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ABSTRACT
We study computational aspects of three prominent voting
rules that use approval ballots to select multiple winners.
These rules are proportional approval voting, reweighted ap-
proval voting, and satisfaction approval voting. Each rule
is designed with the intention to compute a representative
winning set. We show that computing the winner for propor-
tional approval voting is NP-hard, closing an open problem
(Kilgour, 2010). As none of the rules we examine are strat-
egyproof, we study various strategic aspects of the rules.
In particular, we examine the computational complexity of
computing a best response for both a single agent and a
group of agents. In many settings, we show that it is NP-
hard for an agent or agents to compute how best to vote
given a fixed set of approval ballots of the other agents.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Multi-winner voting; approval voting; computational social
choice.

1. INTRODUCTION
The aggregation of possibly conflicting preferences is a

central problem in artificial intelligence [9]. Agents express
preferences over candidates and a voting rule selects a win-
ner or winners based on these preferences. We focus here on
rules that select k winners where k is fixed in advance. This
covers a variety of important settings including parliamen-
tary elections [25]; selecting committees [33, 26]; the hiring
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of faculty members [13]; understanding heredity and signals
in DNA [20]; and movie recommendation systems [32, 14].

Generally, in approval-based voting rules, an agent ap-
proves of (votes for) a subset of the candidates. The most
straightforward way to aggregate these votes is to have every
approval for a candidate contribute one point to that can-
didate; yielding the rule known as Approval Voting (AV ).
The same principle of selecting the candidate with the high-
est number of approvals can be extended to select multiple
candidates the highest number of approvals. Unlike plural-
ity voting, where agents only vote for their most preferred
candidate, approval ballots permit agents to identify multi-
ple candidates that they wish to win. Approval voting has
many desirable properties in the single winner case [17, 6],
including its ‘simplicity, propensity to select Condorcet win-
ners (when they exist), its robustness to manipulation and
its monotonicity’ [25]. However for the case of multiple win-
ners, the merits of AV are ‘less clear’ [25]. In particular, for
the multi-winner case, AV does not address more egalitarian
concerns such as proportional representation.

Various methods for counting approvals have been intro-
duced in the literature, each attempting to address the fair-
ness and representation concerns when using AV for multi-
ple winners (a winning set of candidates) [22]. In this paper
we investigate three popular ways to count approvals that
are designed with the intention of selecting a more repre-
sentative set of winners than AV . First, under Proportional
Approval Voting (PAV ), each agent’s contribution to the
committee’s total score depends on how many candidates
from the agent’s approval set have been selected. A second
way to promote fairness is to proceed across a set of rounds.
In each round, the candidate with the most approvals wins.
However, in each subsequent round we decrease the weight of
agents who have already had a candidate selected in earlier
rounds; this method is implemented in Reweighted Approval
Voting (RAV ). Finally, Satisfaction Approval Voting (SAV )
modulates the weight of approvals with a satisfaction score
for each agent, based on the ratio of approved candidates
appearing in the winning set to the agent’s total number of
approved candidates.

The three approaches we consider for generalizing ap-
proval voting to the case of multiple winners each have their
own benefits and drawbacks. It is therefore necessary to
understand the computational and axiomatic properties of
these voting rules for the variety of domains for which they
are typically deployed. In terms of computational properties,
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it is beneficial to have a voting rule which admits a poly-
nomial algorithm to determine the winners. Otherwise, we
cannot hope to use the rule in settings with large numbers
of candidates or voters [21]. Another key problem studied
in computational social choice is the complexity of comput-
ing a beneficial misreport (i.e., manipulation) [3, 15, 16]. If
computing a beneficial misreport is computationally hard
for a given rule, the rule is said to be resistant to manipula-
tion. If it is computationally hard to compute a misreport,
agents may decide to be truthful, since they cannot always
easily manipulate. Connections also exist between manipu-
lation and other important questions in social choice such
as deciding when to terminate preference elicitation and de-
termining possible winners [24, 37].

From the axiomatic perspective, studying the positive or
negative properties of these multi-winner rules can help us
make informed, objective decisions about which rule is bet-
ter suited for the particular situation to which we are apply-
ing a multi-winner rule [14]. Though AV is the most widely
known among these rules, RAV has been used, for example,
in elections in Sweden. Rules other than AV may have better
axiomatic properties in the multi-winner setting and thus,
motivate our study. For example, each of PAV , RAV , and
SAV have a more egalitarian objective than AV [2]. Brams,
a proponent of AV when selecting a single winner, has ar-
gued that SAV is more suitable for equitable representation
when multiple winners are to be selected [5].

We undertake a detailed study of the computational as-
pects of PAV , RAV , and SAV . We first consider the com-
putational complexity of computing the winner. Although
PAV was introduced over a decade ago, the computational
complexity of determining the winners is an open question,
having only been referred to as “computationally demand-
ing” before [22]. We close this outstanding open problem,
showing that winner determination for PAV is NP-hard.
We then consider strategic voting for these rules. We show
that, even with dichotomous preferences, PAV , RAV and
SAV are not strategyproof. That is, it may be beneficial
for agents to misreport their true preferences. We therefore
consider computational aspects of manipulation. We prove
that finding the best response given the preferences of other
agents is NP-hard under a number of conditions for PAV ,
RAV , and SAV . In particular, we examine the complexity
of checking whether an agent or a set of agents can make
a given candidate or a set of candidates win. These results
offer support for RAV over PAV or SAV as it is the only
one of these three rules for which winner determination is
computationally easy but manipulation is hard.

