
A Truthful Budget Feasible Multi-Armed Bandit Mechanism
for Crowdsourcing Time Critical Tasks

Arpita Biswas
∗

Xerox Research Centre India
Bangalore, India

arpita.biswas@xerox.com

Shweta Jain
†

Indian Institute of Science
Bangalore, India, 560012

jainshweta@csa.iisc.ernet.in

Debmalya Mandal
‡

School of Engineering and Applied Sciences
Harvard University, Cambridge, MA - 02138

dmandal@g.harvard.edu

Y. Narahari
Indian Institute of Science
Bangalore, India, 560012
hari@csa.iisc.ernet.in

ABSTRACT
Motivated by allocation and pricing problems faced by ser-
vice requesters on modern crowdsourcing platforms, we study
a multi-armed bandit (MAB) problem with several real-
world features: (a) the requester wishes to crowdsource a
number of tasks but has a fixed budget which leads to a
trade-off between cost and quality while allocating tasks to
workers; (b) each task has a fixed deadline and a worker
who is allocated a task is not available until this deadline;
(c) the qualities (probability of completing a task success-
fully within deadline) of crowd workers are not known; and
(d) the crowd workers are strategic about their costs. We
propose a mechanism that maximizes the expected number
of successfully completed tasks, assuring budget feasibility,
incentive compatibility, and individual rationality. We es-
tablish an upper bound of O(B2/3(K ln(KB))1/3) on the
expected regret of the proposed mechanism with respect to
an appropriate benchmark algorithm, where B is the total
budget and K is the number of workers. Next, we provide
a characterization of any deterministic truthful mechanism
that solves the above class of problems and use this charac-
terization to establish a lower bound of Ω(B2/3K1/3) on the
expected regret for any budgeted MAB mechanism satisfy-
ing the above properties.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.6 [Learning]: Parameter learning
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1. INTRODUCTION
Over the past decade, crowdsourcing has received signifi-
cant attention for its utility in solving problems that require
intelligence and effort of human beings. In a typical crowd-
sourcing platform, the requesters submit their tasks to the
platform and expect the tasks to be completed with high
quality. The requesters are required to make online decisions
about the tasks to be assigned to specific workers and the
payments to be offered. Often these decisions are complex,
requiring the use of algorithms that learn different attributes
of the workers over time, such as quality of the workers, time
taken by a worker to complete a task, etc., besides taking
onto account the strategic behavior of the workers.

In this paper, we study a budgeted multi-armed bandit
mechanism, motivated by online crowdsourcing platforms
like guru.com, elance.com, rent-acoder.com etc., where each
requester posts tasks and workers bid for the desired tasks.
In rent-acoder.com, for example, a requester posts a project
that has to be completed within a budget and has a fixed
deadline. Once the project is posted, various registered work-
ers can bid for the project. The requester then assigns the
project to one or more workers depending on their bids and
his past experience about the quality of the workers. How-
ever, if the requester is completely unaware of the quality of
the workers bidding on the project, the requester would like
to learn the qualities of these workers while ensuring that
the project is completed within the project deadline. This
could be done by dividing the project into smaller tasks and
giving these tasks to the workers in a sequential manner.
Deadlines of these tasks should be planned in accordance
with the overall project deadline. Submissions made by the
allocated workers could be evaluated for quality. For exam-
ple, if a task is completed with high quality by a worker,
the same worker can be given another task. Also, for post-
ing a new task, the requester has to choose among only the
available workers.

Motivated by such crowdsourcing platforms, we consider
a model where a requester has a set of homogeneous tasks
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that need to be completed within a fixed budget. Each task
has a fixed deadline which is assumed to be the same for all
the tasks. Each worker on the other hand has a fixed quality
which is unknown to the requester and cost for complet-
ing a task is private information of the worker. In order to
maximize the quality, the requester assigns the tasks to the
workers one by one so as to learn their qualities. We assume
that the success or failure of a task can be verified instantly
as soon as the task deadline elapses, and thus the quality of
the workers can be estimated. The estimated quality is use-
ful to determine future allocations. No task is allocated to
the worker until the deadline for the allocated task elapses.
In order to utilize the budget in the best possible way, the
requester has to incentivize the workers to bid their true cost
of effort, at the same time, ensure voluntary participation.
Thus, the requester seeks to maximize the expected num-
ber of tasks completed successfully within the fixed budget,
besides ensuring truthfulness and voluntary participation of
the strategic workers.

The above situation is an example of sequential decision
making in an uncertain environment. Here, the requester
seeks to optimize his allocation and payment decisions while
continuously gathering more information about the quali-
ties of the workers. This leads to a trade-off between ex-
ploration (allocating tasks to all workers sufficiently often
to obtain better estimates of the quality of each worker)
and exploitation (allocating each task to the best available
worker). These kind of problems naturally fall into multi-
armed bandit (MAB) problems. The presence of strategic
agents in multi-armed bandit problems leads to multi-armed
bandit (MAB) mechanism design problems. The budget con-
straint leads to budgeted MAB mechanism design problems.
We have, in addition, deadlines for tasks which have to be
honored.

1.1 Our Contributions
There exist several papers in the literature (we provide a
review in the next section) that deal with budgeted multi-
armed bandit problems. However, there is no existing work
that additionally captures the task deadlines and strategic
nature of workers over their costs. The main contributions
of our work are as follows.

