
added to its set of overseen controllers Cco.

In the remainder of this section, we use Figure 4 to illus-
trate the various steps of the self-organizing algorithms. At
every simulation cycle, a controller ck monitors its workload.
If its workload is greater than a threshold α (i.e., it can no
longer finish processing agent perceptions and cell informa-
tion management within the real-time requirements of the
simulation) it determines that it needs to split its cell and
spawn a new controller to alleviate its workload. To this
effect, it requests advice from its coordinator co (step 1 in
Figure 4). The request message is enqueued in co’s request
list. co retrieves and analyzes all requests periodically. It
computes and determines which cell controller has the high-
est level of urgency and stores the information in cmax. If
ck = cmax and the number of controllers |Cco| supervised by
the coordinator is lower than γco, then co advises ck to per-
form a split. In case |Cco| is equal to γco (i.e., the coordinator
has consumed all its resources and no splitting is possible),
co executes an optimization algorithm. This algorithm aims
at determining if the coordinator can obtain computational
resources by merging controllers with less critical urgency
values. This algorithm determines if the sum of the urgency
values of the two less critical neighboring controllers in Cco
is lower than the running average on the urgencies of past
and current cmax. The running average Ucritical allows to
address oscillations in urgency values related to cases when
agents cross cell boundaries. If this is the case, co advises
the merging of the two less critical controllers. This allows
the critical controller to split and results in a more uniform
distribution of workload and resources.
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Figure 4: Request for assistance scenario

If there are no controllers with less urgency values to be
merged, co interacts with its neighbor coordinator to request
assistance (step 2 in Figure 4). Upon receipt of the request,
the receiver coordinator corec checks its ability to provide
assistance to co.

If both co and corec (co121 in Figure 4) are leaf coordina-
tors (step2) and corec has not consumed all of its available
resources, it informs co (co122) of the availability of the re-
quested resources by sending a reply message. In case corec
(co121) has consumed all of its available resources, it deter-
mines if it is possible to merge the two less critical neighbor-
ing controllers in its set to release the required resources. If
it is possible, a reply message is sent to co (co122) to inform
it of the available resources. If not, corec (co121) informs co
(co122) that it is not able to provide assistance (step 3).

Since co (co122) could not receive assistance from its neigh-
boring coordinator (co121), it requests assistance from its
parent coordinator (co12, step 4). The parent coordinator
attempts to find resources by contacting a neighboring co-
ordinator (co11, step 5). The receiving neighbor determines
which among its children coordinators has the highest avail-
able resources relative to its load. This is defined as

Πco(t) = γco(t)−|Cco(t)|(
Uco(t)×wU+areaco(t)×wA

)
where Uco(t) is the total urgency of the set of controllers
overseen by co at time t, areaco(t) is the area of the cells
managed by the set of controllers overseen by co at time t,
wU and wA are weights. wU , wA ∈ [0, 1].

It sends a request for assistance to the child coordinator,
comax (co111,step 6). comax (co111) replies to its parent co-
ordinator. If resources are available, the parent coordinator
passes the information onto the requester coordinator (co12,
step 8). The requester coordinator updates its available re-
sources value, and forwards a reply to the request initiated
by coordinator, co (co122, step 9). co (co122) updates its
available resources value, and informs the requesting con-
troller ck of the possibility of splitting.

If none of the children coordinators are able to provide as-
sistance, the request is passed onto higher level coordinators
until either it is satisfied or the top coordinator is reached
and no help can be provided (exhausted all possibilities).

Once the controller receives an acknowledgement, it pro-
ceeds by splitting its cell, spawning a new controller as a
result.

If during the execution of the simulation a coordinator’s
workload falls below a threshold χ, co offers to merge with

its neighbor coneighbor. coneighbor accepts to merge if the
total workload does not exceed χ. Otherwise, if the coor-
dinator co workload goes above a threshold Ω, co spawns a
new coordinator and passes a part of its load on to it.

