
Capability Models and Their Applications in Planning

Yu Zhang
Dept. of Computer Science

Arizona State University
Tempe, AZ

yzhan442@asu.edu

Sarath Sreedharan
Dept. of Computer Science

Arizona State University
Tempe, AZ

ssreedh3@asu.edu

Subbarao Kambhampati
Dept. of Computer Science

Arizona State University
Tempe, AZ

rao@asu.edu

ABSTRACT
One important challenge for a set of agents to achieve more effi-
cient collaboration is for these agents to maintain proper models of
each other. An important aspect of these models of other agents is
that they are often not provided, and hence must be learned from
plan execution traces. As a result, these models of other agents
are inherently partial and incomplete. Most existing agent mod-
els are based on action modeling and do not naturally allow for
incompleteness. In this paper, we introduce a new and inherently
incomplete modeling approach based on the representation of capa-
bilities, which has several unique advantages. First, we show that
the structures of capability models can be learned or easily spec-
ified, and both model structure and parameter learning are robust
to high degrees of incompleteness in plan traces (e.g., with only
start and end states partially observed). Furthermore, parameter
learning can be performed efficiently online via Bayesian learning.
While high degrees of incompleteness in plan traces presents learn-
ing challenges for traditional (complete) models, capability models
can still learn to extract useful information. As a result, capabil-
ity models are useful in applications in which traditional models
are difficult to obtain, or models must be learned from incomplete
plan traces, e.g., robots learning human models from observations
and interactions. Furthermore, we discuss using capability models
for single agent planning, and then extend it to multi-agent plan-
ning (with each agent modeled separately by a capability model),
in which the capability models of agents are used by a centralized
planner. The limitation, however, is that the synthesized “plans”
(called c-plans) are incomplete, i.e., there may or may not be a com-
plete plan for a c-plan. This is, however, unavoidable for planning
using partial and incomplete models (e.g., considering planning us-
ing action models learned from partial and noisy plan traces).

Categories and Subject Descriptors
I.2.11 [Multiagent systems]; I.2.6 [Knowledge acquisition]; I.2.8
[Plan execution, formation, and generation]

Keywords
Capability models; Agent theories and models; Teamwork in human-
agent mixed networks

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
One important challenge for a set of agents to achieve more effi-

cient collaboration is for these agents to maintain proper models of
others. These models can be used by a centralized planner (e.g., on
a robot) or via a distributed planning process to perform task plan-
ning and allocation, or by the agents themselves to reduce com-
munication and collaboration efforts. In many applications, these
models of other agents are not provided and hence must be learned.
As a result, these models are going to be inherently partial and in-
complete. Thus far, most traditional agent models are based on
action modeling (e.g., [18, 7]). These models are not designed with
partial information in mind and hence are complete in nature. In
this paper, we introduce a new and inherently incomplete modeling
approach based on the representation of capabilities. We represent
a capability as the ability to achieve a partial state given another
partial state. A capability can be fulfilled (or realized) by any action
sequence (or plan) that can implement a transition between the two
partial states. Each such action sequence is called an operation in
this paper. A capability model can encode all possible capabilities
for an agent in a given domain, as well as capture the probabilities
of the existence of an operation to fulfill these capabilities (to im-
plement the associated transitions). These probabilities determine
which capabilities are more likely to be used in planning.

Compared to traditional agent models which are complete in na-
ture, capability models have their unique benefits and limitations.
In this aspect, capability models should not be considered as a com-
petitor to complete models. Instead, they are useful when complete
models are difficult to obtain or only partial and incomplete infor-
mation can be retrieved to learn the models. This is often true when
humans must be modeled.