• We propose a MAB mechanism that takes into account
limited budget, task deadlines, unknown qualities, and
strategic workers (strategic about their costs). Note
that the quality of a worker refers to the probabil-
ity of the worker completing a task successfully within
the given deadline. Our mechanism maximizes the ex-
pected number of tasks completed successfully subject
to budget feasibility, incentive compatibility, and indi-
vidual rationality. We believe this is the first effort in
designing a mechanism for this class of problems.

• We establish an upper bound of O(B2/3(K ln(KB))1/3)
(Theorem 2) on the expected regret of the proposed
mechanism with respect to an appropriate benchmark
algorithm, where B is the total budget and K is the
number of workers. The uncertainty in the availability
of a worker, the budget constraint, and the strategic
nature of the workers render the regret analysis chal-
lenging.

• We provide a characterization of any deterministic truth-
ful mechanism that solves the above class of problems.

We establish a lower bound Ω(B2/3K1/3) on the ex-
pected regret (Theorem 6).

2. RELATED WORK
Multi-armed bandit problems have been studied extensively
for solving problems in different domains [1, 4, 7]. The bud-
geted multi-armed bandit that is close to our setting is con-
sidered by Tran-Thanh et al. [18, 17], without strategic agents
and task deadlines. The algorithms in [18, 17] achieves re-

gret of O(B2/3) and O(ln(B)) respectively. A more general
formulation is considered by Agrawal and Devanur [2] where
the authors attempt to maximize a concave objective func-
tion with convex constraints via multiarmed bandit algo-
rithm. However, these algorithms do not consider the strate-
gic behavior of the agents and assume that the costs are
private knowledge [18, 17] or stochastic [2].

Budgeted MAB problems have also been widely studied
for pricing tasks (or items) in crowdsourcing (or dynamic
procurement) problems. With workers arriving online with
a fixed and known distribution, Singer et al. [15] considered
a budgeted setting with a goal to maximize the total number
of allocated tasks to the workers. The workers were assumed
to complete the task successfully if allocated and thus, the
goal was to design a pricing mechanism to complete the tasks
within a budget. In our setting, workers complete the allo-
cated task with a fixed probability which is unknown and
we wish to design an auction mechanism by incentivizing
the workers to bid their true cost of effort. Badanidiyuru et
al. [6] and Ho et al. [11] modeled dynamic procurement and
crowdsourcing problems as MAB problems where arms cor-
responded to feasible posted-prices. However, they did not
captured task deadlines and strategic nature of the work-
ers. The survey paper by Slivkins et al. [16] lists results for
various crowdsourcing problems and provides insights for
possible directions of research in this area.

In MAB problems, the need for mechanism design arises
when each arm holds some private valuations. Thus, in ad-
dition to learning the unknown parameters, the mechanism
is also required to elicit the private valuations of the arms
truthfully. Most of the research in this area deals with for-
ward auction, for example, auction of ad-slots on a webpage
among advertisers, where the click probabilities of the ad-
vertisers are to be learnt and the value of an advertisement is
held privately by the corresponding advertiser. In the online
advertising context, MAB mechanisms aim at maximizing
the revenue of the platform or the social welfare as a whole.
Devanur et al. [9] showed that the truthful restriction on
pay-per-click online advertising problem imposes statistical
limits on achievable regret in terms of revenue and thus the
achievable regret is very high (Θ(n2/3)). Babaioff et al. [5]
proved that any truthful mechanisms for forward auction
must separate exploration and exploitation, and the regret in
terms of social welfare is Ω(n2/3K1/3). Our work, when com-
pared to the existing MAB mechanisms, is novel due to the
extension to the case of limited budget and non-availability
of workers due to task deadlines.

In the absence of learning, Singer et al. [14] considered
the problem of budget feasible truthful mechanism for non-
decreasing submodular valuation functions. We wish to point
out here that while we adopt allocation techniques from
standard MAB variations like budgeted MAB by Guha et al.
[10] and sleeping bandits due to unavailability by Kleinberg
et al. [12], however, the presence of strategic agents requires
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a carefully designed payment rule that makes regret analysis
interesting.

3. THE MODEL
In this section, we formalize the budgeted MAB mechanism
design problem for crowdsourcing scenario. We consider a
requester and a fixed set of K workers denoted by N =
{1, . . . , K}. The requester has a set of homogeneous tasks
to be completed within a budget B. In addition to the bud-
get, the requester also has a fixed deadline and he wishes
to complete all the tasks within the deadline. On the other
hand, each worker i ∈ N is associated with a quality qi and
incurs a cost ci for completing a task. The quality qi rep-
resents the probability with which the worker i successfully
completes the allocated task within the specified deadline.
The qualities are initially unknown to the requester as well
as the workers, whereas, the costs of the workers are the pri-
vate information held by the respective workers. We consider
a general version of this problem wherein the costs and qual-
ities do not depend on each other. The requester’s objective
is to design a mechanism that maximizes the expected num-
ber of successfully completed tasks within the budget B, in
the presence of strategic workers. The model is described in
Figure 1.