We stress here that our results are not restricted to AV ,
PAV , RAV and SAV . Our NP-hardness result for any rule
implies NP-hardness for a more general class of rules that
includes that rule. In certain cases, our precise reduction
can be adapted to prove similar results for other variants
of the rule. For example, our reduction to show that win-
ner determination for PAV is NP-hard can be adapted to
prove NP-hardness for winner determination for any variant
of PAV in which the coefficient weight for the second ap-
proved candidate is less than the coefficient weight for the
first approved candidate.

2. RELATED WORK
Surprisingly, there has only been limited consideration of

computational aspects of selecting multiple-winners. Excep-

tions include work by Meir et al. [29] who consider single
non-transferable voting, approval voting, k-approval, cumu-
lative voting and the proportional schemes of Monroe, and
of Chamberlin and Courant. Most relevant to our study is
that for approval voting, Meir et al. prove that manipula-
tion with general utilities and control by adding/deleting
candidates are both polynomial to compute, but control by
adding/deleting agents is NP-hard. Another work that con-
siders computational aspects of selecting multiple-winners
is Obraztsova et al. [32], but their study is limited to k-
approval and scoring rules. Finally, the control and bribery
problems for AV and two other approval voting variants are
well catalogued by Baumeister et al. [4].

The Handbook of Approval Voting discusses various
approval-based multi-winner rules including PAV , RAV and
SAV . Another prominent multi-winner rule in the Hand-
book is minimax approval voting [7]. Each agent’s approval
ballot and the winning set can be seen as a binary vec-
tor. Minimax approval voting selects the set of k candidates
that minimizes the maximum Hamming distance from the
submitted ballots. Although minimax approval voting is a
natural and elegant rule, LeGrand et al. [26] showed that
computing the winning set is NP-hard. Strategic issues and
approximation questions for minimax approval voting are
covered by Caragiannis et al. [8] and Gramm et al. [20].

The area of multi-winner approval voting is closely related
to the study of proportional representation when selecting a
committee [34, 35]. Understanding approval voting schemes
which select multiple winners, as the rules we consider do,
is an important area in social choice with applications in a
variety of settings from committee selection to multi-product
recommendation [14].

3. FORMAL BACKGROUND
We consider the social choice setting (N,C) where N =
{1, . . . , n} is the set of agents and C = {c1, . . . , cm} is the set
of candidates. Each agent expresses an approval ballot Ai ⊂
C that represents the subset of candidates that he approves
of, yielding a set of approval ballots A = {A1, . . . , An}. We
will consider approval-based multi-winner rules that take as
input (C,A, k) and return the subset W ⊆ C of size k that is
the winning set. We will assume a lexicographic tie-breaking
rule over the candidate set.

Approval Voting (AV ).
AV finds a set W ⊆ C of size k that maximizes the total

score App(W ) =
∑
i∈N |W ∩Ai|. That is, the set of AV win-

ners are those candidates that are approved by the largest
number of agents. AV has been adopted by several academic
and professional societies such as the American Mathemati-
cal Society (AMS), the Institute of Electrical and Electronics
Engineers (IEEE), and the International Joint Conference
on Artificial Intelligence (IJCAI).

Proportional Approval Voting (PAV ).
In PAV , an agent’s satisfaction score is 1 + 1/2 + 1/3 +
· · · + 1/j where j is the number of his or her approved
candidates that are selected in W . Formally, PAV finds
a set W ⊆ C of size k that maximizes the total score
PAV (W ) =

∑
i∈N r(|W ∩ Ai|) where r(p) =

∑p
j=1

1
j
. PAV

was proposed by the mathematician Forest Simmons in
2001 [22].
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We observe that PAV is only one way to apply scores in
a decreasing manner. Kilgour and Marshall [23] introduce
the notion of Generalized Approval Voting (GAV) where the
harmonic weights 1+1/2+1/3+ · · ·+1/j are replaced by an
arbitrary vector of weights w(1), w(2), w(3), . . . , w(m). We
will focus on PAV in our results but show how they directly
extend to the case of GAV. Moreover, we are interested in
the harmonic weights as these are the only set of weights for
GAV which satisfy a strong egalitarian axiomatic property
called extended justified representation [2].

Reweighted Approval Voting (RAV ).
RAV converts AV into a multi-round rule, selecting a can-

didate in each round and then reweighing the approvals for
the subsequent rounds. In each of the k rounds, we select
an unselected candidate to add to the winning set W with
the highest “weight” of approvals. In each round we reweight
each agents approvals, assigning the weight 1

1+|W∩Ai|
to each

agent i ∈ N . RAV was invented by the Danish polymath
Thorvald Thiele in the early 1900’s. RAV has also been re-
ferred to as “sequential proportional AV ” [5].

Satisfaction Approval Voting (SAV ).
An agent’s satisfaction is the fraction of his or her ap-

proved candidates that are selected. SAV maximizes the
sum of such scores. Formally, SAV finds a set W ⊆ C of

size k that maximizes Sat(W ) =
∑
i∈N

|W∩Ai|
|Ai|

. The rule

was proposed by Brams and Kilgour [5] with the aim of rep-
resenting more diverse interests than AV .

