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ABSTRACT
We propose the problem of predicting a bundle of goods,
where the goods considered is a set of spatial locations that
an agent wishes to visit. This typically arises in the tourism
setting where attractions can often be bundled and sold as
a package to visitors. While the problem of predicting fu-
ture locations given the current and past trajectories is well-
established, we take a radical approach by looking at it from
an economic point of view. We view an agent’s past trajec-
tories as revealed preference (RP) data, where the choice of
locations is a solution to an optimisation problem according
to some unknown utility function and subject to the pre-
vailing prices and budget constraint. We approximate the
prices and budget constraint as the time costs to finish vis-
iting the chosen locations. We leverage on a recent line of
work that has established algorithms to efficiently learn from
RP data (i.e., recover the utility functions) and make predic-
tions of future purchasing behaviours. We adopt and adapt
those work to our original setting while incorporating tech-
niques from spatiotemporal analysis. We experiment with
real-world trajectory data collected from a theme park. Our
predictions show improved accuracies in comparison with
the baseline methods by at least 20%, one of which comes
from the spatiotemporal analysis domain.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics

Keywords
Mobile agents; trajectories; revealed preferences; utility learn-
ing; knapsack; decision modelling.

1. INTRODUCTION
We consider the problem of predicting a bundle of goods,

where the goods are spatial locations that an agent wish to
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visit (a.k.a. “spatial bundle”), given knowledge of the costs
of all goods considered and their budget constraint. This
scenario typically arises in the travel and tourism industry
where attractions in a certain geographical area can be pack-
aged together by the developer and sold at a (discounted)
bundled price. An example is CityPASS, where the company
sells booklets (bundles) of attractions in 11 cities throughout
North America. Bundles typically include transport passes
and tickets to places of interest that can be redeemed for a
specified duration of visit. Another is Eurail – a European-
based company that markets bundled train passes to a de-
fined set of European countries that share borders and for a
specified period of travel. When prices of bundles differ de-
pending on the combinations of the included goods and their
quantities, the problem becomes that of classical revealed
preference analysis pioneered by Paul Samuelson [13].

Revealed preference (RP) is a consumer behaviour the-
ory built on the premise that intrinsic preferences are unob-
served. However, a consumer’s preferences can be revealed
through their observed purchasing behaviours. That is, it
is possible to predict consumer behaviours on the basis of
variable prices and income (budget constraint). A consumer
with a given income will buy a certain mixture of goods; but
as their income changes, the mixture of goods will change
accordingly. The theory assumes that a rational consumer
has considered a set of all possible alternatives according to
some well-defined utility function before making their deci-
sion. Thus, given a consumer chooses a option out of this
set, this option must be the most preferred (i.e., the utility
maximiser) that they can afford. The basic question of RP
analysis is to recover a utility function that best explains or
rationalises the observed behaviours [13, 3, 9, 15].

We consider the scenario where the developer allows buy-
ers to “mix and match” a fixed quantity Q > 0 of items at
uniform price p and the chosen bundle can be consumed
during a specified period B. For instance, a theme park de-
veloper would sell a bundle of attractions that visitors can
choose from a fixed set (e.g., choosing Q = 4 out of 16 at-
tractions) at price p; and once chosen, the attractions can be
visited in any order during period B. If we consider all those
who go for bundles at price p, then RP analysis is no longer
feasible because of price uniformity. In other words, the cost
information has become latent or unobserved. In order to ap-
ply RP analysis, we need to find a proxy to the costs that
consumers take into consideration when making decisions.
In our setting, cost information may be approximated by
the physical distances of the visited locations revealed from
an agent’s trajectory in the absence of any other sources of

1121



information (e.g., means of transport, queue length or con-
gestion level at each location). This is because a rational
agent would plan their visit such as to minimise the total
distance travelled (or the time cost) over their chosen loca-
tions subject to budget constraint B. Finding such proxies
is thus a challenge in RP analysis for spatial goods in the
absence of complete information.

Given its spatial nature, the problem can benefit from
the rich literature of the location prediction problem in spa-
tiotemporal analysis. Motivated from the massive growth
of spatiotemporal data generated by location-aware devices,
the problem seeks to predict the next location(s) that an
individual would travel to given their current and past tra-
jectories. A trajectory is defined as an ordered sequence
of timestamped locations. A common approach is to apply
a wide variety of Markov models, most commonly Markov
chains and hidden Markov models (HMMs), to model the
sequential movements and make predictions. A common
subtask is to cluster the locations using the hidden states
of an HMM to discretise the space into finite points of in-
terest (POIs) [10, 5]. Another is to cluster the trajectories
into groups of similar mobility patterns and model each sep-
arately to reduce variance and improve predictions [10, 7].