Figure 1: A pictorial representation of the model

Since the qualities of the workers are stochastic and un-
known, the requester is required to learn the qualities. So,
the requester posts one task per time step, allocates the
task to a worker, observes the success of the task, and thus,
gains a better estimate of the quality of the worker after
each time step. In this paper, we assume that the requester
gives a fixed deadline of τ time steps for each task posted,
which causes an additional complexity to the budgeted MAB
mechanism design problem. When a task is allocated to a
worker i, the worker becomes unavailable for next τ time
steps as the worker is busy executing the task. Thus, no fur-
ther tasks can be assigned to the worker until the next τ
time steps. The tasks are homogeneous, that is, each worker
i completes any task successfully with a probability qi, in-
curs a fixed cost ci and each task has a fixed deadline of τ .
Thus, these tasks are time critical tasks.

Symbol Description

K Number of workers
N Set of workers {1, 2, . . . ,K}
B Total budget available
qi Quality (probability of success) of worker i
q̂i Estimated quality of worker i

q̂+i Upper confidence bound on q̂i
ci True cost of worker i
c Vector of true costs c = (c1 , . . . , cK)
ĉi Bid of worker i
ĉ−i Bid vector of all the workers except i
[c, c] Minimum and maximum bids
τ Fixed deadline for executing each task
Bt Budget remaining with the requester after

t− 1 time steps
s Success realization where, si,t is the indi-

cator variable denoting success of the task
submitted at time step t by worker i

Ati(ĉ; s;Bt) Indicator function denoting whether the
worker i is allocated for a task at time step
t

Pti (ĉ; s;Bt) Payment for a task to an allocated worker
i at time step t

U ti (ĉ; ci; s;Bt) Utility of a worker i for task at time step t
E[R] Expected regret

argmaxn
k∈N

[a] Gives the index of nth maximum value in
an array [a]

Table 1: Table of Notations

Let s be a success realization matrix, where si,t ∈ {0, 1}
denotes whether or not (1 or 0) a task submitted by a worker
i at time step t is successfully completed within deadline.
The worker i submits the allocated task at (t + τ)th time,
becomes available, and the success bit si,(t+τ) ∈ {0, 1} is

observed at (t + τ)th time step for estimating the worker’s
quality, where si,(t+τ) = 1 with probability qi and si,(t+τ) =
0 with probability 1−qi. Thus, a task allocated at time step t
can be unsuccessful in two ways, first, if the allocated worker
fails to submit the task at time step t + τ , and second, an
incorrect submission (e.g. code submitted to rentacoder.com
might fail to work). A task is allocated only to one of the
available workers at each time step.

When a task is allocated to a worker, the requester has
to make payment to the worker irrespective of the task be-
ing successfully completed. In order to decide the payment,
the requester conducts a reverse auction where the workers
bid for taking up the task. We assume that the workers are
allowed to bid only at the starting of the auction and their
costs remain same for all the tasks as the tasks are homoge-
neous. The requester also provides a lower limit and upper
limit on the bids, c and c respectively. Lower limit c can be 0
and upper limit c indicates that the requester is not willing
to pay more than c per task. The bids for all the workers
are denoted by a vector ĉ = (ĉ1, . . . , ĉK) ∈ [c, c]K .

The requester needs to define an allocation rule A and a
payment rule P to ensure that the workers bid their true
costs, which leads to budgeted MAB mechanism design. Let
st = (si,t′)

i∈N
t′∈{1,...,t−1} and Bt denote the success realization

and the budget left respectively till t− 1 time step. An allo-
cation rule A is a function that maps the bid vector ĉ, the
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success realization st, and the budget left Bt to a worker
i ∈ N for each time t. For each task a worker i is allocated,
a payment Pti is given to the worker. The requester has a
budget B, and the total payment given to the workers can-
not exceed the budget B. Also, not all the entries in st are
known at a time step t, since only the success of the allo-
cated workers is only revealed. Thus, the allocation A and
payment P depend only on the observed entries of success
realization st.

Now, ideally, the bid ĉi must be equal to the true cost
ci for each worker i, however, the workers, being strategic
agents, may bid a value different from their true costs to
maximize their own utilities. The utility of a worker i at
time step t is given as

U ti (ĉi; ci; st;Bt) = (Pti (ĉ; st;Bt)− ci)Ati(ĉ; st;Bt) (1)

where,

Ati(ĉ; st;Bt)=
{

1 if worker i is allocated task at time t
0 otherwise

We now present some essential properties that our mech-
anism should satisfy.

Definition 1 (Truthful) A mechanism is truthful if bid-
ding true costs maximizes the utility of any worker i irrespec-
tive of the bids of other workers. Formally, ∀ĉ−i, ĉi, ci, st, Bt,

U ti (ci, ĉ−i; ci; st;Bt) ≥ U ti (ĉi, ĉ−i; ci; st;Bt). (2)

In this work, we consider the strongest notion of truthful-
ness also known as Dominant Incentive Strategy Compatible
(DSIC) where no worker has incentive to misreport his bid
irrespective of the bids of other workers.

Definition 2 (Individually Rational) A mechanism is in-
dividually rational if every worker i derives a non negative
utility by participating in the auction. Formally, ∀c, st, Bt,

U ti (c; ci; st;Bt) ≥ 0. (3)

Note that, even if the workers are bidding only once, the
truthfulness is defined based on the utility, a worker achieves
at every time. This is because, workers are unaware of the
budget of the requester and thus will wish to maximize the
utility at every time step. As in the later rounds, budget
might get over. The non-strategic version of our problem can
be mapped to a budgeted MAB problem [18] where workers
represent the arms, tasks represent time steps and allocating
a task to the worker corresponds to pulling an arm. Table 1
provides the notation that we will be using throughout.

