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ABSTRACT
The role of humans in aviation and other domains contin-
ues to shift from manual control to automation monitoring.
Studies have found that humans are often poorly suited
for monitoring roles, and workload can easily spike in off-
nominal situations. Current workload measurement tools,
like NASA TLX, use human operators to assess their own
workload after using a prototype system. Such measures
are used late in the design process and can result in ex-
pensive alterations when problems are discovered. Our goal
in this work is to provide a quantitative workload measure
for use early in the design process. We leverage research in
human cognition to define metrics that can measure work-
load on belief-desire-intentions based multi-agent systems.
These measures can alert designers to potential workload
issues early in design. We demonstrate the utility of our
approach by characterizing quantitative differences in the
workload for a single pilot operations model compared to a
traditional two pilot model.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human Factors

General Terms
Algorithms, Measurement, Human Factors

Keywords
BDI system; workload computation; reduced flight crew op-
erations

1. INTRODUCTION
In a number of complex and safety-critical scenarios, such

as airplanes, health care systems and self-driving cars, the
role of humans has shifted from manual control to moni-
toring of autonomous systems operating together, such as
autopilots both in aircraft and in cars, automated collision
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avoidance systems, etc. However, the increasing complexity
of automation makes human monitoring and intervention a
difficult task, especially when humans are subject to multi-
ple sources of information, possibly on the same perceptual
channels, e.g., two visual inputs, and with different priorities
on tasks.

In the area of civil aviation, the focus of the experimental
evaluation of this work, Chou et al. report that workload
management is a contributing factor in 23% of 324 stud-
ied aircraft accidents [11]. Measuring an operator’s mental
state presents a range of challenges to researchers despite
various proposals including subjective rating scales [21], sec-
ondary task performance [13], and psychophysiological mea-
sures such as eye movements, heart rate, and respiration
[25]). Further, traditional human-in-the-loop (HITL) evalu-
ations such as the NASA Task Load Index (TLX) cannot ad-
equately test performance across the operational envelopes
of complex work environments during the design stage of
the system development cycle. Therefore predictive models
of operator states and performance are needed at the design
stage to supplement HITL assessments to better ensure the
safety of, for instance, future flight deck or air traffic con-
troller workstation designs.

Multi-agent systems (MAS) offer an ideal design abstrac-
tion and modeling tool for systems involving both humans
and automation, but to the best of our knowledge there is
no work that relates them to cognitive models of workload.
ACT-R and SOAR and other architectures provide the abil-
ity to model actual low-level cognitive processes [2, 28, 29,
30, 31], however, these do not provide the flexibility to de-
scribe complex systems and interactions at a higher-level
of abstraction. Furthermore, cognitive models are too time
consuming to build to be practical [29] or are too simplis-
tic in representing the human [43]. The goal of this work
is to model and analyze observable behaviors, activities, de-
cision processes, and goals of agents at a high-level. To
this end, we present an approach to use the formal models
of beliefs-desires-intentions (BDI) systems with human com-
puter interactions in conjunction with the cognitive concepts
of workload. We then compute agent workloads during each
time step in the BDI system simulation; the workload mea-
sures are referred to as instantaneous workload.

The bridge between BDI systems and cognitive workload
in this paper is built from cognitive research and takes form
in a taxonomy [34] that can be leveraged in a discrete MAS
system to measure (i) perceptual workload, (ii) decision work-
load, and (iii) temporal workload. Perceptual workload rep-
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resents an agent’s ability to process signals on various chan-
nels (visual, auditory, or haptic). Decision workload repre-
sents the effort and time taken by an agent to arrive at a
decision. Temporal workload, refers to the load placed on
the agent due to multi-tasking. This paper refines the taxon-
omy of workload measures in [34] and presents an approach
to compute these measures during simulation of a discrete
MAS model.

To further refine the taxonomy to MAS systems, we pro-
vide a configurable framework to specify weights represent-
ing the cognitive effort associated with a specific task, action
or decision process in an MAS model. Weights allow the
modeler to differentiate the cognitive load between complex
tasks such as reading a text while driving and simple tasks
such as recognizing a stop sign. The weights are intended to
be comparative, i.e., a scale from 0 to n, rather than absolute
and would be provided by domain experts who rank cogni-
tive effort on different MAS constructs. These weights are
used to compute the instantaneous workload at each time
point in the MAS model simulation.