In this paper, we integrate techniques from spatiotemporal
analysis to solve the proposed problem. In particular, we use
trajectory clustering to divide the agents into groups of sim-
ilar preferences for variance reduction. We then use HMMs
to extract clusters of locations that are frequently visited to-
gether in order to establish the reference points from where
the agents based their decisions on to approximate the costs.
Finally, we leverage on a recent line of work emerging from
the intersection of algorithmic game theory and statistical
learning theory [3, 15], that has established the conditions
and algorithms for efficiently learning the utility functions
from RP data. We evaluate our proposed solution using
real-world data collected from a theme park. Our results
show significantly more accurate predictions compared to
the baseline methods, one of which was proposed in the con-
text of the next location prediction problem [10].

Applications of the ability to make such predictions are
plentiful and include predicting the aggregate demand in
response to changes in costs of the goods (e.g., changing
certain locations to further/nearer distances) or the set of
all available goods itself (including/excluding some locations
to/from the consumer’s choice set), resource planning in an-
ticipation of such changes in demand, and developing location-
aware services or marketing just to name a few.

Our contributions are three-fold. First, we propose a new
and interesting problem in the domain of RP analysis where
goods are spatial locations and cost information is unob-
served. Second, from the point of view of the proposed prob-
lem, our application of spatiotemporal analysis to tackle the
emerged challenge is novel and practically doable. Third,
from the point of view of the next location(s) prediction
problem, our application of RP analysis as a viable solution
is novel and the first of its kind. Finally, we have shown that
there is a common ground between the two traditionally sep-
arate domains (i.e., revealed preference and spatiotemporal
analysis) that can be explored and cross-benefited.

2. RELATED WORK
Since the seminal work of Samuelson [13], there has been

a voluminous body of work in the economics literature on

RP theory. See [14] for a comprehensive survey. A classic
result is Afriat’s theorem [1], which formulates a system of
inequalities that has positive solution iff the demand data
is rationalizable. A recent line of work emerging from the
intersection of algorithmic game theory and statistical learn-
ing theory has established some theoretical groundwork for
the problem of learning utility functions from RP data [3,
9, 15]. Beigman and Vohra [3] use statistical learning analy-
sis to address the problem of learning utility functions from
RP data with the explicit goal of prediction. They show
that the sample complexity (in the probably approximately
correct sense) of learning a utility function from RP data
is infinite, assuming monotonicity and concavity of utility
functions. Lahaie [9] applies kernel methods to rationalise
RP data assuming non-linear prices and incomplete price
information, where prices of non-demanded bundles are un-
known. The proposed method reduces the problem to fit-
ting utility function to observations in the transformed high-
dimensional space using the “kernel trick”.

Notably, Zadimoghaddam and Roth [15] recently propose
a simple and efficient algorithm to learn utility functions
from RP data for the class of linear and linearly separable
concave utility functions in polynomial sample complexity.
Because of its simplicity and efficiency, we adopt one of the
learning algorithms in [15] for our own setting. Our work can
therefore be viewed as a extension of [15] to the spatial set-
ting. It is, however, not straightforward how the algorithm
can be adapted to solve the proposed problem, especially
where costs are unobserved.

The problem of predicting the next location(s) of a mo-
bile agent has been the traditional domain of spatiotempo-
ral analysis. In most of these work, some form of Markov
model is proposed to learn the trajectories and make in-
ferences of future locations. Mathew et al. [10] use hid-
den Markov models (HMMs) to identify clusters of locations
from raw GPS data, where each cluster is a point of inter-
est (POI) and corresponds to a hidden state of the HMM.
They make inferences of the next locations using the forward
algorithm of HMMs given the current trajectory. Trajecto-
ries are in turn clustered into groups of similar patterns to
reduce variance and improve predictions. Jiang et al. [7]
propose an advanced method to cluster spatiotemporal tra-
jectories by combining principal component analysis (PCA)
and K-means clustering. Gambs et al. [5] propose a mobil-
ity model call MMC (Mobility Markov Chain) to incorporate
knowledge of the previous n visited locations and develop
an inference algorithm based on n-th order Markov chains.
Gao et al. [6] takes a Bayesian approach to the problem,
but still within the framework of Markov models. Another
recent work that uses some variation of HMMs to make pre-
dictions when location data is uncertain or missing is due to
Qiu et al. [11]. A common thread along this line is: some
variant of a Markov models and some kind of clustering (e.g.,
K-means, HMMs) to extract mobility patterns. We adopt
both themes in this work to adapt traditional RP learning
and prediction to the spatiotemporal setting.