Kilgour and Marshall [23] discuss several variants of SAV.
We focus on SAV as it was the first rule in this family to be
introduced and many open problems about strategic aspects
of SAV remain open. As there is no consensus as to the best
rule, our study will help understand the relative merits of
different rules.

Tie-breaking is an important issue to consider when in-
vestigating the complexity of manipulation and winner de-
termination problems as it can have a significant impact on
the complexity of reasoning tasks [31, 30, 1]. We make the
assumption that ties are broken lexicographically (both for
individual elements and sets) with a � b � c, e.g., {a, b} is
preferred to {a, c}. We also note that many of our proofs
are independent of the tie-breaking rule, in which case the
hardness results transfer to any arbitrary tie-breaking rule.

Example 1. Consider a setting with 7 agents, a candi-
date set C = {a, b, c, d}, k = 2, and the following ballots:
A1 = A2 = A3 = {a, b}; A4 = A5 = {c}; A6 = A7 = {d}.

Approval Voting (AV): The approval scores of the candi-
dates are App({a}) = 3, App({b}) = 3, App({c}) = 2,
and App({d}) = 2. Hence, the set {a, b} is selected.

Proportional Approval Voting (PAV): PAV scores are
not additive and we can sum the satisfaction for each
agent for each potential set of winners to determine
the winner. For example, PAV ({a, b}) = 3 · 1.5 = 4.5.
Computing PAV (W ) for all W leaves us with a tie be-
tween the sets {a, c}, {a, d}, {b, c}, {b, d}, which is bro-
ken in favor of {a, c}.

Reweighted Approval Voting (RAV): In the first
round, a is selected. This causes the weight of A1,

A2, and A3 to drop to 0.5 for the second round.
Consequently, c is selected next, which gives the
winning set {a, c}.

Satisfaction Approval Voting (SAV): As SAV scores
are additive we can greedily add the agent which pro-
vides the most satisfaction, in order, to compute the re-
sult. Observe that the satisfaction obtained by adding
c or d to the winning set is 2, the maximum of any
candidate. Thus, the SAV rule selects {c, d}.

4. WINNER DETERMINATION
We first examine one of the most basic computational

questions, computing the winners of a voting rule. This prob-
lem should be computationally easy if we want to use a vot-
ing rule in practice [21].

Name: R–Winner Determination (R–WD).
Input: A a set of approval ballots A over the set C of can-
didates and a winning set size k ∈ {1, . . . , |C|}.
Output: Compute the winning set of size k under R.

A related problem is the decision problem which tests
whether a given set is the winning set.

Name: R–Test Winning Set (R–TestWS).
Input: A a set of approval ballots A over the set C of candi-
dates, a winning set size k ∈ {1, . . . , |C|}, and a set W ⊆ C
with |W | = k.
Question: Is W the winning set under R?

Since we consider resolute multi-winner rules, R–WD is
at least as hard as R–TestWS. Note that if there is a
polynomial-time algorithm for R–WD, then R–TestWS is
in P as well: compute the unique winning set and check
whether W coincides with the winning set. This means
that if R–TestWS is coNP-complete, then there exists no
polynomial-time algorithm for R–WD unless P = NP .

We observe that AV –WD, RAV –WD, SAV –WD are all
polynomial-time computable. We give a formal argument
for SAV –WD as it is not formally stated in the literature
whether the winning set can be computed in polynomial
time.

Theorem 1. SAV –WD can be solved in linear time.

Proof. For |W | = k, Sat(W ) =
∑
i∈N

|W∩Ai|
|Ai|

=∑
c∈W

∑
i∈N,c∈Ai

1
|Ai|

where we say that
∑
i∈N,c∈Ai

1
|Ai|

is

the Sat score of an individual candidate. Hence computing a
winning set of size k is equivalent to selecting k candidates
with the highest Sat scores.

Although RAV –WD is polynomial-time computable, it
has been termed “computationally difficult” to analyze in
[22]. We provide support for this claim by showing that com-
puting a best response for RAV is NP-hard (Theorem 5).
We close the computational complexity of PAV –TestWS
in this section.1

1 Thm. 9 and 11 in Skowron et al. [36] independently show
a similar result to Thm. 2 and Cor. 2. The framework of
Skowron et al. [36] uses order weighted averages combined
with voting [19] to select subsets of objects that have high-
est utility to the agents. Their results show that finding
the set of winners is NP-hard for any weight vector that
is non-increasing and non-constant. Our reduction addition-
ally shows that it is computationally hard to even verify
that a given set is a winning set, holds even when agents
approve of only two objects, and shows Cor. 3.
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Theorem 2. PAV –TestWS is coNP-complete, even if
each agent approves of 2 candidates.

Proof. Consider the complement problem. A polynomial
time checkable witness is simply a set of candidates of size
k that has greater PAV score than W . For NP-hardness,
we give a polynomial-time reduction from the NP-hard In-
dependent Set problem [18], which is defined as follows.
Given (G′, t), whereG′ is a graph and t an integer, determine
whether G′ has an independent set of size t. An independent
set is a subset of vertices S such that no edge of G′ has both
endpoints in S. For an instance (G′, t) of Independent Set,
we build a PAV instance such that G′ has an independent
set of size t if and only if the winning set for the PAV is not
W .