4. BUDGETED MAB MECHANISM WITH
TIME CRITICAL TASKS

4.1 A Benchmark Mechanism
In order to compare the performance of our mechanism, we
consider a benchmark mechanism that knows the quality
qi for each worker i, but still has to incentivize the work-
ers to bid truthfully. Thus, the benchmark algorithm is not
required to learn the qualities of the workers, however, it
should still satisfy properties like budget feasibility, truth-
fulness, and individual rationality.

Let Tc(B) denote the total number of tasks that can be ex-
ecuted with budget B and cost vector c. Note that the total
number of tasks also depend on the payment which in turn

depends on the costs and qualities. We have dropped this de-
pendence for notational brevity. Let us denote Ai(ĉ; q;B) =∑Tĉ(B)
t=1 Ati(ĉ; q;B) to be the number of tasks allocated to

a worker i when the bid profile is ĉ and the known quality
vector is q. Let the payment given to a worker i is denoted

by Pi(ĉ; q;B) =
∑Tĉ(B)
t=1 Pti (ĉ; q;B). If τ = 0, i.e., all the

workers are available for all tasks, we have the following op-
timization problem:

maximize
(A(ĉ;q;B),P(ĉ;q;B))

K∑
i=1

Ai(ĉ; q;B)qi

subject to

K∑
i=1

Pi(ĉ; q;B) ≤ B

Ai(ĉ; q;B) ∈ Z ∀i ∈ N

(4)

where, worker i’s payment Pti (ĉ; q;B) and the number of
allocations Ati(ĉ; q;B) satisfy the property of truthfulness
and individual rationality given in Definitions 1 and 2 re-
spectively. If we assume that the costs are not private infor-
mation then this optimization problem reduces to the un-
bounded knapsack problem which is NP-hard and is con-
sidered in [18] when costs are public knowledge. Thus, we
adopt a similar benchmark where the best worker is iden-
tified according to highest quality by cost ratio. However,
there is a non-zero task deadline, τ > 0, allocating a task to
a worker implies that the worker remains unavailable for
the next τ time steps. The idea is to allocate a task to
the most efficient available worker at each time step. With-
out loss of generality, let us assume that all the workers
are ranked according to their quality by cost ratio, that is,
q1
ĉ1
≥ q2

ĉ2
≥ . . . ≥ qK

ĉK
. Workers are allocated greedily accord-

ing to this ranking among all the available workers. By the
end of the first τ time steps, the best worker is available,
and the best worker gets the task at time step τ . So, instead
of selecting one optimal worker, the allocation rule has to
select best τ workers. Thus, the best τ workers are allocated
one by one sequentially. The benchmark algorithm is given
in Algorithm 1 where Nτ is the set of τ best workers, P
denotes the sum of payments given to the best τ workers
for taking one task each, and T denotes the number of tasks
given to each worker.

ALGORITHM 1: Benchmark mechanism
Input: Bids ĉ1 , . . . , ĉK , Qualities q1 , . . . , qK ,
Deadline τ , Maximum possible bid c,
and Budget B
Output: Mechanism M = (A,P)

1 Assumption: q1
ĉ1
≥ q2

ĉ2
≥ . . . ≥ qK

ĉK
and τ < K;

2 Nτ = {1 , . . . , τ};
3 for each i in Nτ do
4 Set pi = min{ qi

qτ+1
cτ+1, c};

5 P =
∑
i∈Nτ

pi;

6 T = bB/P c;
7 for t = 1 to T do
8 for each i in Nτ do
9 At∗i−1

i = 1;

10 Pt∗i−1
i = pi;
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Now, we show that the benchmark mechanism satisfies
budget feasibility, truthfulness and individual rationality.
The mechanism is budget feasible as T = bB

P
c ensures that

the total payment is less than or equal to B. For ensur-
ing truthfulness and individual rationality, a property called
monotone allocation rule is required, and hence, we define
monotone allocation.

Definition 3 (Monotone Allocation) An allocation rule
A is monotone if for any quality vector q, Budget B, ĉi ≤
ci,

Ati(ci, c−i; q;B) ≤ Ati(ĉi, c−i; q;B). (5)

Each worker i that belongs to the set of best τ workers
(i ∈ Nτ ), gets the allocation only if his bid is less than
cτ+1qi
qτ+1

, keeping all the other bids same. Thus, the allocation

rule for the benchmark mechanism is monotone.
Also, the payment rule should satisfy some criteria to

make the benchmark mechanism truthful and individually
rational, according to the following Theorem.

Theorem 1 [3, 13] A mechanism is incentive compatible
(truthful) and individually rational if and only if for each
agent i and bid vector ĉ, the allocation rule Ati is monotone,∫∞
0
Ati(ĉ; q;B)dĉ <∞ and the payment is given by

Pti (ĉ; q;B) = ĉiAti(ĉ; q;B) +

∫ c

ĉi

Ati(z, ĉ−i; q;B)dz (6)

This payment is called critical payment.

The critical value which is paid to each of the best τ work-
ers is given by Equation (6).