We apply our technique on a discrete time MAS model of a
reduced flight crew operation. The instantaneous workload
of a single pilot operation (SPO) and that of a traditional
two-pilot operation (TPO) during the approach phase of
flight is computed. The analysis shows that even in a model
where the difference between the SPO and TPO is small,
the workload measures can provide interesting insights into
the two systems. The problem domain is of great interest as
reduced flight crew operations are being considered by air-
lines and aviation certification authorities as the next stage
in civil aviation to reduce operating costs. We believe that
our approach to instantaneous workload measure can fill an
important need in early design stage evaluation. The con-
tributions of our work are as follows:
‚ A mapping of workload measures in cognitive models

to formal MAS models with discrete time.
‚ A configurable framework to specify weights represent-

ing cognitive effort associated with a specific task, ac-
tion, or decision process.

‚ An algorithm to compute instantaneous workload at
each time point for a discrete time BDI-based MAS
framework—Brahms [12, 50].

‚ An exploratory study that quantifies instantaneous work-
load of an SPO as well as a traditional TPO during the
approach phase of the flight.

2. COGNITIVE WORKLOAD

2.1 Related Work
The literature on cognitive workload is vast; due to space

limitations, here we provide a review only of the most rel-
evant works in the area. The notion of workload started
with the work in the early 1900s on time-and-motion stud-
ies by Gilbreths [19] and F. W. Taylor [51]. Organizational
effects on workload were addressed fairly early in the 20th
century by P. Drucker [15, 14] and K. Arrow [3]. T. Sheri-
dan [49, 54] and D. Norman [38] both did seminal work in
understanding workload and summarizing state-of-the-art.
Several human factors researchers have contributed to un-
derstanding workload [35], including methods for assessing
workload using secondary tasks [24], NASA TLX [46, 37], or
real-time measures [7]. Fundamental work in cognitive psy-
chology [53, 1, 42], including work on task-switching, has
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Figure 1: Phases of information processing [41]
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Figure 2: Associating phases of task processing with
phases of human information processing.

produced important insights into workload, as has work on
developing cognitive models [9].

To the best of our knowledge, the first work to measure
instantaneous workload in transition graphs is [34]. Our
work refines the taxonomy of workload measures and applies
it to MAS frameworks. Other papers that are most relevant
to our work include Wickens’ foundational and integrative
work on multiple resource theory [56] and Parasuraman et
al.’s multi-stage model of human information processing [41].
We will make use of each of these papers as we identify key
components of cognitive workload that lend themselves to
formal modeling.

2.2 Phases of Workload
We want to understand how MAS BDI models can be

used to create useful workload predictions for safety crit-
ical systems. Toward this goal, it is helpful to identify a
high-level framework for how humans and machines process
information. We adopt the four-stage model introduced by
Parasuraman et al. [41], which is shown in Figure 1.

The main reason for introducing these phases of informa-
tion processing is that each one involves cognitive resources
and, consequently, can impact workload. If we assume that
the stages in Figure 1 are for a specific task, then we can
identify the stages of human information processing required
for that task. More specifically, we can identify specific cog-
nitive resources required to perform a task and, in so-doing,
set the foundation for identifying specific elements of a for-
mal model that are associated with specific types of cogni-
tive workload. The mapping from task processing to human
information processing is illustrated in Figure 2.

Once an association is made between the phases of per-
forming a task to different cognitive elements, we can elab-
orate on the interactions among these cognitive elements.
This facilitates predicting workload using a formal model
by allowing us to identify how specific task elements will
induce specific burdens that will, in turn, affect workload.
Adapting one of Wickens’ models [55] and augmenting it
with elements of attention management [32, 48, 42], execu-
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Figure 3: Elaborating on cognitive processes associ-
ated with the phases of human information process-
ing (adapted from Wickens [55]).

tive control1 [10, 33, 4], and working memory [33, 18], yields
a slightly-more detailed model for human information pro-
cessing; see Figure 3.

In 2002, Wickens published a paper on an integrated model
of workload along with a process for predicting workload
from this model [56]. This model extended the model il-
lustrated in Figure 3 to include a more specific description
of the way a human can process multiple signals from the
environment. This is illustrated in the figure as the mul-
tiple input lines being filtered by short-term sensory pro-
cessing and being accessed by the perception and memory
processes. For our workload models, the key addition is that
there are multiple input “channels” through which humans
can obtain information. More specifically, there is consid-
erable evidence that humans can sense and perceive signals
independently over auditory and visual channels. Note that
other aspects of the 2002 model, specifically the different
types of coding and the differences between focal and ambi-
ent visual attention, are left to future work.

We believe it is possible to translate information-processing
models of human cognition into a collection of sub-systems,
each with their inputs and outputs. By identifying the in-
puts and outputs, and then creating models for each sub-
system, we can create models that can be used to make
predictions about human workload.