3. PROBLEM STATEMENT & SOLUTION
OVERVIEW

We consider a set D of agents and a finite set G (|G| = d)
of spatial locations of arbitrarily large capacity each. Each
agent i ∈ D faces a cost vector pi, where pij is the cost of
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visiting location j ∈ G for i. Each i also has a personal value
vector vi over each j ∈ G, where vij is the value of j for i. In
other words, vi reflects i’s intrinsic preference over all j ∈ G.
Finally, agent i comes with a budget constraint Bi and i
wishes to visit a subset si ⊆ G such that |si| ≤ Q for some
Q > 0 and

∑
j∈si pij ≤ Bi. WLOG, we suppose that imakes

a vector of binary decisions xi ∈ {0, 1}d of which location
j to include in the bundle si. The preference of i over all
possible bundles is defined by a non-decreasing, non-negative
concave utility function U : {0, 1}d → R+. Throughout the
paper, we assume that i’s utility function belongs to the
class of linear utility functions, i.e., u(xi) = xi · vi. Thus, i
chooses his most preferred bundle s∗i (or equivalently x∗i ) by
solving the classic knapsack problem:

x∗i = arg max
xi
{u(xi) : xi · 1 ≤ Q ∧ xi · pi ≤ Bi}. (1)

Following the conventions in machine learning, we derive
a training set S = {(pi, Bi, x∗i )}mi=1 drawn i.d.d. from D
and a test set T = D − S. Assuming linear utilities of
the agents, we wish to learn the value vectors v̂i from S in
order to predict the chosen bundles in T with good enough
accuracies. Let x∗i (pi, Bi, vi) be the chosen bundle and let
x̂i(pi, Bi, v̂i) be the predicted one, our accuracies are good
enough if for all i and for some δ > 0:

Pr(x∗i (pi, Bi, vi) 6= x̂i(pi, Bi, v̂i)) ≤ 1− δ. (2)

Fig. 1 illustrates the overall framework of our learning
and predictive solution to the above problem. For learning,
we first split all training agents in S into K clusters using
trajectory clustering. For each cluster Clj (1 ≤ j ≤ K), we
train a separate HMMj that best describes the sequential
movements of those in Clj . We then propose a heuristic to
approximate the perceived costs faced by each agent called
the “centroid heuristic”. In short, we derive a set of “cen-
troids” Cj for each Clj using the hidden states of HMMj

such that each agent i ∈ Clj can be mapped to each cen-
troid (a.k.a. “reference point”) rk ∈ Cj depending on their
intention Ii (to be defined later). Each rk corresponds to a
perceived cost vector pk shared by all the agents having the
same intention. We can then efficiently learn the value ratio
matrix Rj given the chosen bundle x∗i and cost vector pk of
all agents i ∈ Clj using an RP learning algorithm, e.g., the
recent one due to Zadimoghaddam and Roth [15].

To make predictions, for each agent i ∈ T , we first pre-
dict which cluster Clk that i most likely belongs to – call
this Clik. In this paper, we don’t address the problem of
class prediction due to restricted scope. We suppose it is
feasible, and most of the time it is through some established
method such as logistic regression and decision tree. Given
i’s intention Ii, we map Ii to the nearest reference point rij ,

from where we can derive i’s cost vectors pij . Let v̂k be any
row vector of Rk corresponding to Clk. Given i’s budget Bi
and learned value vector v̂k, we predict i’s chosen bundle
when facing pij by solving (1).

In the following sections, we elaborate on the components
of the the proposed framework depicted in Fig. 1, beginning
with trajectory clustering.

4. TRAJECTORY CLUSTERING
One of our challenges is that we cannot simply learn the

preferences of each agent i ∈ S and predict for another j ∈ T
because: (1) that is highly inefficient, and (2) it would most

likely overfit the training data and lead to poor predictions.
On the other hand, nor can we expect everyone to behave
the same under the same prices and budget constraint as
implied by RP theory because empirical data shows a great
diversity of behaviours. We seek a solution in between where
the agents can be divided into groups of similar behaviours
such that we could learn the preferences from and predict the
behaviours of those of the same group. This is the rationale
for trajectory clustering.

For each agent i ∈ S, let li be the sequence length of i (i.e.,
the number of locations visited by i), we denote the sequence

of locations visited by i as y(i) = {y(i)t }
li
t=1 and the sequence

of timestamps for each y
(i)
t as τ (i) = {τ (i)t }

li
t=1. We define i’s

trajectory as s(i) = {(y(i)t , τ
(i)
t )}lit=1. Hence, a trajectory

is a spatiotemporal sequence of spatial locations and their
corresponding timestamps. A spatial location is a place in
the physical world that can be located using its coordinates.
A timestamp τt indicates when the agent visited location yt,
but does not necessarily indicate how long they had stayed
there (i.e., the duration of visit).

Suppose there exist an upper boundBU and a lower bound
BL on the timestamps of all the trajectories, then the du-
ration between BU and BL can be discretised into a finite
number of T segments T = d(BU − BL)/∆τe, where ∆τ is
an arbitrary duration of each time segment. We can derive
a categorical vector ai of finite and uniform length T for
each agent i from their original trajectory s(i). Each ele-
ment ait ∈ ai (1 ≤ t ≤ T ) indicates i’s location at time t.
If no location is recorded for i at t, then ait = 0 by conven-
tion; otherwise, ait ∈ {1, . . . , |G|}. We finally assume that i
spends at least time ∆τ and at most an integral multiple of
∆τ at any location in its trajectory.