The representation of a capability model is a generalization of
a two time slice dynamic Bayesian network (2-TBN). While a 2-
TBN is often used to represent a single action (e.g., [19]), a capabil-
ity model can encode all possible capabilities for an agent in a given
domain. In a capability model, each node in the first time slice (also
called a fact node) represents a variable that is used in the specifi-
cation of the initial world state. For each fact node, there is also
a corresponding node in the second time slice, which represents
the fact node in the eventual state (i.e., after applying a capability).
These corresponding nodes are called eventual nodes or e-nodes.
The state specified by the fact nodes is referred to as the initial state,
and the state specified by the e-nodes is referred to as the eventual
state. The edges between the nodes within the initial and eventual
states, respectively, encode the correlations between the variables
at the same time instance (i.e., variables in synchrony). The edges
from the fact nodes to e-nodes encode causal relationships. Both
types of edges can be learned (e.g., using learning techniques in
[24, 25] for causal relationships). In the case that no prior infor-

1151



Figure 1: Capability model (as a generalized 2-TBN) for a hu-
man delivery agent (denoted asAG) in our motivating example
with 6 fact node and e-node pairs. This model can encode all
possible capabilities of the agent in this domain. Each fact node
corresponds to a variable in the specification of the initial state.
e-nodes are labeled with a dot on top of the variable. Edges
from the fact nodes to the corresponding e-nodes are simplified
for a cleaner representation. Any partial initial state coupled
with any partial eventual state may imply a capability.

mation is provided, the safest approach is to not assume any inde-
pendence. Consequently, we can specify a total ordering between
the nodes within the initial and final states, and connect a node at a
given level to all nodes at lower levels, as well as every fact node
to every e-node. After model construction, parameter learning of a
capability model can be performed efficiently online via Bayesian
learning.

One of the unique advantages of capability models is that learn-
ing for both model structure and parameters is robust to high de-
grees of incompleteness in plan execution traces. This incomplete-
ness occurs commonly. For example, the execution observer may
not be constantly monitoring the executing agent, and the executing
agent may not always report the full traces [26]. Capability mod-
els can be learned even when only the initial and final states are
partially observed in plan traces for training. While high degrees
of incompleteness in plan traces presents learning challenges for
traditional models, capability models can still learn to extract use-
ful information out of them, e.g., probabilities of the existence of
an operation to achieve certain eventual states given certain initial
states.

Furthermore, compared to traditional models for planning, capa-
bility models only suggest transitions between partial states (as ca-
pabilities), along with the probabilities that specify how likely such
transitions can be implemented. Hence, a “plan” synthesized with
capability models is incomplete, and we refer to such a plan as a
c-plan (i.e., involving the application of capabilities). More specif-
ically, we show that “planning” with capability models occurs in
the belief space, and is performed via Bayesian inference. At any
planning step, the current planning state is a belief state. Applying
a capability to this belief state requires the planner to update this
state using Bayesian inference on the capability model. After the
discussion of single agent planning, we then extend to multi-agent
planning.1 In such cases, we can consider planning as assigning
subtasks to agents without understanding precisely how these sub-
tasks are to be handled. Moreover, multi-agent planning can be
performed when part of the agents are modeled by capability mod-
els, and the other agents are modeled by complete models. This

1In this paper, we consider sequential multi-agent plans; syn-
chronous or joint actions of agents are not considered.

situation can naturally occur in human-robot teaming scenarios, in
which human models need to be learned and the robot models are
given. Similarly, the synthesized multi-agent c-plans are incom-
plete (unless all plan steps use robot actions). c-plans are useful
when we have to plan using partial and incomplete models (e.g.,
considering planning using action models learned from partial and
noisy plan traces), since they inform the user how likely complete
plans can be realized by following their “guidelines”.

The rest of the paper is organized as follows. First, we provide
a motivating example in Section 2. In Section 3, we discuss capa-
bility models in detail. We discuss how to use capability models in
planning in Sections 4 and 5. The relationships between capabil-
ity models and other existing approaches to modeling the dynamics
of agents are discussed as related work in Section 6. We conclude
afterwards.