In addition to the autonomic behavior discussed above, co-
ordinators exhibit a proactive behavior to ensure an optimal
distribution of resources among coordinators. Each non-leaf
parent coordinator periodically monitors its children and,
when necessary (e.g., the coordinator realizes that due to
reorganization activities, the resources are not distributed
optimally over the children coordinators), sends a redistri-
butionAdvice message to each child. The message provides
an advice about how to redistribute the resources to achieve
an optimal distribution.

The advised optimal resource distribution γadvised for a
coordinator co is defined as

γadvised(t) =(
Uco(t)×wU+areaco(t)×wA)∑

coc∈children(cop) (Ucoc (t)×wU+areacoc (t)×wA)

)
×∑

coc∈children(cop) γcoc

where areaco(t) is the area of cells managed by the set of
controllers overseen by co at time t, Uco(t) is the total ur-
gency of the set of controllers overseen by co at time t, wU
and wA are weights. wU , wA ∈ [0, 1].

When a child coordinator cochild receives the advice mes-
sage, it evaluates the proposed distribution based on its cur-
rent load. If all children agree to follow the advice then they
proceed by redistributing their resources. Following this
step, each cochild propagates an optimization advice down
through the coordinators hierarchy.

In addition to dedicating themselves to the management
of their cells, in certain circumstances, controllers exhibit
altruistic behavior by self-organizing themselves to benefit
the simulation system as a whole. If controller ck’s workload
falls below a threshold β, it informs its neighboring controller
that its resources are ready to be released by sending a mes-
sage containing the value of its workload. Upon receipt of
the message, if the neighboring controller cs has the abil-
ity to handle the combined load, it initiates the merge of
the two cells and destroys ck. Since controllers are man-
aged by separate threads and consume memory and CPU,
the merging results in resource savings for the system as a
whole. Examples of resource savings include optimization of
memory allocated to controller threads and minimization of
thread context switching.

5. MODEL IMPLEMENTATION AND EVA-
LUATION

The proposed self-organizing model has been fully imple-
mented and tested using DIVAs, a Java-based framework for
the development of large-scale agent-based simulation sys-
tems. In order to provide a fair assessment of the three struc-
tures used in the current state-of-the-art simulators namely
centralized control ( [?, 2–4, 7, 10, 13, 15, 16, 19–21]) and de-
centralized control with decentralized structure ( [11]) (see
Section 2), we felt that it was necessary to implement these
structures from scratch using the same settings, then collect
and analyze data. Please note that DIVAs agent perception
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(i.e., vision, hearing, smell) and agent-environment interac-
tions (i.e., APR model) are very complex when compared to
existing simulators.

The simulation scenarios were executed on a multicore PC
(Intel Core i7 X980 CPU (3.33GHz), 6.00 GB, 64-bit Win-
dows 7). Controllers run on a thread execution pool and
coordinators are implemented as daemon threads. The to-
tal number of worker threads for the experiment is set to 12
which corresponds to the number of processors available on
the computer.

5.1 Experiment Setting
The DIVAs framework was used to build a social simula-
tion system where virtual agents representing humans are
situated in an open environment representing a city. Using
the simulator, we ran three experiments and evaluated our
model with respect to simulation cycle time, i.e., the time
elapsed in each simulation cycle measured in milliseconds
and CPU utilization, i.e, the percentage of CPU used by the
simulation.

All experiments take place in a virtual city environment
consisting of 814 environment objects (e.g., commercial buil-
dings, houses, traffic signals) and three parks (see Figure 5).
Situated agents represent humans perceive their surround-
ings through advanced vision, auditory and olfactory sen-
sors. They execute complex path-finding and collision avoid-
ance algorithms to move within the environment. In addi-
tion, agents interact with other agents, plan and deliber-
ate to achieve their goals (e.g., move to location, search for
agents).