From Algorithm 1, the payment for any worker i ∈ Nτ ,
is given by Pti =

cτ+1qi
qτ+1

. To see that the payment sat-

isfies Equation (6), we observe that the worker i ∈ Nτ
lose allocation if ĉi >

cτ+1qi
qτ+1

. Thus, the value of integra-

tion
∫ c
ĉi
Ati(z, ĉ−i; q;B)dz =

(
cτ+1qi
qτ+1

− ĉi
)
Ati(ĉi, ĉ−i; q;B)

and thus, satisfies Equation (6). Note that, if all the best
τ workers are not allocated the same number of tasks, it is
hard to define the critical payments. Thus, we consider that

B−b Bqτ+1

cτ+1
∑
i qi
c cτ+1

∑
i qi

qτ+1
budget remains unallocated to en-

sure truthfulness. Also, for worker i ∈ Nτ , the payment for
each task is

cτ+1qi
qτ+1

which is greater than or equal to ci mak-

ing the mechanism individually rational. Thus, the bench-
mark mechanism ensures budget feasibility, truthfulness and
individual rationality. Note that, generalization of the above
algorithm is difficult to the case when the task deadlines are
heterogeneous i.e. each task has a different deadline, because
the allocation is no longer uniform and this requires compli-
cated payments to design a truthful mechanism.

The total expected reward (expected number of success-
fully completed tasks) accumulated by the benchmark algo-
rithm is

B
τ∑
k=1

qk
qτ+1

cτ+1

τ∑
k=1

qk = B
qτ+1

cτ+1
(7)

The expected regret for an algorithm with unknown success
rates is given by

E[R] = B
qτ+1

cτ+1
−
Tĉ(B)∑
t=1

qIt (8)

where, Tĉ(B) is the total number of tasks, and It denotes
the worker allocated for task t. We bound the regret with
respect to benchmark greedy algorithm, since it is hard to
compute the optimal solution even when the qualities are
known. Moreover, benchmark algorithm gives us an approx-
imate solution with a factor of two.

4.2 Proposed Mechanism
In this section, we provide a mechanism for budgeted MAB
problem with task deadlines given in Algorithm 2. The input
parameters to the algorithm are bid vector ĉ, task deadline
τ , budget B and the maximum allowed bid c. We call our
mechanism exploration-separated as the mechanism divides
the budget B into exploration budget and exploitation bud-
get. The value of exploration budget B1 is given in Step 1
and is calculated in a way that minimizes the expected re-
gret 8 (calculation provided in Section 4.4). In Section 4.5,
we prove that the exploration separated property is neces-
sary for any truthful and IR mechanism.

ALGORITHM 2: Budgeted MAB mechanism with
task deadline
Input: Bids ĉ1 , . . . , ĉK , Deadline τ , Maximum bid c,

Budget B
Output: Mechanism M = (A,P)

1 Initialize t = 1; q̂k = 0 and nk = 0 ∀k ∈ N ;

2 Set B1 = 1

(2)1/3
(cK ln(KB))1/3 B2/3;

3 for l = 1, 2, . . . , b B1
K c
c do

4 for i = 1, 2, . . . , K do
5 if t > τ then
6 Let k= worker allocated at time (t− τ);
7 Observe reward sk,t;
8 Update q̂k = (q̂knk + sk,t)/(nk + 1);
9 Update nk = nk + 1;

10 Allocate worker i, Ati = 1, Pti = c;
11 Update t = t+ 1;

12 for each k in N do

13 Update q̂+k = q̂k +
√

K c ln(KB)
2B1

;

14 Set N
′
τ = {[1], . . . , [τ ]};

15 Set j = argmax τ+1

k∈N

q̂+
k
ĉk

;

16 Set Bt = B − b B1
K c
cKc;

17 while Bt >
∑
i min{ q̂

+
i

q̂+j
cj , c} do

18 for each i in N
′
τ do

19 Set Ati = 1, Pti = min{ q̂
+
i

q̂+j
cj , c};

20 Allocate worker i, Ati = 1 and pay Pti ;
21 Update Bt+1 = Bt − Pti ;
22 Update t = t+ 1;

The algorithm first explores the workers by allocating the
tasks to the workers in a round robin fashion till budget B1

is exhausted. Such rounds are known as exploration rounds.
The algorithm maintains the running average of quality q̂k
obtained from each worker k in the exploration round. The
per allocation payment for each worker during exploration
phase is c. After exploration rounds, the best τ workers,
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according to decreasing order of
q̂+
k
ĉk
∀ k ∈ N , are chosen

to be played sequentially one by one in each round, where

q̂+k = q̂k+
√

K c ln(KB)
2B1

is the upper bound quality estimate

for worker k.
Let [i] denote the ith ranked worker and N

′
τ denote the

best τ workers according to the ratio
q̂+
k
ĉk

, that is, [i] =

argmaxi
k∈N

q̂+
k
ĉk

and N
′
τ = {[1] , . . . , [τ ]}. We use the nota-

tion argmaxi to denote the parameter value that gives ith

maximum value of the corresponding array. The per alloca-
tion payment made to a worker k among the best τ workers

is
q̂+
k
ĉ[τ+1]

q̂+
[τ+1]

, where [τ + 1] = argmax τ+1

k∈N

q̂+
k
ĉk

.