2.3 Perceived versus Potential Workload
Before describing our work on using the cognitive model

to predict workload, it is useful to discuss the difference
between perceived and potential workload. Although high
workload can negatively impact performance, a person’s per-
ception of workload may not perfectly correlate with their
performance [36]. Perception of workload is a strong func-
tion of the skill and expertise of the human; experts often
perceive the world differently than novices, and may be able
to organize signals into “chunks” that do not place heavy
burdens on working memory [58, 17].

In this paper, we discuss workload as implicitly defined at
the level of expertise instantiated in a model. This means
that different models may encode different levels of work-
load. Consequently, the models discussed in this paper should
be understood as potential workload rather than workload

1Note that there is an important recent model that avoids
some of the issues associated with executive control by re-
placing this notion with a model of threaded cognition [47].

perceived by specific humans. More precisely, in creating a
model for a human operator, it is necessary to either explic-
itly model expertise and training effects or, as we have done
in this paper, implicitly account for expertise.

3. WORKLOAD IN MAS FRAMEWORKS
BDI architectures, originally developed by Michael Brat-

man [8], are used to represent an agent’s mental model of
information, motivation and deliberation. Beliefs represent
what the agent believes to be true, desires are what the
agent aims to achieve, and intentions are how the agent aims
to achieve its desires based on its current beliefs. The BDI
model is possibly the most well-known and successfully used
model for representing rational agents: agents that decide
their own actions in a rational and explainable way [45].
This success is perhaps due to its philosophical representa-
tion on human practical reasoning processes. This link to
human reasoning processes leads to questions on whether
metrics of workload, such as the metrics presented in this
paper, can be applied to BDI models. In this section we
describe the mapping of workload measures to constructs
typically found in discrete time MAS models; we also de-
scribe how weights on cognitive effort are attached to the
MAS model constructs.

The formal model for defining the workload measures is
a Kripke Structure, M “ pS, So,Ñ, Lq (also called model),
consisting of states (S), initial state (So P S), a transition
relation (ÑĎ S ˆ S), and a labeling function L : S ÞÑ 2AP

(L returns a member of the power-set over AP) [26]. The
set AP contains the atomic propositions that label states in
the Kripke structure. Time advances on each transition in
the Kripke structure in a fixed quantum to model discrete
time semantics. There are no transitions where time does
not advance, rather, all the zero-time updates are gathered
into a single update that takes place with the advancement
of time by the fixed quantum.

Any discrete time MAS model is transformed to such a
Kripke structure by finding parts of its reachable state space
and then labeling each state appropriately. If the reachable
state space advances time at different quantum sizes on any
given transition, which is typical of most MAS simulation
engines, then the intermediary states and transitions over
the smaller fixed quantum must be inserted appropriately.
Atomic propositions are organized into partitions to convey
information about the original MAS system from which the
Kripke structure is derived. In the discussion, A is the set
of agents in the system, and α P A is an individual agent.
MAS systems typically have the following characteristics:
- Belief Updates: constructs whereby an agent updates its
belief about the world and the state of other agents. These
updates are instantaneous taking zero-time. Labels related
to belief updates specific to a given agent, meaning the agent
is updating the belief, are in the partition βα.
- Activities: constructs whereby an agent engages in some
activity that involves the passage of time such as communi-
cation, actuating a mechanical device, or engaging in the real
world through movement or other primitive activity. Labels
related to activities specific to a given agent, meaning the
agent is carrying out the activity, are in the partition Actα.
- Tasks: constructs whereby an agent accomplishes desires
and intentions. Tasks consist of belief updates, activities,
and sub-tasks to implement complex non-trivial sequencing.
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Labels related to tasks that can be performed by the agent
are in the partition Tα.
- Guards: constructs whereby an agent determines what
task to do next, or determines when a current task needs
to be suspended, interrupted, or aborted. Labels related
to guards specific to a given agent, meaning an agent is
evaluation the guard, are in the partition Gα.
The set AP of atomic propositions is defined as

Ť

αPApβαY
Actα Y Tα YGαq.

For convenience, the function βαpsiq “ βαXLpsiq returns
the belief updates appearing in the label set on state si for
agent α. Similar functions are defined for activities, tasks,
and guards. Also associated with any label in AP is a scal-
ing factor W : AP ÞÑ R. The scaling factor is the weight
indicating cognitive effort associated with the process repre-
sented by a particular construct. A path through the Kripke
structure, π “ so, s1, s2, ... is a sequence of states such that
@i ą 0 psi´1Ñsiq. Each state si represents a known point
of time in the path.

Instantaneous workload is recorded for each agent at each
point in time along a path in the Kripke structure. That
workload is defined by a partial function for each agent in-
dexed by an integer i representing the ith time point on the
path. As this paper defines three measures for workload, a
partial function is associated to each measure for each agent.
In the definition of the partial functions, si refers to a state
in a path of the Kripke structure π “ so, s1, s2, ...