2. MOTIVATING EXAMPLE
We start with a motivating example for capability models. In

this example, we have a set of human delivery agents, and the tasks
involve delivering packages to their destinations. However, there
are a few complications here. An agent may be able to carry a
package if this agent is strong enough. While an agent can use a
trolley to load a package, this agent may not remember to bring
a trolley initially. An agent can visit an equipment rental office
to rent a trolley, if this agent remembers to bring money for the
rental. A trolley increases the chance of an agent being able to
deliver a package (i.e., how likely the package is deliverable by this
agent). Figure 1 presents the capability model for a human delivery
agent, which is a generalized 2-TBN that can encode all possible
capabilities for the agent in this domain. Similar to 2-TBN, fact
nodes (e-nodes) in a capability model are in synchrony in the initial
(eventual) state. Note that any partial initial state coupled with any
partial eventual state may imply a capability.

In this example, the correlations between the variables are clear.
For example, whether an agent can carry a package is dependent on
whether the agent is strong; whether an agent can deliver a package
may be influenced by whether the agent has a trolley. These cor-
relations are represented as edges between the variables within the
initial and eventual states, respectively and identically. Assuming
that no prior information is provided for the causal relationships,
we connect every fact node with every e-node (denoted as a single
edge in Figure 1).

After obtaining the model structure, to perform parameter learn-
ing for the capability model of an agent, this agent can be given
delivery tasks spanning a period of time for training purpose. How-
ever, the only observations that a manager has access to may be the
number of packages that have been successfully delivered by this
agent during this period. While this presents significant challenges
for learning the parameters of traditional complete models, the use-
ful information for the manager is already encoded: the probability
that this agent can deliver a package. Capability models can learn
this information from the incomplete traces.

Now, suppose that the manager also has a set of robots (with ac-
tion models) to use that can fetch items for the delivery agents.
Since it is observed that the presence of a trolley increases the
probability of successful delivery based on the capability models,
the manager can make a multi-agent c-plan, which ensures that the
robots deliver a trolley at least to some of the delivery agents. This
also illustrates that it is beneficial to combine capability models
with other complete models (i.e., action models) when they are
available (e.g., for robots in this example).

1152



3. CAPABILITY MODEL
In our settings, the environment includes a set of agents Φ work-

ing inside it. For each agent, for simplicity, we assume that the state
of the world and this agent is specified by a set of boolean variables
Xφ(φ ∈ Φ). This implies that an agent can only interact with other
agents through variables that pertain to the world state.

More specifically, for all Xi ∈ Xφ, Xi has domain D(Xi) =
{true, false}. To specify partial state, we augment the domains of
variables to include an unknown or unspecified value as in [1]. We
write D+(Xi) = D(Xi) ∪ {u}. Hence, the (partial) state space is
denoted as S = D+(X1) ×D+(X2) × ... ×D+(XN ), in which
N = |

⋃
φXφ|.

3.1 Capability
First, we formally define capability for an agent φ ∈ Φ. The

state space of agent φ is denoted as Sφ.

DEFINITION 1 (CAPABILITY). Given an agent φ, a capabil-
ity specified as a mapping Sφ × Sφ → [0, 1], is an assertion about
the probability of the existence of complete plans (for φ) that con-
nect an initial state (i.e., the first component on the left hand side
of the mapping) to an eventual state (i.e., the second component).

A capability is also denoted as sI ⇒ sE (i.e., the initial state
⇒ the eventual state) when we do not need to reference the as-
sociated probability value. The probability value is denoted as
P (sI ⇒ sE), which we will show later is computed based on
the capability model via Bayesian inference. There are a few notes
about Definition 1. First, both sI and sE can be partial states: the
variables that have the value u are assumed to be unknown (in the
initial state) and unspecified (in the eventual state). In this paper,
we refer to a complete plan that fulfills (or realizes) a capability
as an operation, which is going to be decided and implemented by
the executing agent during execution. Although capabilities seem
to be similar to high-level actions in HTN, the semantics is differ-
ent from angelic uncertainty in HTN [12]. While the existence of a
concretization is ensured in HTN planning via reduction schemas,
it is only known with some level of certainty that a concretization
(i.e., operation) exists for a capability in a capability model, and the
capability model does not provide specifics for such a concretiza-
tion. More discussions on this are provided in Section 6 when we
discuss the relationships between capability models and existing
approaches to modeling agent dynamics.