4.3 Properties of the Proposed Mechanism
Our mechanism satisfies the following desirable properties:

• Truthfulness: 1. Monotone Allocation: The allocation
function during the exploration rounds is independent of
the bids, so Ati(ĉi, ĉ−i; st;Bt) does not change for a dif-
ferent bid c−i < ĉi. During the exploitation phase, the

workers are allocated according to the ratio
q̂+i
ĉi

. Since the

qualities does not change in exploitation rounds, the al-
location rule of the proposed mechanism is monotone. 2.
Critical Payment : The critical payment is given by Equa-
tion (6). In exploration phase, the allocation is bid in-
dependent, that is, the allocation remains same for any
c′i ∈ [ci, c]. Thus, payment to an allocated worker during
exploitation phase at each time is c. During exploitation
phase, any worker i among best τ workers lose allocation

when ĉ >
q̂+i ĉ[τ+1]

q̂+
[τ+1]

. Thus, the payment using Equation (6)

can be shown to be
q̂+i ĉ[τ+1]

q̂+
[τ+1]

per round. As the payment

rule of the mechanism matches the payment given by (6)
with monotone allocation rule, the mechanism is truthful,
that is ĉi = ci ∀i ∈ N .

• Individually Rationality: The payment c during ex-

ploration phase and
q̂+i ĉ[τ+1]

q̂+
[τ+1]

during exploitation phase to

each worker i is always greater than or equal to ĉi, and
hence, the mechanism is individually rational.

• Budget Feasibility: The algorithm stops when there is
no more budget left to be paid to the workers in exploita-
tion phase. Thus, the total payment given to all the work-
ers does not exceed the given budget B. Thus, the mech-
anism is budget feasible.

• Computationally Efficient: Initially, the mechanism
invites bids from all the workers, and using the observed
qualities and bids, find best τ + 1 workers according to
their quality per cost ratio. This takes O(K) time [8].

The following section provides an upper bound on the ex-
pected regret and proposes the optimal value of B1 for the
algorithm.

4.4 Upper Bound Analysis
The performance of any mechanism depends upon the regret
accumulated by the mechanism. The expected regret of the

proposed algorithm (as given by Equation 8) is given as:

Bqτ+1

cτ+1
− B1

K c

∑
k∈N

qk −
B −B1

c[τ+1]

q[τ+1]

∑
i∈N′τ

q̂+[i]

∑
i∈N′τ

q[i] (9)

here, [i] denotes ith ranked worker according to the ratio
q̂+
k
ck

.

The following theorem provides an upper bound on the
regret by taking an optimal value of B1.

Theorem 2 The expected regret for the proposed algorithm

is O(B
2
3 K

1
3 (ln (KB))

1
3 ).

We first provide bounds on the learnt quality after explo-
ration phase in the following two lemmas.

Lemma 3 After the exploration rounds, for each worker
k ∈ N , qk < q̂+k with probability at least 1− 1

KB
.

Proof: Let each worker be allocated n times in the explo-
ration phase, i.e. n = b B1

K c
c. After n allocations we have,

P
(
q̂+k ≤ qi

)
= P

(
q̂k +

√
ln (KB)

2n
≤ qi

)

= P

(
q̂k ≤ qi −

√
ln (KB)

2n

)
Applying Chernoff-Hoeffding’s bound, we get:

P

(
q̂k ≤ qi −

√
ln (KB)

2n

)
≤ e

{
−2n

(√
ln(KB)

2n

)2}
=

1

KB

Therefore, with probability at least (1 − 1
KB

), for a worker

k, qk < q̂+k . �

Lemma 4 After the exploration rounds, with probability at

least 1− 1
B

, qr
cr
≤

q̂+
[r]

c[r]
where, [r] = argmaxr

k∈N

q̂+
k
ck

Proof: The probability that q̂+k is greater than qk for every
worker k ∈ N is

P
(
∩
k∈N

(q̂+k > qk)

)
=1− P

(
∪
k∈N

(q̂+k ≤ qk)

)
≥1−

∑
k∈N

P(q̂+k ≤ qk)

≥1−
∑
k∈N

1

KB
(Using lemma 3)

=1− 1

B

Hence, rth max value of the set
{
qk
ck

: k ∈ N
}

is less than

or equal to the rth max value of the set

{
q̂+
k
ck

: k ∈ N
}

with

probability (1− 1
B

). �

Proof of Theorem 2: The expected regret of the algorithm
can be upper bounded by
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(1−
1

B
)

B qτ+1

cτ+1
−

B1

K c

∑
k∈N

qk −
(B −B1)

c[τ+1]

q[τ+1]

∑
i∈N′τ

q̂+
[i]

∑
i∈N′τ

q[i]


+

1

B

B qτ+1

cτ+1

= (1−
1

B
)

B1

 qτ+1

cτ+1
−

1

K c

∑
k∈N

qk



+(B −B1)

 qτ+1

cτ+1
−

∑
i∈N′τ

q[i]

c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]


+

qτ+1

cτ+1

≤ (1−
1

B
)

B1qτ+1

cτ+1
+ (B −B1)

 qτ+1

cτ+1
−

∑
i∈N′τ

q[i]

c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]




+
qτ+1

cτ+1

≤ (1−
1

B
)

B1qτ+1

cτ+1
+

(B −B1)
c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]


qτ+1

cτ+1

q̂+
[τ+1]

c[τ+1]

∑
i∈N′τ

q̂+
[i]

−
∑
i∈N′τ

q[i]




+
qτ+1

cτ+1

≤ (1−
1

B
)

B1qτ+1

cτ+1
+

(B −B1)
c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]

 ∑
i∈N′τ

q̂+
[i]

−
∑
i∈N′τ

q[i]




+
qτ+1

cτ+1
(By Lemma 4)

= (1−
1

B
)

B1qτ+1

cτ+1
+

(B −B1)2τ
c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]