Three different categories of workload are described based
on a small variation of the model in Figure 3.

3.1 Perceptual Workload
Perceptual workload includes two components: multiple

salient or relevant signals being broadcast over the same in-
put channel, and the burden placed on working memory to
store and integrate necessary signals into a coherent and
accurate awareness of the situation. The most common per-
ceptual channels are visual, the things that we see, and au-
ditory, the things that we hear, but haptic and olfactory
channels have been used in human factors studies as well.
Perceptual workload increases as the required bandwidth
over a particular channel increases or when multiple signals
are received on an agent’s input channel.

In MAS models, agents have to update their beliefs dur-
ing a simulation run of the model. These belief updates
usually happen through perceptual methods implemented
in the BDI framework, such as receiving communications or
detecting changes in the environment (via sight or sound).
Methods by which this is achieved vary from framework to
framework but essentially they all map to agent perception.
The amount of load in these perceptual channels can be
calculated to provide a measure of the agents perceptual
workload, i.e., a tally of all perceptions made on each of the
agent’s perceptual channels (sight, sound, haptic, etc.).

For a given agent, α, βα are labels associated with zero-
time belief updates, and the set Actα are labels for activities
that take time as mentioned previously. Each of these labels
is assigned a type to indicate the perceptual channel, if any,
involved in the update or activity. The function isP : pβ Y
Actq ÞÑ t0, 1u is defined using the type of the labels.

isPplq “

"

1 if typeplq is related to perception
0 otherwise

Perceptual workload is the number of belief updates or ac-
tivities at a given time point scaled by their individual cog-
nitive effort. The measure increases when multiple signals
are received by an agent.

Definition 3.1 (Perceptual Workload). The per-
ceptual workload at a state si for agent α is

Pαpiq “
ÿ

bPβαpsiq

pisPpbq ˚W pbqq `
ÿ

aPActαpsiq

pisPpaq ˚W paqq

3.2 Decision Workload
The decision workload encodes the burden placed on work-

ing memory and executive control as a function of the dif-
ficulty of task selection—choosing what to do next. We as-
sume a fixed level of human expertise, so the measure should
be interpreted as a prediction of potential workload. Also
note that this definition of decision workload does not ac-
count for effective heuristics and approximations that ex-
perts may use to make decisions [52].

In BDI based programming languages, such as Brahms
[50], AgentSpeak(L) [44], and 3APL [22], agents are able
to reason over their current beliefs and formulate a list of
actions to perform in order to achieve a goal. Decision work-
load in a MAS model is the amount of work the agent must
perform to formulate this list of actions. The direct measure
is the number of reasoning processes the agent goes through
in the model and the difficulty of each process indicated by
the cognitive effort. In simple terms, the measure counts
and weights each guard evaluated in considering a task. A
further refinement of the measure would be to account for
the amount of working memory required to make these de-
cisions as well as the amount of work required to desired on
a final task if multiple tasks are available.

Definition 3.2 (Decision Workload). The decision
workload at a state si for agent α is

Dαpiq “
ÿ

gPGαpsiq

W pgq

3.3 Temporal Workload
The temporal workload encodes the burden placed on

memory, attentional resources, executive functions, and in-
terference effects [56, 47] in a multi-tasking context. Tem-
poral workload is represented as a queuing model where ser-
vice time and arrival rate are used to represent the effort
required to manage multiple tasks. Note that this perspec-
tive on multi-tasking is at the level of seconds or minutes
rather than at the level of milliseconds, with the latter often
studied in the cognitive science literature [20].

BDI agents can also produce sets of plans to achieve each
of their goals and execute them in a specific order (either
randomly or by the priority of the goals they hope to achieve).
These sets of plans are often dynamic, meaning the agent can
abort the plan or temporarily switch to another and return
once the new higher priority plan is finished or no longer
has higher priority. This ordering and switching of tasks
can be mapped to temporal workload, i.e., the workload as-
signed to how much the agent needs to multi-task. Temporal
workload in MAS models consists of counting the number of
tasks the agent is currently executing and weighting each by
the associated cognitive effort. For example, if an agent is
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interrupted by the doorbell and a crying baby while cook-
ing dinner, the temporal workload associated with the agent
increases. This measure is best understood as number of on-
going tasks for the agent.

Definition 3.3 (Temporal Workload). The tempo-
ral workload at a state si for agent α is

Tαpiq “
ÿ

tPTαpsiq

W ptq

3.4 A Formal model to quantify Workload

Definition 3.4 (Instantaneous Workload). The in-
stantaneous workload at state si for agent α is

Iαpiq “ ζ ˚ Pαpiq ` η ˚Dαpiq ` ι ˚ Tαpiq

where ζ, η, and ι are weights to scale the contribution of
each category.