It is feasible to cluster the agents based on their similarity
of behaviours by clustering the trajectories, or equivalently
the vectors ai for all i ∈ S. To this end, there exist a wide
variety of methods for sequence clustering. In this paper, we
make use of the well-known method of hierarchical cluster-
ing because of its simplicity and the ability to incorporate
domain knowledge in selecting the number of clusters K. In
particular, we use the agglomerative approach that clusters
the trajectories recursively in the bottom-up fashion. We
use the edit distance to quantify the dissimilarity between
any two vectors ai and aj with substitution cost being the
physical distance between the pair of locations that differ
in ai and aj and arbitrary insertion/deletion cost (because
they are essentially two vectors of categorical variables of
the same length). To select the number of clusters K, the
hierarchy tree is “cut” at some height that would break up
S into K clusters, which can be determined based on our
domain knowledge, so we do not discuss it here.

There are many other more advanced methods for se-
quence and spatiotemporal clustering; we are using one of
the simplest and most popular here because clustering is not
our final goal, but a means to an end. An example of a more
advanced method is [7] due to Jiang et al., in which trajec-
tories are clustered by combining both PCA and K-means
clustering. Refer to [8] for a comprehensive survey on spa-
tiotemporal clustering, or to [4] for a comprehensive survey
on model-based clustering.
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Figure 1: The proposed learning and predictive framework for the problem of spatial bundle prediction.

5. REVEALED PREFERENCE LEARNING
In traditional RP analysis, we are given a sequence of ob-

servations D = {(pi, Bi, x∗i )}Ni=1, the problem is to recover
the utility function that best explains or rationalises D. Un-
der our assumption of linear utility, we wish to recover the
vector vi for each agent i ∈ D. Furthermore, not only do we
wish to explain the observed data, we also wish to be able to
predict future chosen bundles of the agents given the learned
values. The latter goal is much broader and harder than the
former, because being able to rationalise observations often
does not mean being able to predict unobserved outcomes
(i.e., to generalise) [15].

Suppose we are able to categorise D into K clusters (K �
N). For simplicity, we also call an agent belonging to clus-
ter k (1 ≤ k ≤ K) an agent of type k. The problem can be
solved by applying the All Pairs Comparison (APC) algo-
rithm due to Zadimoghaddam and Roth [15], where for each
agent type k, there is a value ratio matrix Rk learned from
S of dimension d× d. The APC algorithm is a very simple
and efficient algorithm to learn the value ratios vi/vj from
RP data for all pairs of goods i, j ∈ G. The main idea is to
bound the pairs vi/vj such that if item i is preferred to item
j in some chosen bundle x∗, then vi/pi ≥ vj/pj , or equiv-
alently vi/vj ≥ pi/pj . In our setting, unlike an unordered
bundle of goods, locations have to be visited in a sequential
order; thus, x∗ has an intrinsic ordering nature. Given loca-
tions i, j ∈ x∗, we denote x∗i > x∗j if i was visited before j by
the considered agent, which also connotes (approximately)
the agent’s preference of i over j in x∗.

Thus, vi/vj can be upper and lower bounded given the

purchase decisions x(k) and price vectors p(k) of all agents
of type k. Given a test agent of type k, we would choose
any row i of Rk to obtain a value ratio vector v̂ = vi/vj for
all 1 ≤ j ≤ d (whose elements are arbitrarily in between the
bounds) and predict an optimal bundle x̂(p,B, v̂) by solving
(1) using the given price p and budget constraint B. Refer
to [15] for full details of the APC algorithm.

Throughout the paper, we use physical distance to approx-
imate the time cost of traveling from one location to another.
Hence, our budget constraint B is defined as the total time
cost required to go through the all the locations in the cho-
sen bundle. Physical distances are different depending on
from where they are measured, i.e., the reference point. One
way to compute the total cost of a trajectory s(i) is to sum

all the distances of the segments in s(i). This method does
not scale because there are an exponential number of ways
to choose Q locations from the set G. On the other hand,
suppose we know i’s intention Ii of approximately where i
would go, e.g., through survey or any other means, we would
be able to map Ii to a particular reference point rk in space
from where we can approximate the total cost as the sum
of distances from rk to all the locations in s(i). An opti-
mal reference point rk for i is one that minimises i’s total
distance derived from rk assuming i’s goal is to minimise
the total cost. However, this is not feasible in the absence
of complete information of s(i). We define i’s intention Ii
as any form of incomplete information about s(i) that we
may have. In the following, section, we propose heuristics
to derive rk given Ii.