Consider a graph G′. Obtain a new graph G = (V,E)
from G by adding a set I of t vertices to G′, making them
adjacent to all vertices in G′, and adding exactly one edge
between two arbitrary vertices of I. Note that a set of ver-
tices S ⊆ V of size at least t is independent in G if and
only if it is independent in G′. Define the following PAV
instance, pav(G) = (N,C,A, k): We have a set of agents N
and a set of candidates C. For each vertex v ∈ V , we create
deg(G) − deg(v) ‘dummy’ candidates in C, where deg(G)
is the maximum degree of G, deg(G) > 1, and deg(v) the
degree of vertex v. For each v ∈ V , we also create another
candidate in C, labeled Cv. We create an agent in N for each
edge e ∈ E. For each vertex we also create deg(G)− deg(v)
agents. Each of the “edge” agents we create approves of the
two candidates corresponding to the two vertex candidates
connected by the edge. Each vertex agent associated with
vertex v approves of Cv and one of the dummy candidates
associated with v, such that each dummy candidate has
exactly one agent approving him. We also set k = t and
W = {Cv : v ∈ I}. The tie-breaking rule prefers the set
W to any other set of k candidates. Observe that the sat-
isfaction score for W is deg(G) · t − 1/2, and a winning set
distinct from W has satisfaction score at least deg(G) · t.

We will show that pav(G) has a winning set of size k = t
scoring a total approval of at least s = deg(G) · t if and only
if G has an independent set of size t.

First, note that adding a candidate to a winning set in-
creases its total score by at most deg(G), since at most
deg(G) agents see their satisfaction score rise by at most
one. Also, if adding a candidate c to a winning set increases
the total score of the winning set by exactly deg(G), then
c corresponds to a vertex in G, since each dummy vertex is
approved by only one agent, and the vertex corresponding
to c is not adjacent to a vertex corresponding to any other
candidate in the winning set. Thus, the candidates in a win-
ning set of size k = t scoring a total approval of s correspond
to an independent set of size t in G and vice-versa.

Corollary 1. PAV –WD is NP-hard, even if each agent
approves of 2 candidates.

The proof of Theorem 2 does not rely on the particular
score assigned to candidates assigned subsequently to the
first one, as long as the second candidate contributes strictly
less satisfaction score than the first. Thus, PAV –TestWS
remains hard as long as the satisfaction score satisfies this
strictly decreasing condition. Thus, we can state the follow-
ing corollary.

Corollary 2. GAV –TestWS is coNP-complete for
any set of weights where w(1) > w(2), even if each agent
approves of 2 candidates.

Since the reduction for Theorem 2 is a parameterized re-
duction from the W[1]-hard [12] Independent Set problem
with parameter t to the complement of PAV –TestWS with
parameter k, we have that PAV –TestWS is coW[1]-hard
with parameter k. Therefore it is unlikely that the problem
can be solved in time f(k) ·mO(1) for any function f . Thus,
a factor mk in the running time seems unavoidable.

Corollary 3. PAV –TestWS is coW[1]-hard for pa-
rameter k, even if each agent approves of 2 candidates.

5. STRATEGIC VOTING
As in the single winner case, agents may benefit from mis-

reporting their true preferences when selecting multiple win-
ners. Formally, we will assume that each agent i ∈ N is
equipped with a utility function ui : C → R+ and an agent
i’s utility for a winning set W is

∑
c∈W ui(c). We will mostly

assume that agents have Boolean utilities: ui(c) ∈ {0, 1} for
all c ∈ C. For agents with Boolean utilities, we say that a
multi-winner approval-based voting rule is strategyproof if
and only if there is no agent who will receive strictly greater
utility by either approving candidates for whom he has util-
ity 0 or not approving candidates for whom he has utility
1.

We begin by showing some results that are likely folklore
but provide a useful starting point for our main results

Theorem 3. PAV , RAV and SAV are not strategyproof
with Boolean utilities.

Proof. We treat each case separately. Ties are always
broken lexicographically and k = 2. We show that we can
construct instances where agent 1 has an opportunity to mis-
report his preference and get a more preferred set selected
with respect to his true preferences.

For PAV , if we have C = {a, b, c} and the votes:

A1 = {a, c}, A2 = A3 = A4 = {a, b}, A5 = {c}, A6 = {a}.

Then {a, b} is the winning set due to tie-breaking (over the
set {a, c}). However, if agent 1 only approves c, then we get
{a, c} as the winning set.

For RAV , consider the following votes:

A1 = {a, b}, A2 = A3 = A4 = {a}, A5 = {c}, A6 = {b, c}.

The outcome is {a, c} for all reported preferences of agent 1
except if A1 = {b}, in which case the outcome is {a, b}.

For SAV , if we have C = {a, b, c, d} and the votes:

A1 = {a, b}, A2 = A3 = {a, c, d}, A4 = {a}.

Thus, {a, c} and {a, d} are the sets with highest SAV scores.
Agent 1 is indifferent between them. If agent 1 only ap-
proves b, then we get {a, b} as the winning set without tie-
breaking.

With PAV , RAV and SAV , it can therefore be benefi-
cial for agents to vote strategically. Next, we consider the
computational complexity of computing such strategic votes.
Throughout the paper, we will denote by j the number of
additional ballots submitted to achieve strategic goals such
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as getting a candidate, subset of candidates, or the exact set
of candidates selected.

Name: R–Winner Manipulation (R–WM)
Input: A set of approval ballots A over the set C of candi-
dates, a winning size k, a number of agents j still to vote,
and a preferred candidate c∗.
Question: Are there j additional approval ballots so that
c∗ is in the winning set W of size k (i.e., c∗ ∈ W, |W | = k)
under R?