In this presentation, ζ “ η “ ι “ 1, but a domain expert
may adjust this as well as the other weights for specific sys-
tems. Although the rest of this section applies to the Brahms
BDI language, the model is general enough to apply equally
to any discrete time MAS framework.

3.5 Quantifying workload in Brahms
Brahms is a BDI framework that is designed to model

human work processes and robotic activities using rational
agents [12, 50]. Brahms’ human-centered approach, and its
discrete-time event-driven structure make it an ideal choice
for demonstrating the workload measures.

Brahms has notions of facts and beliefs, i.e., an agent’s in-
terpretation of the world and the actual state of the world us-
ing those facts and beliefs. Agents are able to detect changes
to the environment and update their beliefs, e.g., the agents
detect a light flashing on the dash board and update their
set of beliefs that the light is flashing on the dash board. Be-
liefs can be exchanged between agents via communications
and broadcasts, e.g., the navigation system broadcasts to all
in the car that they have arrived at their location.

Belief updates and activities for each agent form the label
sets βα and Actα respectively. These are further assigned
cognitive effort weights and types to associate each with a
perceptual channel, if any. Perceptual workload is thus com-
puted as in Definition 3.1. The Brahms’ simulation labels
each state with belief updates or activities that take place
at a given time point.

Brahms agents accomplish tasks via constructs known as
workframes. A workframe is a guarded event containing a
predefined stack of actions and belief updates. A worframe
executes only when all its guard conditions satisfied; when
more than one workframe can be executed at a time, the
priorities of the workframes are used to determine execution
order. Within a workframe an agent may perform concep-
tual activities where only time passes without any update
to the state of the agent, communication based activities,
location changing activities, and belief updates. Note that
Brahms has a notion of top level workframes which can in
themselves contain workframes.

Workframes correspond to tasks in the formal model, as
such, the label set Tα for a given agent contains all the
workframes defined by the agent. Each of these workframes
is assigned a cognitive weight. Further, the guards in the

workframes for a given agent are put in the set Gα. Each of
these guards is also assigned a weight.

Decision workload is computed using the labels in Gα for
a given agent. For the Brahms adaptation though, the label
is only emitted if the guard evaluates to true. To be clear,
when an agent perceives that its state has changed due to an
update or activity, then it evaluates it choices of workframes.
Any workframe belonging to the agent which has a guard
that evaluates to true emits the label for that guard in the
state. As such, the decision workload does not account for
the cognitive effort in evaluating guards for workframes not
related to the current task or workframes with guards that
are not enabled in the current state.

Multi-tasking in Brahms is performed by the switching
of workframes, either when new higher priority workframes
become active or when an agent detects a change in the
environment and temporarily switches to another task. Each
suspended workframe is kept in a stack until it becomes
active again and execution is resumed. Temporal workload
in Brahms is measured as in Definition 3.3. The simulation
engine emits the task label for each workframe in the stack
for a given agent at each point in time in the simulation.

4. IMPLEMENTATION
The humans, automated systems, and objects in a given

scenario including their activities and interactions are mod-
eled using Brahms constructs [12, 50]. To quantify workload
for the given models, we implement a library to monitor
the simulation of a Brahms model and compute the various
workload measures within an extensible and customizable
Brahms simulation and verification engine [23].

The Brahms compiler generates an XML file that encodes
the various data structures of a Brahms model. We extract
the labels of the various rules, activities, workframes, etc.,
of the agents and write them to a configuration file. We au-
tomatically assign a default weight of one to each of these
constructs. The value of one represents a low cognitive effort
associated with the construct. This configuration file is then
presented to the domain expert for the given model. The
domain expert adds the values for the various constructs.
Note that perceptual, decision, and temporal workload are
weighted equally in this work; this is not based on any cogni-
tive workload theory. We expect the domain expert to weigh
the relative importance of each workload category because
it may vary from task to task.

We simulate the model along with the assigned weights to
generate a set of traces annotated with instantaneous work-
load measures at each time point. As the constructs with the
corresponding labels for a given agent are active, suspended,
or being updated during the simulation, the workload com-
putation library tracks the values of the different workload
measures. The values are stored, indexed by the time stamp.
At the end of the execution, the workload values are written
to a CSV file. These results can be used to determine times
in the execution that lead to spikes in the workload.