Capability models also address the qualification and ramification
problems, which are assumed away in STRIPS planning (and plan-
ning with many complete models). More specifically, an operation
for a capability sI ⇒ sE may be dependent on variables with un-
known values in sI , and updating variables with unspecified values
in sE . This is a unique characterization of capability and critical
for learning capability models with incomplete observations.

For example, a capability may specify that given coffee beans, an
agent can make a cup of coffee. Thus, we have a capability {Has
coffee beans = true}⇒ {Has coffee = true}. An operation for this
capability to make a coffee may be dependent on the availability of
water initially, which is not specified in the capability. Similarly,
this operation may negate the fact that the kitchen is clean, which
is not specified in the capability either. Note that a capability may
be fulfilled by operations with different specifications of the initial
and eventual states, as long as these specifications all satisfy the
specification of this capability.

A capability model of an agent is capable of encoding all capa-
bilities of this agent given a domain; it is designed to encode the

following probability distribution:

P (Xφ, Ẋφ) =

∫ T

0

P (Xφ, Ẋφ, t) dt (1)

in which T represents the maximum length of any operation (i.e.,
number of actions) for φ.2 Xφ represents the initial state and Ẋφ
represents the eventual state. Furthermore, P (Ẋφ, t|Xφ) is the
probability of any operation resulting in Ẋφ in exact time t given
Xφ. Hence, the probability that is associated with a capability
sI ⇒ sE (i.e., P (sI ⇒ sE)) encodes:

P (Ẋφ = sE |Xφ = sI) =

∫
t

P (Ẋφ = sE , t |Xφ = sI) dt (2)

We construct the capability model of an agent as a Bayesian net-
work. As an inherently incomplete model, it not only allows the
initial and eventual states to be partially specified for any capability
(and hence the fulfilling operations) that it encodes, but also allows
the correlations between the variables within the initial and even-
tual states, as well as the causal relationships between them to be
partially specified (e.g., when learning from plan traces). However,
there are certain implications in this (e.g., the modeling can lose
some information), which we will discuss in Section 3.4. Along
the line of the qualification and ramification problems, a capability
model also allows certain variables to be excluded completely from
the network (i.e., related variables that are not captured in Xφ) due
to incomplete knowledge. For example, whether an agent can drive
a car (with a manual transmission) to a goal location is dependent
on whether the agent can drive a manual car, even through the agent
has a driver license. In this case, the ability to drive a manual car
may have been ignored when creating the model.

3.2 Model Construction
We construct the capability model of each agent as an augmented

Bayesian network [14]. Any partial initial state coupled with any
partial eventual state may imply a capability; the probability that a
capability actually exists (i.e., it can be fulfilled by an operation)
is computed via a Bayesian inference in the network. We use aug-
mented Bayesian network since it allows prior beliefs of condi-
tional relative frequencies to be specified before observations are
made, as well as enables us to adjust how fast these beliefs should
change.

DEFINITION 2. An augmented Bayesian network (ABN) (G,F, ρ)
is a Bayesian network with the following specifications:

• A DAG G = (V,E), where V is a set of random variables,
V = {V1, V2, ..., Vn}.

• F is a set of auxiliary parent variables for V .

• ∀Vi ∈ V , an auxiliary parent variable Fi ∈ F of Vi, and a
density function ρi associated with Fi. Each Fi is a root and
it is only connected to Vi.

• ∀Vi ∈ V , for all values pai of the parents PAi ⊆ V of
Vi, and for all values fi of Fi, a probability distribution
P (Vi|pai, fi).

A capability model of an agent φ is then defined as follows:

DEFINITION 3 (CAPABILITY MODEL). A capability model of
an agent φ, as a binomial ABN (Gφ, F, ρ), has the following spec-
ifications:
2We assume in this paper that time is discretized.

1153



• Vφ = Xφ ∪ Ẋφ.

• ∀Vi ∈ Vφ, the domain of Vi is D(Vi) = {true, false}.