6. HEURISTICS FOR COST DERIVATION
If we know for certain i’s first visited location, call it y

(i)
1 ,

then we can take y
(i)
1 as the reference point for s(i). The

rationale is that the first location in a sequence is often the
one having the highest priority (i.e., the most preferred) and
a rational agent would plan their itinerary in such a way to

minimise their total time cost as seen from y
(i)
1 . By this,

we are making other locations that are distant from y
(i)
1

costly and less likely to be included in the chosen bundle.
This heuristic aligns with our assumption that agents try to
minimise the total distance due to budget constraint. We
call simply this the first-location heuristic.

Let di be the vector of physical distances from ri, where
ri is i’s reference point, to all the locations in G. We can
easily derive pi, the vector of time costs to travel from ri to
all the locations in G from di. For example, if the primary
means of travel is on foot, then di can be converted to pi
using the average human walking speed of 5 km/h. Thus,
for each location j ∈ G, pij is the average time cost for i to
go from ri to j. Furthermore, suppose we know the upper
bound on the duration of visit at each location j ∈ G, call
this bj (independent of i), then the proper price vector as
seen by i, call it p̂i, should be p̂ij = pij + bj to reflect the
true time cost at j (i.e., the total time of traveling to j and
the duration of visit at j).

Often, we may not know for certain what an agent i may
want to include in their itinerary due to incomplete informa-
tion. Instead, we may only know i’s intention Ii of such. In
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such cases, we would want to divide our physical space (that
covers all of G) into non-overlapping subareas and map Ii
to one of such subareas. For each subarea, we would derive
a reference point from where we can compute the price vec-
tor pi. Our rationale comes from the empirical observations
that businesses of similar nature tend to cluster together
geographically in an area in order to compete. Therefore,
identifying such clusters of locations (or subareas) is the first
step to identifying sensible reference points to infer costs in
the absence of complete information.

To this end, we make use of HMM to derive clusters of
locations. Locations within a cluster should be physically
close to one another and tend to be visited together in short
temporal sequence (i.e., without much delay). We use the
hidden states of an HMM to identify those clusters such that
each state corresponds to a cluster. We then derive the ref-
erence point of each cluster using its centroid (to be defined
later). Given a centroid rk, we use the nearest-neighbour
method to assign locations to clusters: we assign location
j to cluster k such that the physical distance from j to rk
is the nearest among all other centroids. For each agent i,
given Ii, we map Ii to the nearest cluster centroid rk and
calculate pi as before. We call this the centroid heuris-
tic. The following subsections elaborate on the proposed
method, beginning with the preliminaries of HMMs.

6.1 Hidden Markov Model (HMM)
An HMM describes the relationship between two stochas-

tic processes: an observed process and an unobserved (or
hidden) underlying process. The hidden process is assumed
to follow a Markov chain, and the observations are consid-
ered conditionally independent given the sequence of hidden
states. Let {Yt}Tt=1 and {Xt}Tt=1 be the time series repre-
senting the observations and the corresponding hidden states
of an HMM respectively. We denote f(yt|Θxt) = Pr(Yt =
yt; Θ|Xt = xt) the probability density function of observa-
tion yt parameterized over vector Θ given state xt. An HMM
with finite N hidden states is specified by:

1. The finite set of hidden states S = {S1, S2, . . . , SN};

2. The state transition matrix A = {aij}, where aij =
Pr(Xt = Sj |Xt−1 = Si), 1 ≤ i, j ≤ N ;

3. The parameter vector Θi of the response (or emission)
density function f(yt|Θxt) for each Si; and

4. The vector of initial (state) probabilities π = {πi},
where πi = Pr(X1 = Si) and

∑N
i=1 πi = 1.

It is common to use the compact notation

Λ = (π,A, {Θi}) (3)

to represent the complete parameter set of an HMM. The
problem of estimating the parameters of an HMM given an
observed sequence {yt}Tt=1 can be formulated as a maximum
likelihood (ML) problem:

Λ∗ = arg max
Λ

T∏
t=1

Pr(Yt = yt|Λ). (4)

The well-known method to estimate Λ∗ is the Baum-
Welch algorithm, which is a special case of the EM algo-
rithm, which in turn makes use of the forward-backward
algorithm [2] to compute the marginal log-likelihood. Refer
to [12] for more details on HMMs.

6.2 Centroid Heuristic Using HMM
Because of the spatiotemporal nature of our trajectories,

each response variable is a tuple (yk, τk) with the spatial
component yk being the discrete locations drawn from G
as a multinomial distribution, and the temporal component
τk being the continuous timestamp drawn from a Gaussian
distribution N (µk, σk) (1 ≤ k ≤ N). Timestamp can be
modelled as a continuous random variable because we can
set a continuous temporal range from the earliest timestamp
BL to the latest one BU for all i ∈ S.