Figure 5: 3D visualization of the city park

The thresholds and parameters used to execute these ex-
periments are: α = 25, β = 5, Γ = 64, wρ = 0.25,w1 =
1,w2 = 0.5,wU = 0.75,wA = 0.25, χ = 4, and Ω = 10.
Where α is the workload threshold that must be reached for
a controller to request assistance, β is the workload thresh-
old that must be reached for a controller to merge with its
neighbor, Γ is the resources for the simulation, {wρ , w1 , w2

, wU , wA } are weights, Ω is the workload threshold that
must be reached for a coordinator to split its workload over a
spawned coordinator, χ is the workload threshold that must
be reached for a coordinator to merge.

Demonstrations for the experiments discussed below are
available at [18].

5.2 Experiment 1: Scalability
The objective of this experiment is to show the impact of dif-
ferent environment structures on the scalability of the sim-

ulation. For each execution of the simulation, we record the
maximum number of agents handled by the simulation with-
out violating the specified simulation cycle time requirement
of 150 milliseconds. This corresponds to the longest time the
visualizer can display the simulation without delay. In this
experiment, agents are scattered evenly in various areas of
the city. We run this experiment using two environment
structures:
Static multiple cells (MC): this structure refers to a non
self-organizing environment containing equally sized cells
managed by controllers. This structure does not include
coordinators.
Self-organizing (SO): this structure refers to the proposed
self-organizing model discussed in Section 3.

The experiment starts with a single cell and gradually in-
creases to 64 cells.

0

1000

2000

3000

4000

0 10 20 30 40 50 60

Agents

Cells

MC SO

16

Figure 6: Experiment 1 Scalability in terms of num-
ber of agents

Figure 6 shows the number of agents that can be handled
by each environment structure before reaching the maximum
simulation cycle time of 150 milliseconds. These results show
that MC and SO can handle a comparable number of agents.
This is to be expected as an even agent distribution does not
call for reorganization.

The results also show an approximate 300% increase in the
number of agents that the simulation can handle from the
single cell to the 64 cell environment. We also observe that
as the number of cells increases, the maximum number of
agents asymptotically increases until reaching 16 cells. This
improvement is due to the savings in agent perception cost
(discussed in Section 3). After reaching 16 cells, the con-
troller perception processing cost and the context switching
cost are such that the improvement in scalability is insignif-
icant.

In the remainder of this section, we restrict our discussion to
MC and SO with 64 cells and discuss cases where the self-
organizing environment drastically outperforms the static
partitioned environment model.

5.3 Experiment 2: Performance Improvement
The objective of this experiment is to demonstrate the suit-
ability of the proposed model to cope with changes in an
open virtual environments. In this experiment, virtual hu-
man agents run errands in the city when an external event
related to the occurrence of a music festival is triggered. The
virtual agents attempt to reach the festival that takes place
in a public park. We run this scenario with 700, 1400, and
2100 agents using MC an SO.

As the simulation begins, the self-organizing environment
partitions itself autonomously according to the crowd den-
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sity. The movement of the crowd results in a dense popula-
tion of agents flowing towards the location of the park. As
the concentration of agents increases, the environment using
static multiple cells has a few highly populated cells while
its remaining cells are almost empty (see Figure 7). On the
other hand, the self organizing environment naturally copes
with the changes in the distribution of the virtual agent pop-
ulation: the cells are more evenly populated.

(a) MC (b) SO

Figure 7: Experiment 2 - Final configuration with
2100 agents

Population imbalance has a direct impact on the simula-
tion performance. This is illustrated in Figure 8 which shows
the simulation cycle times for the static multiple cells and
the self-organizing environment populated with 700, 1400,
and 2100 agents. For these cases, the self-organizing envi-
ronment outperforms the static partitioned environment in
terms of average simulation cycle time. As shown in Fig-
ure 8 (a), when the population of agents is small, both
structures are able to cope with the simulation real-time
requirements. However, with larger agent populations (see
Figure 8 (b)-(c)), as virtual agents move towards the location
of the festival, the simulation cycle time increases asymptot-
ically in the static cell structure, reaching a point where the
cycle time exceeds the maximum time of 150 milliseconds
needed by the visualizer to display the simulation without
delay. This is not the case for the self-organizing environ-
ment which is able to promptly respond to the dynamics of
the simulation.
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Figure 8: Experiment 2 - Average simulation cycle
times with (a) 700, (b) 1400, and (c) 2100 agents