4.1 Driving Scenario
To demonstrate the application of workload metrics to a

MAS framework we discuss a simple scenario of an agent
driving a car. The activity of driving a car can have varying
levels of workload and requires varying degrees of cognitive
effort. The model used in our example contains a car, traffic
lights, a speed limit sign, an intersection, a navigation sys-
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Figure 4: Different workload measures of the driver
in a car approaching traffic lights.

tem, a passenger, a cell phone and the driver. During the
simulation the driver receives visual signals in the form of
changes to the traffic lights, appearances of stops signs, and
coming up to an intersection. The driver also receives audi-
tory signals by listening to the radio, to the passenger in the
car, and instructions from the navigation system. The driver
makes decisions regarding whether to read a text message
on the cell phone, check mirrors, check speedometer, stop at
the red light, etc. The model allows the driver to multi-task
while driving, e.g., listen to navigational instructions as well
as read the text message on the cell phone. For this model
we have obtained the weights by means of an informal sur-
vey among 6 drivers, asking them to assign weights to the
cognitive effort associated with various belief updates, activ-
ities, events, and tasks in the model. We took the average
of the weights and computed instantaneous workload during
a simulation. The values of the weights for cognitive efforts
are on a 6-point scale from 0 that represented no workload
to 5 that represented very high-workload.

Fig. 4 presents the different workload measures of the
driver for a small portion of the driving scenario; where the
car approaches traffic lights. In Fig. 4, the x-axis represents
time points in the simulation while the y-axis represents the
workload values. We present measures for the (a) tempo-
ral workload, (b) perceptual workload partitioned into the
visual channel and the audio channel, and (c) decision work-
load. The sum of temporal, perceptual, and decision work-
load values represents the instantaneous workload.

In Fig. 4, between the times seven and nine the agent is
driving at a constant speed alternating between watching
the road, checking mirrors, and reading the speedometer.
At time point nine the agent receives a text message, the
sound notification of the text message causes a rise in AU-
DIO perception workload of the driver. Once the message
is received, the driver is faced with a decision on whether to
read this message or not; this increases decision workload to
7 at time point ten. In the scenario, the driver chooses to
read the message. While reading the message the agent has
a fairly high decision workload choosing between whether to
stop, continue to watch the road, read speedometer, or check
mirrors. The temporal workload throughout this activity is
also high since the driver is performing multiple tasks, driv-
ing the car as well as reading the text message. The driver
finishes reading the message at time 15, where all the work-
load values temporarily drop. At time point 16 the driver

then notices a change in the traffic lights which causes an
increase in VISUAL perception workload.

5. REDUCED CREW OPERATION
In the 1950s, a 5-person crew was required to fly large

transport category aircraft. Due to advancements in the
design and performance of aircraft systems, this number de-
creased to two pilots in the 1980s. Aircraft technology de-
velopers have continued to improve automation, further re-
ducing crew workload associated with manual flying tasks,
particularly for the en route / cruise portion of the flight.
However, automation has increased demands on the pilots
to monitor systems for possible failures, a role for which re-
search has shown that humans are poorly suited [40, 57].
Despite the reduction in crew size and the evolving roles of
the pilots, commercial aviation operations remain extremely
safe, far exceeding safety levels seen in single-pilot general
aviation or air taxi operations [39]. It is unclear, however,
the extent to which these higher safety levels are attributable
to the presence of an additional pilot, because these types of
flight operations differ in many ways, e.g., levels of automa-
tion, ground support from ATC, and aircraft complexity.

As flight deck automation continues to evolve, airline op-
erators and manufacturers have begun to explore concepts
to further reduce crew size in large transport aircraft to a
single pilot. If alternative methods could be found for sup-
porting the remaining high-workload portions of the flight
such as takeoff, approach and landing, an SPO could poten-
tially reduce operating costs for the airline operators. Any
transition from current the current TPO to SPO, however,
must maintain at least current levels of safety while maxi-
mizing cost savings. Research into SPO concepts has focused
on increasing flight deck automation, adding ground-based
assets to support the lone pilot, or, more commonly, some
combination of these approaches. See [6] for a review of SPO
concepts of operation. In most SPO concepts, a ground op-
erator would support a lone pilot specifically during high-
workload phases of a flight, thus allowing a single ground
operator to potentially support multiple flights, thereby re-
ducing overall crewing requirements. However, operating as
a distributed team can result in communication breakdowns
that require additional coordination [5].