Name: R–Winning Set Manipulation (R–WSM).
Input: A set of approval ballots A over the set C of can-
didates, a winning set size k, a number of agents j still to
vote, and a set of preferred candidates C∗ ⊆ C.
Question: Are there j additional approval ballots such that
C∗ is exactly the winning set of size k (i.e., W = C∗, |W | =
k) under R?

Note that our definitions for R–WM and R–WSM are
for the basic computational problems. These problem defi-
nitions do not rely on our use of a particular utility model for
the agents or lifting this model to sets of candidates. We also
introduce the manipulation problem based on agent utilities.

Name: R–Utility Manipulation (R–UM).
Input: A set of approval ballots A over the set C of can-
didates, a winning set size k, a manipulating agent i with
utility function u : C → R+, a number of votes j still to be
cast, and a target utility t ∈ R+

Question: Can the manipulator i submit j additional ap-
proval ballots so that he gets utility ui(W ) ≥ t from the
winning set W of size k under rule R?

The problem of utility manipulation has been considered
previously by Meir et al. [29]. We note that the problem
of utility manipulation is at least as hard as R–WM or
R–WSM. Hence, if R–WM or R–WSM is NP-hard for a
single agent (j = 1), then the more general problem of max-
imizing the utility of an agent (R–UM) is also NP-hard even
for Boolean utilities. The reductions for WM and WSM to
utility maximization involve giving desired candidates utility
one and the rest utility zero. For AV , the utility maximizing
best response of a single agent can be computed in polyno-
mial time for both Boolean and general utilities [29, 28].
Note that AV is strategyproof for Boolean utilities and
therefore an agent being able to compute a utility maximis-
ing vote is not a negative result. These single agent results
for AV can be extended in a straightforward way to settings
with multiple agents (j ≥ 1).

Since j is encoded in binary in R–WM, R–WSM, and
R–UM, it is not entirely obvious that the problems are in
NP as the the number of ballots of the manipulator could
be exponential in the input size. However, notice that for
R ∈ {PAV,RAV, SAV }, R–WM and R–WSM instances are
Yes-instances if j > (n + 1)(m + 1), and likewise a utility-
maximizing manipulation can be constructed for R–UM if
j > (n + 1)(m + 1). Therefore, we may assume that j ≤
(n+ 1)(m+ 1), and as a result the problems are in NP since
the manipulator ballots are polynomial-size certificates.

A summary of our results about strategic voting and win-
ner determination can be found in Table 1. In the rest of this
section we will investigate each of the rules in turn, examin-
ing the relationships between the complexity of computing
various strategic behaviors for each.

5.1 Proportional Approval Voting (PAV)
Since PAV –TestWS is coNP-complete, deciding if a

coalition of agents who have yet to vote can ensure a given
candidate or set of candidates wins is coNP-hard. Hence we
can state the following corollary.

Corollary 4. PAV –WM and PAV –WSM are coNP-
hard.

However the hardness of manipulation here comes from
the hardness of winner determination even if the agents vote
sincerely. This seems rather unsatisfying and motivates us
to investigate the situation where a “real” manipulation is
necessary, that is, whether a single manipulator can find a
vote that will maximise his utility. The proof of Theorem 2
can be modified to show that a manipulator can compute a
vote which maximises his utility if and only if he can decide
the existence of an independent set of size t in G. We define
an even more constrained problem:

Name: R-Binary Choice Manipulation (R–BCM)
Input: A set of approval ballots A over the set C of can-
didates, a winning set size k, a set of preferred candidates
C∗ ⊆ C, and 2 ballots v1 and v2 such that the manipulator
is guaranteed at least one of the two will ensure all his pre-
ferred candidates get selected.
Question: Will the manipulator choosing v1 ensure all his
preferred candidates get selected?

Theorem 4. PAV –BCM is NP-hard.

Proof. To show NP-hardness we leverage the construc-
tion from the proof of Theorem 2. Given an instance (G′, t)
of Independent Set we create an instance of PAV –BCM,
(C,A, k, C∗, v1, v2) where k = t+5 is the size of the commit-
tee. We first modify the provided graph G′ by augmenting
it in several ways. The resulting graph G will then be con-
verted into a PAV instance through a modified version of
the reduction described in Theorem 2. In the resulting in-
stance, the manipulator will be able to decide on the vote
which maximises his utility if and only if he can decide the
existence of an independent set of size t in G′.

First, we obtain G from G′ by adding three connected
components: a simple 2-clique, and two bipartite graphs
K2,2. Let us label the vertices in the 2-clique q1 and q2.
Let us label the vertices of the first K2,2 graph b1,1, b1,2,
b2,1, b2,2 and those of the second d1,1, d1,2, d2,1 and d2,2.
The labeling is such that b1,1 and b1,2 are not connected by
an edge, and neither are d1,1 and d1,2. Note that G′ has an
independent set of size t if and only if G has an independent
set of size t + 5. Now, we obtain a PAV instance pav(G)
from G as in Theorem 2. Then, we multiply the number of
agents by 20, to ensure that the manipulator is not capable
of having a meaningful impact on the candidates chosen in
the graph G (by meaningful we mean that he cannot force
two adjacent candidates to be chosen, which would invali-
date the construction in Theorem 2). Note that multiplying
the number of agents does not change the winning set.