We fit the HMM using the trajectories s(i) for all i ∈ S
using (yk, τk) as the bivariate response. To select the opti-
mal number of states N∗, we use the Bayesian Information
Criterion (BIC), a popular penalized likelihood criterion for
model selection [4]. We begin fitting with the simplest model
where N = 2. At each iteration, as long as the BICN of this
step is still less than that of the previous BICN−1 (i.e., BIC
keeps decreasing as the fitness improves while accounting for
model complexity), we keep incrementing N . We stop when
the current BIC becomes greater than the previous, i.e., it
has reached the “elbow”. The optimal number of states N∗

is that of the previous step.
We use the set of states S to define the clusters of lo-

cations, where each Sk ∈ S forms a cluster. For each Sk,
we extract the parameter vector Θk = (θ1, . . . , θd) of the
discrete multinomial response, which is a vector of probabil-
ities of each location j ∈ G being visited while the agent is
in the cluster Sk. Let Cj be the coordinates (latitude and
longitude) of each location j ∈ G, we compute the coordi-
nates of the cluster centroid rk of Sk as the weighted sum
rk =

∑d
j=1 θjCj . As a result, locations with high proba-

bilities (i.e., likely to be in the cluster) have more weights,
while those with low probabilities (i.e., unlikely to be in the
cluster) have less weights.

Fig. 2 illustrates the concept. It shows the real-world
locations of attractions in the theme park considered in the
experiments in the following section being mapped to their
nearest centroids derived from the hidden states of a 4-state
HMM. The HMM was fitted using real-world trajectories
of visitors to the theme park collected over 4 months. In
the figure, the attractions are indicated by filled circles and
the mappings indicated by straight lines emanating from the
centroids. Coordinates of the centroids are computed by the
wighted sums as described above. Attractions filled with the
same colours are in the same cluster (i.e., they having the
same centroid mapping) according to the heuristic.

7. EXPERIMENTS

7.1 Dataset
We collaborated with a theme park developer in an Asian

city to collect data from their visitors. Our dataset contains
the visitors’ trajectories for the first 4 months of 2014. The
dataset comes from an attraction bundling scheme marketed
by the developer under which visitors can select any Q = 4
attractions out of a set of 16 and pay upfront a fixed price
(independent of their choice). Visitors can redeem their cho-
sen attractions on a chosen day and during a specified period
from 9 a.m. to 7 p.m. of the day only. Each chosen attrac-
tion can only be redeemed once.

The dataset contains the trajectories of n = 6, 400 unique
and independent visitors (i.e., if a visitor is observed to have
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Figure 2: Visualisation of spatial locations (attrac-
tions) being mapped to their nearest centroids (ref-
erence points) derived from the hidden states of a 4-
state HMM. Four states of the HMM form four dis-
tinct clusters of locations with each having a unique
centroid as illustrated. Mappings are indicated by
straight lines emanating from the respective cen-
troids. The HMM was fitted using real-world tra-
jectories collected from a theme park.

travelled in a group of the same trajectories, we take only one
member of the group). We also have certain demographic
features of the visitors, which are not discussed here for
brevity. Table 1 summarizes the sequence length (l) and the
first timestamp (τ1) variables of the dataset. It shows that
not everyone managed to redeem all 4 attractions they had
chosen, although the majority did. Indeed, about 74.69%
of our visitors managed to redeem all 4. Variable τ1 mea-
sures the number minutes since the reference time (9 a.m.)
to the first redemption, which can partially explain: while
those who arrived early enough could redeem all 4, while
those who came “late” couldn’t – they had met their budget
constraint (their ticket expired at 7 p.m.).

Min. Q1 Median Mean Q3 Max.

l 1.00 4.00 4.00 3.78 4.00 4.00
τ1 8.57 173.60 254.70 259.70 343.10 604.90

Table 1: Summary statistics of the sequence length
(l) and first timestamp τ1 variables. Q1 and Q3 means
the first and the third quartile, respectively.

7.2 Baseline Methods
We use the following baseline methods for comparison.

In all of our experiments, we base our predictions on the
knowledge of the first redemption of some form. The first
baseline is to select 3 unique attractions randomly out of the
set of 15 (16 less one) given the first attraction in the bundle.

We call it the Random baseline. The second baseline is to
choose k = 3 (physically) nearest attractions to the first
redemption, which we call the k-NN baseline because it is
essentially the k-nearest neighbours algorithm.

The third baseline is based on a recent method proposed
by Mathew et al. [10] to predict future locations of a mobile
agent based on past and current trajectories. The method
can be concisely described as follows: (1) Cluster the set of
trajectories into K clusters (something similar to Sect. 4);
(2) Train a separate HMMk for each cluster k; (3) Given a
test agent i, his class label Clik, and the current trajectory,
derive the most likely current state Sit of the HMMk that
i is in using Bayes’ rule; and (4) Using the forward algo-
rithm, derive the next sequence of 3 most likely locations
conditioned on Sit . In our case, the current trajectory is
simply the first known location and timestamp. We call this
the HMM baseline because it is heavily based on HMM
inference. Refer to [10] for full details of the method.