√
K c ln(KB)

2B1

+
qτ+1

cτ+1

≤

B1qτ+1

cτ+1
+

(B −B1)2τ
c[τ+1]

q̂+
[τ+1]

∑
i∈N′τ

q̂+
[i]

√
K c ln(KB)

2B1


+

qτ+1

cτ+1

≤

B1
qτ+1

cτ+1
+

(B −B1)2τ∑
i∈N′τ

c[i]

√
K c ln(KB)

2B1


+

qτ+1

cτ+1

≤

B1
1

c
+

2B

c

√
K c ln(KB)

2B1

+
qτ+1

cτ+1

It can be shown that the above expression attains minimum
value when the value of B1 is

B1 =
1

(2)1/3
(cK ln(KB))1/3 B2/3 (10)

Substituting the value of B1, we get the upper bound of
expected regret as

E[R] ≤ 1.587

c
(cK ln(KB))1/3 B2/3 +

qτ+1

cτ+1

Thus it is proved that the expected regret is

O(B2/3 K1/3 (ln(KB))1/3)

�
Note that the upper bound on regret does not depend on

τ directly, though the presence of
qτ+1

cτ+1
in the expression of

upper bound on regret makes the regret bound decrease as τ
increases. Also, our regret bounds matches with the existing
literature [18]. We now show that this is the best achievable
regret up to a constant factor.

4.5 Lower Bound Analysis
In this section, we prove that the regret bound for the pro-
posed algorithm is tight by providing lower bound analy-
sis. Lower bound on regret exists for MAB mechanism in
the context of sponsored search auction without any budget
constraint [5]. However, these results cannot be extended
in a straight forward way for budgeted MAB mechanism.
The presence of budget causes an inherent dependency be-
tween payment and the number of rounds. Given a fixed
budget, the number of rounds of the algorithm may vary
as the bid changes or observed success rate changes. This
makes the lower bound proof in the setting more challeng-
ing. Let Tc(B) denotes the total number of tasks that are
executed with cost profile c and budget B. Note that the
total number of tasks will also depend on the success re-
alization and more importantly on allocation and payment
rule. However, for notational simplicity we do not show this
dependence explicitly. We prove the lower bounds for the
special case of τ = 0, i.e., the task is verified instantly and
thus all the workers are available for all the tasks. Since, the
problem with task deadline τ = 0 is a special case, the lower
bounds are applicable to the general class of problems. We
start with some definitions that will be used in proofs and
Theorem 6 provides the final lower bound.

Definition 4 (Similar success realization) Two success
realizations s1 corresponding to bid profile c and s2 corre-
sponding to bid profile ĉ are said to be similar if st1 = st2 ∀t ≤
min(Tc(B), Tĉ(B)). Similarity between two success realiza-
tions s1 and s2 is denoted by s1 ∼ s2.

We now redefine monotonicity of allocation rule for learn-
ing setting:

Definition 5 (Monotone) An allocation A is called mono-
tone if for any ĉi ≤ ci, Ati(ci, c−i; s1) = 1, then Ati(ĉi, c−i; s2) =
1, ∀s1 ∼ s2 and ∀t ≤ min(T(ci,c−i)(B), T(ĉi,c−i)(B)).

To provide lower bounds, we will assume that the mechanism
knows full success realization and hence allocation rule at
any time t depends on complete success realization s instead
of st. An allocation rule at time t may or may not depend on
the bid. We denote such rounds as bid independent rounds.

Definition 6 (Bid Independent Round) A round t is called
bid independent if the allocation At(ĉ) remains same for all
ĉ ∈ [c, c]K .

It is easy to see from the critical payment that if a round t
is bid independent, then the payment to the allocated worker
at that round is c. If the requester chooses to make alloca-
tions of all rounds bid independent, then only B

c
rounds will

be played. However, such allocation rule severely reduces
the expected number of successfully completed jobs. Ideally,

1107



there should be no bid-independent allocation rounds. On
the other hand, we show that bid independent rounds are
necessary for incentive compatibility. Hence, the total num-
ber of bid independent rounds should be properly balanced.

We say a round t is used for exploration, when the suc-
cess observed in that round is used for deciding future al-
locations. We denote such a round t as influential round,
and the round t′ whose allocation depends on the success
observed at round t is called influenced round. Such a pair
(t, t′) is called influential pair.

Definition 7 (Influential Round) A round t is called an
influential round if the success observed in round t, is used
for deciding future allocation in round t′ and round t′ is
called influenced round.

Definition 8 (Influential Pair) A pair (t, t′) is called an

influential pair if At
′
(c; s) 6= At

′
(c; s′) for t′ > t, where

At(c; s) = j and s′ = s ⊕ I{j, t} for some bid profile c, and
some success realization s.

Here, s′ = s ⊕ I{j, t} denotes success realization with only
the success bit for worker j at time t is flipped in s.

From Theorem 1, any truthful and individually rational
mechanism should satisfy the property of monotonicity. Num-
ber of influential rounds indicates how many rounds are
required to learn the qualities. We now show that any in-
fluential pair (t, t′) should be bid independent for truthful
mechanism and hence, payment in these influential rounds
should be c.

Theorem 5 If there exists an influential pair (t, t′) for some
bid profile c, and success realization s, where t < t′ ≤ B

c
then

a deterministic mechanism is truthful only if the payment at
time t is bid independent.