In the resulting PAV instance, we delete 10 of the agents
that correspond to the edges in the 2-clique and exactly 4
agents corresponding to the edges between q2 and its dummy
candidates. We now add 2 agents approving both q2 and
d2,1 and 2 agents approving q2 and b1,2. We add 2 agents
approving q1 and one of its dummy candidates.
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It only remains to specify the preferred candidates and
the two approval ballots between which the manipulator
needs to decide: C∗ = {b1,1, d1,1}, v1 = {d1,1, d1,2} and
v2 = {b1,1, b1,2}.

If there is no independent set of size t+5 in G then q1 and
q2 will be selected since adjacency is penalized less on these
components. Else, if there is an independent set of size t+ 5
in G then only q1 will be a part of the winning set, since q1
gives slightly higher score than q2 and other candidates.

Without the manipulator’s vote, either q2 is selected as
part of the winning set – along with b2,1, b2,2, d1,1 and d1,2,
or q2 is not selected and b1,1, b1,2, d2,1 and d2,2 are selected.
In either case the manipulator only gets one of his approved
candidates.

It is possible for the manipulator to ensure the selection of
both his approved candidates by either casting the approval
vote v1 = {d1,1, d1,2} (if G′ has an independent set of size t)
or v2 = {b1,1, b1,2} (if G′ has no independent set of size t).
Therefore, the PAV –BCM is a YES-instance if and only if
the Independent Set instance is a YES-instance.

5.2 Reweighted Approval Voting (RAV)
Though RAV –WD is polynomial-time computable, “com-

putationally difficult” to analyze. This is because the deci-
sion for a single agent of whom to vote for in order to max-
imize his utility is not straightforward, as we show in the
following observations.

Observation 1. Under RAV an agent i who wants to
include a single candidate c∗ in the winning set may have
incentive to approve other candidates.

Suppose we are selecting a winning set of size k = 2 and
C = {a, b, c, d}:

A2 = {b, d}, A3 = {c, d}, A4 = {a, b, c, d}
A5 = A6 = {b, c, d}, A7 = {a, b}, A8 = {c}, A9 = {a}.

If agent 1 is only interested in getting a to the winning
set, then he may need to approve candidates other than a.
If agent 1 casts the ballot A1 = {a} then in round 1, b is
selected, in round 2, c is selected. However, if the agent casts
the ballot {a, d} then in round 1, d is selected, and in round
2, a is selected.

Observation 2. Under RAV an agent i who wants to
make C∗ the winning set may need to approve a strict subset
of C∗.

Suppose we are selecting a winning set of size k = 3 with
C = {a, b, c, d}, using lexicographic tie-breaking:

A2 = {b, d}, A3 = {c, d}, A4 = A5 = A6 = {b, c, d}
A7 = {b}, A8 = {c}, A9 = A10 = {a}.

If agent 1 has favored set C∗ = {a, b, d} and he approves
all of them, then in round 1, b is selected, in round 2, c
is selected, and in round 3, a is selected. However, if the
agent casts the ballot {a, d} then in round 1, d is selected, in
round 2, a is selected, and in round 3, b is selected, exactly
the favored set.

With these observations we are able to show RAV –WM
is NP-complete.

Theorem 5. RAV –WM is NP-complete even for a sin-
gle manipulator (j = 1).

Proof. To show that RAV is NP-complete to manipu-
late we reduce from the 3SAT decision problem [18]. Given
an instance of 3SAT with w variables Φ = {φ1, . . . , φw}, t
clauses Ψ = {ψ1, . . . , ψt}, inducing 2w literals {l1, . . . , l2w},
we construct an instance of RAV , (C,A, k) where a manip-
ulator’s preferred candidate c∗ is in the winning set if and
only if there is an assignment to the variables in Φ such that
all clauses are satisfied.

For each variable φi introduce 2 candidates in C, corre-
sponding to the positive and negative literal of that vari-
able, and 2n − i agents approving the 2 candidates; note
that n� w+ t. For each clause ψj introduce two additional
new candidates, corresponding to the clause being satisfied
or unsatisfied, along with 2n− w − j new agents approving
both new candidates. Additionally for each clause ψj , we
add an agent in N approving each of the candidates that
correspond to the positive and negative literals in ψj ; this
ensures that both the positive and negative literal have the
same weight of approval in the set of agents. We also need
to add 2 agents approving the candidate corresponding to
the negation of the clause to maintain the weighting. Fi-
nally, add an extra 2 candidates to C, a and b. We add 2
agents approving the candidate corresponding to a clause
being unsatisfied, and 2 agents approving the the candidate
corresponding to each clause being satisfied and approving
b.

Add t agents approving a. The size of the winning set k
is equal to |Φ| + |Ψ| + 1. Intuitively, the manipulator must
approve of a setting of all the variables in the original 3SAT
instance that satisfies all the clauses, plus the preferred can-
didate. We can now see that the manipulating agent is only
capable of ensuring candidate a is selected by computing a
solution to the initial 3SAT instance.

The above proof also shows it is NP-complete to determine
if C∗ can be made a subset of the winning set, i.e. C∗ ⊂W .
From the construction above, and setting t = 1, u(c∗) = 1,
u(c) = 0 for all c ∈ C \ {c∗}, we can state the following
corollary.

Corollary 5. RAV –UM is NP-complete.