7.3 Proposed Methods
Our first two methods are the implementations the pro-

posed framework using the two heuristics: first-location and
centroid heuristic. We call them VR1 and VR2 respec-
tively. (“VR” stands for value ratio, which is the central
concept of the proposed solution.) For VR2, given an agent
i’s first location yi1, we map that to the nearest centroid rij
to derive pij . By doing so, we do not need to know the ex-

plicit information of yi1, but which centroid it is nearest to.
We call this the implicit information of yi1.

The third method is the partial implementation of our
proposed framework using the centroid heuristic. Instead of
using the full set of centroids derived from the hidden states
of an HMM, we take randomly a fraction of that. In partic-
ular, given a fitted HMMk, we select randomly 60% of the
number of states of HMMk to derive a partial set of cen-
troids C′k. Our rationale for this is to empirically estimate
the optimality of the full set of centroids, i.e., we want to see
how much the accuracy will be decreased (if any) if a par-
tial set of centroids is used for predictions. In other words,
we are asking whether the full set of centroids is an optimal
set or can we achieve the same level of accuracy using less
information? We call it VR3 for convenience.

For these methods, we derive a test agent i’s class la-
bel Clik using a decision tree trained on their demographic
features and first timestamps. We do not discuss it here be-
cause it is off the focus of the paper. Budget constraint Bi
is calculated as the remaining time from their first times-
tamp until 7 p.m. Finally, it is worth stressing that for all
the above methods (including the baselines), except for VR2
and VR3, explicit information of the first location was used
for make predictions; hence, the task reduces to predicting
3 locations out of 4. Whereas for VR2 and VR3, implicit
information of the first location was used; thus, the pre-
diction task remains that of predicting a full bundle given
incomplete information.

7.4 Evaluation
For each agent i ∈ T , let x∗i and x̂i be i’s actual and

predicted bundle, respectively. Note that x∗i and x̂i may
not be of the same size. We construct a weighted complete
bipartite graph G = (U = x∗i , V = x̂i, E) where each edge
e = (x∗ij , x̂ik) ∈ E is weighted by the physical distance be-
tween any pair of locations x∗ij ∈ x∗i and x̂ik ∈ x̂i. Denote

1126



the weight of e as w(e). Let δ(x∗i , x̂i) be the distance between
x∗i and x̂i, we calculate δ(x∗i , x̂i) using Algorithm 1. The
rationale for using physical distance as the benchmark for
prediction accuracy is because our costs are approximated
by such distances. Also because businesses of similar nature
tend to cluster geographically in real life, two locations are
likely close semantically if they are physically close.

Algorithm 1 The evaluation procedure

1: δ(x∗i , x̂i)← 0
2: while |U | > 0 and |V | > 0 do
3: e∗ ← mine(E)
4: δ(x∗i , x̂i)← δ(x∗i , x̂i) + w(e∗)
5: E ← E − e∗
6: end while

Using Algorithm 1, we calculate the distance δ(x∗i , x̂i) for
each agent i ∈ T . To evaluate all the predictions, we take
the mean and median distance (δ̄ and δ̃ respectively) over

all δ(x∗i , x̂i). Hence, the lower δ̄ (or δ̃) is, the more accurate
our predictions are on the whole.

7.5 Results
Our trajectory clustering results in K = 4 clusters (or

class labels) using the interval ∆τ = 5 minutes (refer to
Sect. 4) for all the agents. The value of K was chosen based
on our domain knowledge of the dataset. Fig. 3 visualises
those 4 clusters. The horizontal axis of each cluster repre-
sents the discretised timeline (by ∆τ ) from 9 a.m. to 7 p.m.
and the vertical axis represents the probability of each agent
belonging to each class being in any one of the 16 attrac-
tions at any time interval. The attractions are identified by
their unique ID’s and colour codes shown in the legend at
the bottom of the figure. We denote “0” (white) when we
don’t know the precise location of an agent during a period
(i.e., he was not at any particular attraction during the time
interval according to the data).

Fig. 3 shows that the 4 clusters have rather distinct tem-
poral behaviours: Cl3 has its peak of activities the earliest,
which is followed by Cl1, then Cl4, and finally Cl2. This sug-
gests the existence of 4 different “waves” of visitors that flow
through the attractions in the park, from entering, peaking,
and exiting, one after another. Visually, Cl3 are the “early
birds” and Cl2 are “latecomers”. We also observe certain
differences in the preferences for the attractions across the
clusters represented by the probabilities of attraction visits.
However, these differences are not very distinguishing on the
whole: popular attractions remain (more or less) popular
across the clusters and unpopular ones remain unpopular.
This is particular true for clusters 1, 2, and 4; while for clus-
ter 2, there is a sudden surge in demand for attraction 7
towards the end, which distinguishes it more from the rest.

For each of the methods described in Sect. 7.3, we per-
form a 10-fold cross-validation to measure its accuracy on
predicting bundles. For each fold, we compute the mean
δ̄ and median distance δ̃ of the predictions as described in
Sect. 7.4. We finally compute the average accuracy (i.e., the

mean of both δ̄ and δ̃) over the 10 folds for each method. Fig.
4 shows the mean and median accuracies of all the methods
considered averaged over their 10-fold cross-validation.