• ∀Vi ∈ Vφ, Fi = {Fi1, Fi2, ...}, and each Fij is a root and
has a density function ρij(fij) (0 ≤ fij ≤ 1). (For each
value paij of the parents PAi, there is an associated vari-
able Fij .)

• ∀Vi ∈ Vφ, P (Vi = true|paij , fi1, ...fij , ...) = fij .

in which j in paij indexes into the values of PAi. j in fij indexes
into the variables in Fi. Note that defining partial states (i.e., al-
lowing variables to assume the value u in a state) is used to more
conveniently specify the distribution in Equation 1. Variables in the
capability model do not need to expand their domains to include u.

For edge construction, we can learn the correlations and causal
relationships from plan traces. Note that the correlations between
variables must not form loops; otherwise, they need to be broken
randomly. When no training information is provided, we can spec-
ify a total ordering between the nodes within the initial and final
states, and connect a node at a given level to all nodes at lower
levels, as well as every fact node to every e-node. Denote the set
of edges as Eφ. We then have constructed the capability model
Gφ = (Vφ, Eφ) for φ. Figure 1 provides a simple example of a
capability model.

3.3 Parameter Learning
In this section, we describe how the model parameters can be

learned. The parameter learning of a capability model is performed
online through Bayesian learning. The initial model parameters
can be computed from existing plan traces by learning the density
functions (i.e., fij) in Definition 3. These parameters can then be
updated online as more traces are collected (i.e., as the agent inter-
acting with the environment).

Plan execution traces can be collected each time that a plan (or a
sequence of actions) is executed, whether succeeds or fails.

DEFINITION 4 (COMPLETE PLAN TRACE). A complete plan
trace is a continuous sequence of state observations over time, de-
noted as T = 〈s∗1, s∗2, ..., s∗L〉, in which L is the length of the plan
and s∗i denotes a complete state (i.e., s∗i ∈ D(X1) × D(X2) ×
...×D(XN )).

However, in real-world situations, plan traces may be incom-
plete. The incompleteness can come from two aspects. First, the
observed state may be partial. Second, the observations may not be
continuous. Hence, we are going to have partial plan traces.

DEFINITION 5 (PARTIAL PLAN TRACE). A partial plan trace
is a discontinuous sequence of partial state observations over time,
denoted as T = 〈si, si+k1 , si+k2 , ...〉, in which i denotes the time
step in the complete plan and si denotes a partial state (i.e., si ∈
D+(X1)×D+(X2)× ...×D+(XN )).

Note that the only assumption that is made in Definition 5 is
that at least two different partial states must be observed during the
plan execution. This means that even the start and end states of a
plan execution do not necessarily have to be observed or partially
observed, which is especially useful in real-world situations where
a plan trace may only be a few samplings of (partial) observations
during a plan execution. Note also that since the observations are
in discontinuous time steps, the transition between contiguous state
observations is not necessarily the result of a single action. Instead,

it is the result of a plan (i.e., operation) execution. Henceforth,
when we refer to plan traces, we always intend to mean partial plan
traces, unless otherwise specified.

When more than two states are observed in a plan trace, it can
be considered as a set of traces, with each pair of contiguous states
as a separate trace. When the states are partially observed in a plan
trace, it can be considered as a set of compatible traces with com-
plete state observations.3 For simplicity, we assume in the follow-
ing that the plan execution traces used in learning have complete
state observations. We denote this set of traces as D.

To learn the parameters of a capability model, a common way is
to model Fij using a beta distribution (i.e., as its density function
ρ). Denote the parameters for the beta distribution of Fij as aij and
bij . Then, we have:

P (Xi = true|paij) =
aij

aij + bij
(3)

Suppose that the initial values or the current values for aij and
bij are given. The remaining task is to update aij and bij from the
given traces. Given the training setD, we can now follow Bayesian
inference to update the parameters of Fij as follows:

Initially or currently,

ρ(fij) = beta(fij ; aij , bij) (4)

After observing new training examples D, we have:

ρ(fij |D) = beta(fij ; aij + sij , bij + tij) (5)

in which sij is the number of times for whichXi is true while PAi
assuming the value of paij , and tij is the number in which it equals
Xi is false while PAi assuming the value of paij .