Figure 9 illustrates the utilization of CPU by the simula-
tion with 700, 1400 and 2100 agents. The results show that

the static multiple cell uses more CPU in all cases. This is
due to the fact that, the restructuring of the environment
results in smaller cells for highly populated areas. Therefore,
perception in these smaller cells is less computationally in-
tensive for a larger number of agents.
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Figure 9: Experiment 2 - CPU utilization with (a)
700, (b) 1400, and (c) 2100 agents

5.4 Experiment 3: Control of Undesirable Be-
havior

Studies have shown that, in the absence of some level of con-
trol, fully decentralized self-organizing systems may result
in undesired chaotic states [14]. The purpose of this experi-
ment is to demonstrate how the emergence of undesired be-
havior is controlled in the context of the self-organizing envi-
ronment structure presented in this paper. To this effect, we
create an environment structure where cell controllers per-
form reorganization tasks autonomously, without any guid-
ance or control from coordinators. We call this structure
non-coordinated self-organizing environment (NCSO).
In this experiment, we add 3504 virtual agents in the city,
initially statically partitioned into 32 cells. We run this ex-
periment with the non-coordinated environment structure
and the fully self-organizing structure.

(b) SO(a) NCSO

Figure 10: Experiment 3 - Emergence of Undesired
State

As shown in Figure 10 (a), in the absence of coordinators,
cell controllers deliberate over reorganization tasks based
solely on their knowledge of their local cells and surround-
ings. Since they do not possess knowledge about the over-
all simulation properties, when their workload goes above a
threshold, cell controllers decide on their own to split their
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cells. This results in spawning a large number of new con-
trollers. This undesired behavior can lead to complete star-
vation of computational resources and an additional com-
putational overhead which would result in the degradation
of the overall system performance. On the other hand, Fig-
ure 10 (b) shows that the splitting is more moderate. This is
due to the fact that controllers are guided by coordinators
whose goal is to maintain the overall system performance
requirement.

6. CONCLUSION
In this paper we presented a self-organizing model for decen-
tralized virtual environments in MABS. This model is based
on the premise that a virtual environment structure is sup-
ported by an underlying software system consisting of cell
controllers and coordinators. These specialized agents con-
tinuously interact with one another and re-organize them-
selves and the environment structure to ensure that the sim-
ulation functional and performance requirements are met.
During the execution of the simulation, virtual agents are
unaware of the partitioned structure of their environment
and the self-organization activities.

We have implemented the architecture and algorithms us-
ing DIVAs, a framework for the development of MABS. The
experimental results show the superiority of the proposed
self-organizing architecture over existing architectures. The
virtual environment scales very well in highly dynamic sce-
narios where virtual agents are in constant motion in the
spatial environment. In addition, the emergence of unde-
sired behavior is controlled.

In the current model implementation, cells are split evenly
even if agents and objects are not uniformly distributed in
the cell area. It may be interesting to implement an al-
gorithm that performs the split based on the agent/object
distribution or allows the cell to be split in more than two
cells. Also, when providing assistance to a coordinator in
need of additional resources, a helper coordinator releases
one thread at a time even though the need may be for more.
A possible solution would be for the helper coordinator to
implement a heuristic that determines how many threads
can be released based on present and predicted future loads.
Finally, we believe that the work of Navarro et al. [9] is com-
plementary to ours since it tackles the same problem from a
different perspective. It would be interesting to incorporate
Navarro’s mesoscopic model with our self-organizing envi-
ronment model.
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