In this paper, we explore a method for measuring the po-
tential impact of SPO on human operator workload. We in-
stantiated SPO in our model based on a recent SPO concept
that included ground operator support for a lone pilot [27].
We chose to model the “final approach” phase of flight, due
to its associated high workload. Final approach describes
the last leg of an aircraft’s flight path, immediately before
landing. The final approach segment typically begins about
5 nautical miles from the arrival end of the runway and at
about 3,000 feet above the ground. On final approach, the
aircraft is flying along a path aligned with the runway. At
the same time, the aircraft is also descending for landing.
The final approach segment is a high workload time for pi-
lots because they need to follow a large series of predeter-
mined maneuvers within a relatively short period of time.
The aim of these maneuvers is to slow and to configure the
aircraft correctly so it can descend on a specific flight tra-
jectory. Final approach concludes with the aircraft landing
within the touchdown zone of the runway and at the correct
touchdown speed.
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5.1 Models
In this section we describe details about the models cre-

ated to evaluate workload in a reduced crew operations. We
create a Brahms model for a TPO approach and quantify
its workload in the same setting as SPO to provide a means
for comparison. We create Brahms model of an SPO with
ground support during approach.

The models were created based on the input from an ex-
perienced pilot. The approach is broken up into six stages;
approx. 2000 feet, 1500 feet, 1000 feet, 500 feet, 200 feet and
40 feet above the ground. For each of these stages, the pilot
provided information about key tasks and actions performed
by the pilot, the type of communication taking place in the
cockpit, and the weights that determine the cognitive effort
on the various constructs.

5.1.1 Two-Pilot Model
The two-pilot scenario is of a nominal approach from five

miles out and 2000 feet up. The pilot is the person flying
the plane, interacts with controls of the plane, reads values
off the instruments and communicates with the first-officer
who is monitoring. There are no off-nominal conditions pos-
sible in the model. There are several activities performed by
the pilot that are over the visual and audio perceptual chan-
nels, such as communications from the pilot monitoring and
reading values off instruments. The pilot is often choosing
between a variety of tasks with the same priority such as
checking instruments and communicating with the first offi-
cer. The pilot can also be required to multi-task on several
occasions due to incoming alerts or readings which require
the pilot to temporarily switch tasks.

5.1.2 Single Pilot Model
The SPO model is a duplication of the two-pilot model

with some minor adjustments. Note that this is by design,
our goal was to minimize the number of differences between
the SPO model and the two-pilot model. The pilot essen-
tially performs the same tasks in the SPO as in the TPO,
but instead of communicating with the first-officer on board,
the pilot is communicating with an operator on the ground.
We assume that the operator on the ground is able to access
the same instrument data that would have been available to
the first officer. The ground operator, however, may be lack-
ing certain situational awareness. e.g., the operator on the
ground is unable to feel the movement of the plane and may
not realize fluctuations in readings due to wind shear. The
ground operator may request additional information from
the pilot which a first officer in a two-pilot scenario would
not.

5.1.3 Workload Measures
Fig. 5(a) and (b)2 show the workload measures for the

six phases in the approach part of the flight in the SPO
and TPO models respectively. The workload measures have
been averaged across 12 runs. Each phase is demarcated by
dashed vertical lines. The x-axis represents the time points
in the simulation while the y-axis represents the workload
values. The graphs show that the workload increases as the
pilot moves through each phase. The exception to this is the
decision workload. This is due to the fact that in a nominal
approach phase of flight, the pilot is not faced with different

2The graphs should be viewed in color.

choices. It can also be noted that the perceptual workload
falls in the final stage in both graphs because the pilot is
communicating less and focused on landing the plane.

During the first three phases the workload of the pilot
gradually increases in both Fig. 5(a) and (b). In phases
four and five, there is a large increase in the perceptual and
temporal workload because the pilot has to monitor different
instruments very closely, maintain communication with the
operator on the ground, communicate with the air traffic
controller, and perform activities to decrease the speed and
altitude of the plane. In the sixth and final phase, there are
no communications between the pilot and operator on the
ground which causes the perceptual workload to decrease.
The temporal workload rises due to the tasks performed by
the pilot to keep the plane on course for landing.

We compare the workload measures of the TPO versus the
SPO in Table 1. Table 1(a) presents the average workload
values, Table 1(b) presents the average of the maximum ob-
served workload values, Table 1(c) presents the average num-
ber of times the workload values reaches the maximum, and
Table 1(d) presents the standard deviation from the average
values observed in the TPO trials. We present the percep-
tual workload (Percep.), further divided into the perpetual
audio (P-Aud.) and perpetual visual (P-Vis); the decision
workload (Decis.); and the temporal workload (Temp.) in
each of the tables. In Table 1(a), generally, the average
workload values for the SPO are higher compared to that of
the TPO, however, the perception across the visual channel
is higher in the TPO. This was an unexpected result, an
analysis of the data showed this was due to the fact that the
pilot had no visual interaction with the pilot not flying in
the SPO compared to the TPO. The perception over the au-
dio channel is higher due to the extra communication with
the pilot on the ground. This causes the overall perceptual
workload to go up in the SPO in Fig. 5(a) compared to the
perceptual workload of the TPO in Fig. 5(b). The decision
and temporal workload averages are marginally higher. Sim-
ilar trends are observed in Table 1(b), (c), and (d) and can
also be seen in Fig. 5(a) and (b).