3.4 Implications
In this section, we discuss several implications of capability mod-

els with a simple example. We first investigate how information can
be lost during learning when the correlations or causal relationships
among the variables are only partially captured. This can occur, for
example, when model structure is learned. In this example, we
have two blocks A, B, and a table. Both blocks can be placed on
the table or on each other. The capability model for an agent is
specified in Figure 2. Initially, assuming that we do not have any
knowledge of the domain, the density functions can be specified as
beta distributions with a = b. In Figure 2, we use a = b = 1 for
all distributions. Suppose that we observe the following plan trace,
which can be the result of executing a single action that places A
on B:

s1 : OnTable(A) ∧OnTable(B) ∧ ¬On(A,B) ∧ ¬On(B,A)

s2 : ¬OnTable(A) ∧OnTable(B) ∧On(A,B) ∧ ¬On(B,A)

Based on the learning rules in Equation (5), we can update the
beta distributions accordingly. For example, the beta distribution
for Ẋ3 (i.e.,On(A,B) in the eventual state) is updated to beta(X1 =

true, X4 = true, Ẋ4 = false, ...; 2, 1). This means that if both A
and B are on the table, it becomes more likely that a capability ex-
ists for making On(A,B) = true. This is understandable since an
action that places A onB would achieve On(A,B) = true in such
cases. For actions with uncertainties (i.e., when using a robotic arm
to perform the placing action), this beta distribution would con-
verge to the success rate as more experiences are obtained.

Meanwhile, we also have that the beta distribution for Ẋ2 is
updated to beta(X1 = true, X3 = false, Ẋ4 = false, Ẋ3 =

3There is no need to expand such traces into sets of traces with
complete state observations for learning, since it can be equiva-
lently considered using arithmetic operations.

1154



Figure 2: Capability model for an agent in a simple domain
with four variables. OnTable(A) means that object A is on the
table. On(A,B) means that object A is on B. The correlations
that correspond to the light blue arrows distinguish between
two scenarios: one with proper model structure and one with-
out (i.e., when certain correlations are missing). For clarity, we
only specify the density functions of the variables in the initial
state. We also show the two sets of density functions for the
augmented variables for X2 for the two different scenarios, re-
spectively.

true, ...; 1, 2). This means that if A is on B in the eventual state, it
becomes less likely that B can also be on A in the eventual state.
This is intuitive since we know that achieving On(A,B) = true
and On(B,A) = true at the same time is impossible. In this
way, capability models can reinforce the correlations between the
variables as experiences are observed. The implication is that the
edges (capturing the correlations) between these variables must be
present; otherwise, information may be lost as described above. If
the correlations are not fully captured by the model, for example,
when the light blue arrows in Figure 2 are not present, the beta dis-
tribution of Ẋ2 would not be updated as above, since Ẋ3 would no
longer be a parent node of Ẋ2. A similar implication also applies
to causal relationships.

When environment changes, previous knowledge that is learned
by the model may no longer be applicable. However, as the pa-
rameters grow, the learned model can be reluctant to adapt to the
new environment. This issue can be alleviated by performing nor-
malizations occasionally (i.e., dividing all a and b by a constant in
the beta distributions), or by weighting previous experiences with
a discounting factor.

4. USING CAPABILITY MODELS IN
PLANNING

Capability models described in the previous section allow us to
capture the capabilities of agents. In this section, we discuss the
application of capability models in single agent planning (i.e., with
an agent φ modeled by a capability model). We extend the discus-
sion to multi-agent planing in the next section. Generally, planning
with capability models occurs in the belief space, as with POMDPs
[10].