Finally, the proof can also be modified to show the follow-
ing:

Theorem 6. RAV –WSM is NP-complete even for a sin-
gle manipulator (j = 1).

The important observation is that for RAV, the order in
which the candidates are included in the committee matters.
Therefore we can modify the reduction so that all literals
end up in the committee, but the manipulator will impact
which ones are selected first. We can then ensure that the
committee will consist of exactly all literal agents, the sat-
isfied clause agents, and the preferred candidate if and only
if the manipulator ensures that the literals corresponding to
a satisfying assignment were chosen first.

5.3 Satisfaction Approval Voting (SAV)
We start this section with the following straightforward

observation, namely to select a given candidate c∗, the ma-
nipulators need only approve c∗.

Observation 3. SAV –WM is polynomial-time solvable.
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It follows that we can also construct the set of candidates
that can possibly win in polynomial time.

It is more difficult to decide if a given k-set of candidates
can possibly win. With certain voting rules, this problem
simplifies if there exists an optimal strategy of j manipu-
lating agents where they all approve the same set of candi-
dates. This is not the case with SAV . Suppose k = 3 and
C = {a, b, c, d, e, f, g}, one agent approves both a and b, and
three agents approve d, e, f and g. If there are two more
agents who want a, b and c to be selected, then one agent
needs to approve c and the other both a and b, or one agent
needs to approve a and b, and the other a and c. This makes
it difficult to decide how a coalition of agents must vote. In
fact, it is intractable in general to decide if a given set of
candidates can be made winners.

Theorem 7. SAV –WSM is NP-complete.

Proof. The proof is by reduction from the permutation
sum problem, inspired by the NP-hardness proof for Borda
manipulation with two agents [11]. In the permutation sum
problem, we are given integers X1 ≤ · · · ≤ Xn with

∑
iXi =

n(n+1) and the question is if there exist two permutations σ
and π of 1 to n such that σ(i) +π(i) = Xi. We construct an
instance such there is a strategic vote for 2n manipulating
agents which ensures a given result if and only if there exists
a solution to an instance of the permutation sum problem.
In this instance, we want all the candidates alphabetically
before e to win.

Our proof exploits the fact that for large m, an approval
vote for m+x candidates, all of whom win, results in a satis-
faction score of 1

m
− x
m2 +O( 1

m3 ) for each of these candidates.

For large m, terms in O( 1
m3 ) will only ensure we do not need

to tie-break in favour of our preferred candidates. We will
therefore ignore such terms. Note that the exact choice of
m is not very critical other than to ensure such higher order
terms are unimportant. For example, we could set m = n2.

We construct an instance with the following candidates:
by for 1 ≤ y ≤ n, cx,y and dx,y for 1 ≤ x ≤ n and 1 ≤
y ≤ m + x − 1, the danger candidate e, and some dummy
candidates fx,y,z, gx,y,z and hy,z for 1 ≤ x ≤ n, 1 ≤ y ≤
m+ x− 1 and 1 ≤ z ≤ m2 − 1. We want all the candidates
alphabetically before the danger candidate e to be selected.
That is, k = 2mn+ n2 and we want by, cx,y and dx,y to be
the winners.

We construct the votes in our instance as follows: there is
one approval ballot for e, giving e a satisfaction score of 1.
Hence, each candidate in the winning set will need to have a
satisfaction score greater than or equal to 1. Next, for x = 1
to n and y = 1 to m+x−1, we have m2−m+i votes, each of
m2 approvals for cx,y and m2 − 1 dummy candidates fx,y,z
where z = 1 to m2−1. Similarly, for x = 1 to n and y = 1 to
m+ x− 1, we have m2 −m+ x votes, each of m2 approvals
for dx,y and m2 − 1 dummy candidates gx,y,z where z = 1
to m2 − 1. Finally, for y = 1 to n, for each partial sum Xy,
we have m2 − 2m + Xy votes, each of m2 approvals for by
and m2 − 1 dummy candidates hy,z where z = 1 to m2 − 1.

We now ask if we can cast j = 2n additional votes so
that the preferred candidates win. The candidates cx,y and
dx,y each have a satisfaction score before the final agents
vote of 1 − 1

m
+ x

m2 ignoring higher order terms. For cx,y
and dx,y to win, by a pigeonhole argument, they must each
receive an approval vote from the 2n agents still to vote
with between m + x − 1 and m + x approvals. Similarly,

the candidate by will have a satisfaction score before the

agents vote of 1 − 2
m

+
Xy

m2 ignoring higher order terms.
Again, by a pigeonhole argument, each by must receive two
approval ballots from the agents containing m + σ(y) and
m + π(y) approvals respectively where σ(y) + π(y) = Xy.
This also forces the approval ballots for cx,y and dx,y to
win to contain exactly m + x approvals. The winning bal-
lots are thus of the form {cx,1, . . . , cx,m+y−1, bσ(y)} and
{dx,1, . . . , dx,m+y−1, bπ(y)}. Note, we can swap cx,l and dx,l′
between two such ballots without changing the result as long
as the number of approvals in each ballot remains fixed.
Hence, there is a manipulation if and only if there are two
permutations with the appropriate sums.

The proof requires neither the number of manipulating
agents nor the size of the winning set to be constant. Thus,
we turn to the special cases of a single agent and a pair of
agents. Winning set manipulation is polynomial-time solv-
able with either one or two agents left to vote. This result
holds even if the size of the winning set is not bounded (e.g.
k = m/2).