Proof: Let us choose K = 2 with workers 1 and 2. Let
(t, t′) be an influential pair for some bid profile ĉ and some

success realization s such that At(ĉ; s) = 2 and At
′
(ĉ; s) 6=

At
′
(ĉ; s′), where, s′ = s ⊕ I{2, t}. We assume t′ is the least

time step which is influenced by time step t. Any algorithm
plays for at least B

c
rounds since the payment to any worker

for any task does not exceed c. Let us assume that round t
is bid dependent, hence for some ĉ−1 < ĉ1, At(ĉ−1 , ĉ2; s1) =
1 where s1 ∼ s. Since sx1 = sx ∀x ≤ B

c
, we replace s1

with s in rest of the proof (as t, t′ ≤ B
c

). As the success of
arm 2 at round t is not observed by the algorithm, so the
allocation and payment at t′ remains same for s and s′, and

thus, At
′
(ĉ−1 , ĉ2; s) = At

′
(ĉ−1 , ĉ2; s′) = i and Pt

′
i (ĉ−1 , ĉ2; s) =

Pt
′
i (ĉ−1 , ĉ2; s′).

Let us assume that At
′
(ĉ; s) = 1 and At

′
(ĉ; s′) = 2, other-

wise we can swap s with s′. Due to monotonicity, At
′
(ĉ; s) =

1 ⇒ At
′
(ĉ−1 , ĉ2; s) = 1. Thus,At

′
(ĉ−1 , ĉ2; s) = At

′
(ĉ−1 , ĉ2; s′) =

1. Now, At
′
(ĉ; s) = 1 and he is paid an amount up to which

he could have increased his bid and still get the allocation,

thus the payment Pt
′

1 (ĉ; s) ≥ ĉ1.

(1) Since At
′
(ĉ−1 , ĉ2; s) = 1, he is paid an amount up to

which he could increase his bid and still get the allocation.
Now, as we increase the cost from ĉ−1 to ĉ1, arm 1 still gets

the allocation, so the payment Pt
′

1 (ĉ−1 , ĉ2; s) ≥ ĉ1.

(2) Again, At
′
(ĉ; s′) = 2 and At

′
(ĉ−1 , ĉ2; s′) = 1, so the

amount up to which he can raise his bid and still get the

allocation is less than or equal to ĉ1, as he did not get an

allocation at round t with bid ĉ1, so Pt
′

1 (ĉ−1 , ĉ2; s) ≤ ĉ1 .
By arguments (1) and (2), it can be seen that the payment

Pt
′

1 (ĉ−1 , ĉ2; s) = Pt
′

1 (ĉ−1 , ĉ2; s′) = ĉ1. If payment to a worker
is equal to its bid then the mechanism can not be truthful.
Thus, the payment at time t has to be bid independent. �
According to Theorem 5, the allocation at an influential or
exploration round t does not depend on the bids, and thus
the payment at any influential round t is c.

Theorem 6 Any deterministic truthful mechanism for bud-
geted MAB setting with strategic costs has an expected regret

of Ω(B
2
3 K

1
3 ).

Proof: To prove lower bounds, we assume that there is an
adversary that provides the qualities and costs vector as
input to the algorithm that tries to maximize the regret.
Since the upper bound on the payment to any worker is given
by c, any mechanism in this setting run for at least B

c
rounds.

If there are no influential rounds that means allocation to
any worker does not depend on his quality (since the quality
is being learnt). In this case the best any mechanism can
do is to allocate equal number of tasks to all the workers.
Otherwise the adversary can chose the quality of the worker
that has been assigned lesser number of tasks to be of that
of 1 and rest of quality 0. Thus, incurring the regret of at

least B(K−1)
cK

if quality profile is q = (1, 0, . . . , 0).
Now, let us assume that there are some influential pairs

in the first B
c

rounds, and let the corresponding influential
rounds be denoted by set I. By Theorem 5, these influential
rounds should be bid independent. Now consider two cases:

1. If |I| ≥ βB2/3K1/3, where β is any constant. These
rounds are bid independent, by (Theorem 5) payment
made in these rounds is c. Now, consider the quality
vector, q = (1, 1, . . . , 1) and cost vector, c = (c, c, . . . , c).

Regret for this profile is at least βB2/3K1/3

c
−βB

2/3K1/3

c
.

As c > c, we get the regret of Ω(B2/3 K1/3).

2. If |I| ≤ βB2/3K1/3, then using the result in [5], one
can prove that there exists success realizations which
achieves regret of at least βB2/3K1/3.

�
Thus, upper bound regret is tight up to a logarithmic factor.

5. CONCLUSION AND FUTURE WORK
We studied a budgeted MAB problem with strategic arms
and task deadlines. We proposed a budget feasible, truthful,
and individually rational mechanism to solve the problem.
We provided an upper bound of O(B2/3K1/3 ln(KB)1/3) on
the regret of the proposed algorithm with respect to an ap-
propriate benchmark. We also showed that any determin-
istic truthful algorithm that solved budgeted MAB mech-
anism design problem would suffer an expected regret of
Ω(B2/3K1/3). The questions left open by this work concern
results for the following problems: (a) A randomized truthful
mechanism for the problem with better regret bound. (b) A
truthful mechanism for the problem with tasks having differ-
ent deadlines. (c) A truthful mechanism for minimizing total
payment where the total reward obtained is higher than a
fixed threshold.
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