4.1 Single Agent Planning
First, note that applying a capability sI ⇒ sE of agent φ to a

complete state s∗ results in a belief state b(S) as long as sI v s∗

(otherwise, this capability cannot be applied), in which sI v s∗

denotes that all the variables that are not assigned to u in sI have the
same values as those in s∗. After applying the capability, assuming
successfully, we can compute the probability weight of a state s

that satisfies sE v s in the resulting belief state as follows:

P (s) =
P (s∗ ⇒ s)

P (s∗ ⇒ sE)
=

P (Ẋφ = s|Xφ = s∗)

P (Ẋφ = sE |Xφ = s∗)
(6)

For any state s that does not satisfy sE v s, we have P (s) = 0.
Denote S in b(S) as S = {s|sE v s and s is a complete state}.
Clearly, we have: ∑

s∈S

P (s) = 1 (7)

Since there can be an exponential number of complete states in
a belief state, depending on how many variables are assigned to
u, we can use a sampling approach (e.g., Monte Carlo sampling)
to keep a set of complete states to represent b(S). We denote the
belief state after sampling as b̂(S).

When applying a capability sI ⇒ sE to a given belief state
b̂(S), for each complete state in S, we can perform sampling based
on Equation (6), which returns a set of complete states with weights
after applying the capability. We can then perform resampling on
the computed sets of states for all states in S to compute the new
belief state b̂(S ′). In this way, we can connect different capabilities
of an agent to create c-plans, which are plans in which capabilities
are involved. Next, we formally define a planning problem for a
single agent with a capability model.

DEFINITION 6 (SINGLE AGENT PLANNING PROBLEM). A sin-
gle agent planning problem with capability models is a tuple 〈φ,
b(I), G, ρ〉, in which b(I) is the initial belief state, G is the set of
goal variables, and ρ is a real value in (0, 1]. The capability model
of the agent is Gφ = (Vφ, Eφ). When we write ρ∗ instead of ρ in
the problem, it indicates a variance of the problem that needs to
maximize ρ.

DEFINITION 7 (SINGLE AGENT C-PLAN). A single agent c-
plan for a problem 〈φ, b(I), G, ρ〉 is a sequence of application of
capabilities, such that the sum of the weights of the complete states
in the belief state which include the goal variables (i.e., G v s), is
no less than ρ (or maximized for ρ∗) after the application.

The synthesized single agent “plan” (i.e., a c-plan) is incomplete:
it does not specify which operation fulfills each capability. In fact,
it only informs the user how likely there exists such an operation. A
single agent c-plan can be considered to provide likely landmarks
for the agent to follow. For example, in Figure 2, suppose that the
initial state is

sI : On(A,B) ∧ ¬On(B,A)

and the goal is

sE : ¬On(A,B) ∧On(B,A)

A c-plan created with a capability model may include an inter-
mediate state in the form of sI ⇒ sin ⇒ sE ,4 in which sin can
include, e.g., OnTable(A) = true and OnTable(B) = true, such
that the probability of the existence of a sequence of operations to
fulfill the c-plan may be increased. Another example is our motivat-
ing example (Figure 1) in which having has_trolley(AG) = true
as an intermediate state helps delivery when has_trolley(AG) is
false at the beginning.

Although a single agent c-plan may seem to be less useful than
a complete plan synthesized with action models, it is unavoidable
4Note that P (sI ⇒ sE) is not equivalent to P (sI ⇒ sin) ·
P (sin ⇒ sE).

1155



when we have to plan with incomplete knowledge (e.g., incomplete
action models). This is arguably more common in multi-agent sys-
tems, in which the planner needs to reason about likely plans for
agents even when it does not have complete information about these
agents. A specific application in such cases is when we need to per-
form task allocation, in which it is useful for the system to specify
subtasks or state requirements for agents that are likely to achieve
them without understanding how the agents achieve them.

4.2 Planning Heuristic
Given a single agent planning problem 〈φ, b(I), G, ρ〉, besides

achieving the goal variables, planning should also aim to reduce the
cost of the c-plan (i.e., probability of success for the sequence of
application of capabilities in the c-plan).