On the other hand, SAV –WSM is polynomial-time solv-
able for j = 1 or 2. The main idea for the case for one
manipulator is to identify the lexicographically minimum
candidate c ∈ W \ C∗ with the highest satisfaction score
when the manipulator does not vote. In order to ensure that
C∗ is the winning set (if possible), the manipulator approves
all those candidates in C∗ that either have smaller satisfac-
tion score than c or the same score but lesser tie-breaking
priority than c.

Theorem 8. If j = 2, then SAV –WSM can be solved in
polynomial time.

Proof. Consider the satisfaction scores of the candidates
in the winning set before agents 1 and 2 vote. Let s be the
highest score of any candidate in C∗ \W . Let c be the lexi-
cographically smallest candidate from C∗ \W with score s.

Note that A1 and A2 will only include candidates in C∗

since a vote on a candidate in C \C∗ will never be beneficial.
We show a simple algorithm such that if C∗ can be made a
winning set with two approval ballots of size at most j1 and
j2 then the algorithm will produce two such ballots. Note
that the manipulator ballots will add 1/j1 to the scores of
the candidates approved by A1 and 1/j2 to the scores of the
candidates approved by A2.

For every two integers j1 and j2, k ≥ j1 ≥ j2 ≥ 1, the
algorithm performs the following steps.

If there is a candidate c′ ∈ C∗ such that c′ has score less
than s− 1/j2 − 1/j1 or c′ has score equal to s− 1/j2 − 1/j1
and c is lexicographically smaller than c, then C∗ 6= W for
any A1 and A2 with |A1| = j1 and |A2| = j2.

Otherwise, let C∗− be the set of all candidates c′ ∈ C∗

such that c′ has score less than s − 1/j2 or c′ has score
equal to s− 1/j2 and c is lexicographically smaller than c′.
The candidates in C∗− must be in both A1 and A2 otherwise
they will not reach a score of at least s. The candidates in C∗

with score less than s−1/j1 (or equal to s−1/j1 if they are
lexicographically larger than c) must be in A2 and, finally,
the remaining candidates in C∗ with score smaller than s (or
equal to s if they are lexicographically larger than c) must be
in either A1 or A2. In the final step, one can distribute these
candidates among A1 and A2 by guaranteeing, if possible,
that |A1| ≤ j1 and |A2| ≤ j2.
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R–WD R–TestWS R–WM R–WSM R–UM

AV in P in P in P in P in P

PAV NP-hard (Cor. 1) coNP-c (Thm. 2) coNP-c (j = 1) (Cor. 4) coNP-c (j = 1) (Cor. 4) coNP-c (Cor. 4)

RAV in P in P NP-c (j = 1) (Thm. 5) NP-c (j = 1) (Thm. 6) NP-c (j = 1) (Cor. 5)

SAV
in P (Thm. 1) in P (Thm. 1) in P (Obs. 3) NP-c (Thm. 7) NP-c (Thm. 10)

in P (j ∈ {1, 2}) (Thm. 8)

Table 1: Summary of computational results for approval-based multi-winner rules for Winner Determination, Test Winning
Set, Winner Manipulation, Winning Set Manipulation, and Utility Manipulation. Value j denotes the number of additional
strategic ballots. Results in bold are from this paper; other results are from Kilgour [22] and Meir et al. [29].

If the size of A1 is at most j1 and the size of A2 is at most
j2 then C∗ is a winning set, otherwise there are no ballots
with at most j1 and j2 approved candidates such that C∗ is
a winning set.

In contrast to the complexity of SAV –WM, ensuring that
a candidate c∗ is not in the winning set of size k under rule
SAV is intractable.

Theorem 9. The following problem is NP-complete: are
there j additional approval ballots so that candidate c∗ is not
in the winning set of size k under rule SAV .

Hence, in the case of multi-winner voting rules, destruc-
tive manipulation can be computationally harder than con-
structive manipulation. This contrasts to the single winner
case where destructive manipulation is often easier than con-
structive manipulation [10]. It also follows from Theorem 9,
simply by adding Boolean utilities to the winning set, that
it is intractable for an agent (who can cast multiple ballots)
to manipulate SAV to ensure at least a given utility.

Theorem 10. SAV –UM is NP-complete.

6. CONCLUSIONS
We have studied some basic computational questions re-

garding three prominent rules for multi-winner approval vot-
ing: PAV , RAV and SAV . These three rules are designed
with the intention of selecting a more representative set of
winners than the more popular AV method. Our results are
summarized in Table 1. We closed the computational com-
plexity of computing the winner for PAV and studied the
computational complexity of computing a best response for
PAV , RAV and SAV . In many settings, we proved that it
is NP-hard for an agent or agents to compute how best to
vote given the other approval ballots.

Our most important conclusion is that among the three
approval-based rules considered, RAV is the only rule for
which winner determination is polynomial-time solvable but
winner manipulation is NP-hard. From this computational
perspective, RAV is more attractive than AV , PAV , and
SAV . To complement this complexity study, it would be in-
teresting to undertake further axiomatic and empirical anal-
yses of prominent approval-based rules as well as considering
other variants of the rules [23]. Such analyses would provide
further insight into the relative merits of the voting meth-
ods. In addition, as several of our results are worst case, it
would be interesting to undertake an empirical study that
looks at the actual computational hardness in practice using,
for instance, data from PrefLib.org [27].
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