The advantage of computing the instantaneous workload,
is that it allows us to consider the spikes in the workload
and not just average values. The average maximum tem-
poral workload is 5 for both the SPO and TPO as shown
in Table 1(b), however, number of times the maximum is
reached is 20.6 in the SPO whereas in the TPO it is 16.6
as shown in Table 1(c). This shows that that there are
more instances of the temporal workload being high for the
SPO compared to the TPO. The same pattern is observed
in the decision workload as seen in Table 1(b) and (c). The
higher spikes in the workload in the SPO model can be seen
in Fig. 5(a).

5.2 Discussion
Modeling outcomes suggest higher perceptual workload

for the pilot flying the SPO versus TPO. As described above,
perceptual workload includes two components: the process-
ing of salient or relevant signals from the environment over
the same sensory input channels, as well as the integration of
these signals into existing memory to form a coherent and
accurate awareness of the situation. On a two-pilot flight
deck, the pilot flying and the first officer (pilot monitoring)
perform well-learned procedures to ensure that both pilots
maintaine shared awareness of the situation, including ver-
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(a) Single Pilot Operation—SPO (b) Two Pilot Operation—TPO

Figure 5: Average workload measures during the six phases of an approach across 12 simulation runs.

Table 1: Workload values for the SPO and TPO across 12 runs (a) average of the workload values, (b)
average of the maximum observed workload values, (c) average number of times the workload values reaches
the maximum, and (d) standard deviation from the observed TPO average values.

Type Percep. P-Aud. P-Vis Decis. Temp.

SPO 2.361 0.112 0.65 8.389 2.612
TPO 1.826 0.037 0.772 8.229 2.534

Type Percep. P-Aud. P-Vis Decis. Temp.

SPO 18.538 3.384 3 35.384 5
TPO 13.875 2 3 33.25 5

(a) (b)

Type Percep. P-Aud. P-Vis Decis. Temp.

SPO 5.166 12.75 70.25 1.833 20.666
TPO 0.333 2.916 83 0.5 16.666

Type Percep. P-Aud. P-Vis Decis. Temp.

SPO 3.277 0.509 1.241 9.751 1.11
TPO 2.19 0.239 1.309 9.214 1.075

(c) (d)

bal call-outs and physical point-outs of critical information.
In addition, pilots observe each other’s behavior, and can
interpret it within the context of the flight (e.g., the pilot
monitoring may observe that the pilot flying is making lots
of minor yoke adjustments in response to wind gusts that
both pilots are perceiving vestibularly). In the SPO concept
we have modeled, however, the ground-based pilot monitor-
ing is unable to use all of these sensory inputs, because the
pilots cannot see each other, and the ground operator is
unable to perceive minor movements of the aircraft. There-
fore, the distributed flight crew in the SPO concept must
work harder to maintain shared awareness of the situation
through increased verbal communication (i.e., to explicitly
describe things that the other crew member cannot see) and
through increased monitoring of interpretation of flight in-
struments (i.e., to infer actions that are being taken by the
other crew member and the reasons for those actions).

A necessary condition for the success of SPO is ensur-
ing that single pilot operations are at least as safe as two-
pilot operations. Our initial predictions of workload under
SPO and TPO suggest that the workload associated with
maintaining shared situation awareness would be higher in
the evaluated SPO concept. High workload can lead to a
decrease in the number of information sources or tasks at-
tended to, incomplete integration of perceived information,
divergent mental models of the situation by pilot flying and

pilot monitoring, and decreased ability to recognize or cope
with unanticipated situations. In a study of major air car-
rier accidents, 88% of those involving human error were at-
tributable to problems with situation awareness [16]. There-
fore, the outcomes of our study suggest that SPO concepts
should include mitigation strategies (e.g., new automation,
procedures, etc.) to ensure that distributed pilot teams are
able to maintain shared situation awareness with the same
ease as co-located pilot teams.

6. CONCLUSION AND FUTURE WORK
In this paper we present three measures to quantify work-

load in multi-agent systems. These measures are leveraged
from cognitive psychology and extended for applications in
BDI systems and multi-agent systems. We formally define
these workload measures and explain how they can be ap-
plied to multi-agent systems in general. We present a map-
ping of these measures to a multi-agent framework called
Brahms and demonstrate its utility with a case study com-
paring the workload of a single-pilot operation against a
standard two-pilot operation. As part of future work we
plan to develop more complex high workload scenarios in
the aviation domain, along with studies with aviation pilots
to further validate the accuracy of our workload measures.
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