Fig. 4 shows that our proposed methods (VR1 – VR3)
have the most accurate predictions (lowest distances) on av-
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Figure 3: Visualisation of 4 clusters (a.k.a. “class
labels”) 1–4 of the trajectory data used in the ex-
periments. Horizontal axes represent the timeline in
discrete intervals of 5 minutes from 9 a.m. to 7 p.m.
Vertical axes represent the probability of the visi-
tors of each class being in each of the 16 attractions
(or at some unknown location “0”), represented by
their corresponding colour codes whose legend are
shown at the bottom of the figure.

erage. In particular, the proposed method (VR2) is more
accurate than the baselines by at least 20% (i.e., compar-
ing to HMM). The baseline methods are (in the order to
decreasing accuracy): HMM, k-NN, and Random, which is
not surprising because that is also the decreasing order of
their sophistication. Remarkably, using implicit information
(VR2), we have achieved as much accuracy as using explicit
information (VR1). This empirically supports our centroid
heuristic: we only need to know implicitly where an agent
intends to visit to make a good enough prediction. At the
same time, the centroid heuristic requires much less informa-
tion to make inferences (i.e., N∗ cluster centroids as opposed
to the full 16 first locations as in VR1, where N∗ is in the
range 7–9 in our experiments).

Another notable observation Fig. 4 is that randomly se-
lecting 60% of the set of centroids (VR3) does make pre-
dictions less accurate, even though by a small amount (for
both the mean and median distance). This shows that the
full set of centroids is indeed an optimal one such that using
less information (VR3) leads to decreased accuracy and us-
ing more information (VR1) does not increase the accuracy.
On the other hand, while VR3 is technically less accurate
than VR2, the difference is really small (as shown in the
figure) compared to the reduction in information require-
ment (VR3 requires 40% less information than VR2). This
suggests that our proposed centroid heuristic is also quite
resilient to missing information as long as we get most of
the reference points right.
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Figure 4: Accuracies of all the methods considered
averaged over 10-fold cross-validation. Accuracies
are measured by the mean (median) distance be-
tween predicted and actual bundles in kilometres
(KM). Thus, the lower the distance, the higher the
accuracy. Our proposed methods (VR1 – VR3)
give better accuracies on the whole compared to the
baseline methods (HMM, k-NN, and Random).

8. CONCLUSION
In this paper, we have introduced the problem of predict-

ing a bundle of goods, where the goods here are a set of
spatial locations that an agent wishes to visit. We look at
the problem from an economic point of view where agents
choose their bundles by optimising the values of the goods
considered over some utility function subject to their bud-
get constraints. To this end, there exists a rich literature to
address the problem called revealed preference (RP) analy-
sis. The fundamental problem of RP analysis is to recover
the unknown utility functions of the agents given observa-
tions of their purchased bundles at the prevailing prices and
budget constraints. In this paper, we assume the agents
have linear utility functions so that the problem reduces to
recovering the vector of values of the agents for the goods
considered. Motivated by a recent line of work that has es-
tablished efficient algorithms for learning values from RP
data, we adopt and adapt one such algorithm to solve our
problem. We also blend in two important techniques from
spatiotemporal analysis: trajectory clustering and location
clustering in order to make the problem feasible in our par-
ticular setting where cost information is unobserved. For lo-
cation clustering, we propose the centroid heuristic, in which
we use HMMs to derive the reference points as cluster cen-
troids based on where the agents use to infer their perceived
costs. We experiment our proposed methods with real-world
data collected from a theme park, our predictions are signifi-
cantly more accurate than the baseline methods. We also see
that the proposed centroid heuristic not only requires less

information, but it is also resilient to missing information
artificially induced in the experiments.

There are limitations to our work. First, we have only
considered unordered sets of spatial locations (i.e., bundles);
however, in reality, agents consume those spatial goods by
visiting them in sequence, one after another. There is an in-
trinsic ordering nature of the goods that we have yet taken
into account. As a result, comparing between predicted and
actual bundles should also consider the sequential order of
the goods. Second, the proposed problem and solution may
not be applicable to predicting long sequences (both in quan-
tity and geographically) as in such cases, agents typically de-
cide their next future location based on the current one only
and not on past locations (i.e., the Markov property). Such
situations have been the traditional playground of Markov
models, and particularly HMM. Moreover, long sequences
would require solving a large knapsack problem, which is
NP-hard. Third, we have yet to consider other classes of
utility functions besides the linear class, such as the class
of separable piecewise linear concave functions often used to
model decreasing marginal utility. Finally, we have not been
able to establish the relationship between the amount of in-
formation required to make predictions and the prediction
accuracy. There is a potential benefit in knowing less and
yet being able to predict well enough because of the cost of
information acquisition. These are left for future work.
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