ASSUMPTION: To create a heuristic, we make the following
assumption – capabilities do not have variables with false values
in sI . With this assumption, we have the following monotonicity
properties hold:

P (sI ⇒ sE) ≥ P (s′I ⇒ sE)(T (s′I) ⊆ T (sI)∧F (sI) ⊆ F (s′I))
(8)

in which T , F are used as operators on a set of variables to de-
note the set of variables with true and false values, respectively.
Equation (8) implies it is always easier to achieve the desired state
with more true-value variables and less false-value variables in the
initial state; and

P (sI ⇒ sE) ≥ P (sI ⇒ s′E)(T (sE) ⊆ T (s′E)∧F (sE) ⊆ F (s′E))
(9)

which implies that it is always more difficult to achieve the speci-
fied values for more variables in the eventual state.

HEURISTIC: We use A∗ to perform the planning. At any time
the current planning state is a belief state b̂(S) (i.e., b(S) after
sampling); there is also a sequence of application of capabilities
(i.e., a c-plan prefix), denoted as π, to reach this belief state from
the initial state. We compute the heuristic value for b̂(S) (i.e.,
f(b̂(S)) = g(b̂(S)) + h(b̂(S))) as follows. First, we compute
g(b̂(S)) as the sum of the negative logarithms of the associated
probabilities of capabilities in π.

To compute h(b̂(S)), we need to first compute h(s) for each
complete state s ∈ S. To compute an admissible h(s) value, we
denote the set of goal variables that are currently false in s as Gs.
Then, we compute h(s) as follows:

h(s) = argmax
v∈Gs,s¬v

− logP (s¬v ⇒ s{v = true}) (10)

in which s¬v denotes a complete state with only v as false, and
s{v = true} denotes the state of s after making v true. Finally, we
compute h(b̂(S)) as:

h(b̂(S)) =
∑
s∈S

P (s) · h(s) (11)

LEMMA 1. The heuristic given in Eq. (11) is admissible for
finding a c-plan that maximizes ρ (i.e., with ρ∗), given that b̂(S)
accurately represents b(S).

PROOF. We need to prove that h(b̂(S)) is not an over-estimate
of the cost for S to reach the goal state G while maximizing ρ.
First, note that we can always increase ρ by trying to move a non-
goal state (in the current planning state) to a goal state (i.e.,G v s).
Furthermore, for each s ∈ S, given the monotonicity properties, we
know that at least h(s) cost must be incurred to satisfy G. Hence,
the conclusion holds.

Figure 3: Illustration of solving a single agent planning prob-
lem with a capability model. The topology of the capability
model used is shown in the top part of the figure.

Lemma 1 implies that the A∗ search using the heuristic in Equa-
tion (11) would continue to improve ρ given sufficient time. Hence,
the heuristic should be used as an anytime heuristic and stop when
a desired value of ρ is obtained or the increment is below a thresh-
old. Also, approximation solutions should be considered in future
work to scale to large networks.

4.3 Evaluation
We provide a preliminary evaluation of single agent planning

with a capability model. We build this evaluation based on the
blocksworld domain. First, we use 20 problem instances with 3
blocks5 and generate a complete plan for each instance. Then, we
randomly remove 1−5 actions from each complete plan to simulate
partial plan traces.

The capability model for this domain contains 12 variables and
we ignore the holding and handempty predicates to simulate par-
tial state observations. We manually construct the correlations be-
tween the variables in the initial and eventual states. For example,
On(A,B) is connected with On(B,A) since they are clearly con-
flicting. For causal relationships, we connect every node in the
initial state to every node in the eventual state.

After learning the parameters of this capability model based on
the partial plan traces, we apply the capability model to solve a
problem as shown in Figure 3. The topology of the capability
model constructed is shown in the top part of the figure, which
is also the model used in Figure 4. Since we have connected ev-
ery fact node with every e-node in this case, the model appears to
be quite complex. Initially, we have On(B3, B2), On(B2, B1),
and OnTable(B1) (a complete state), and the goal is to achieve
On(B2, B3). We can see in Figure 3 that I in b(I) contains a
single complete state. The c-plan involves the application of two
different capabilities. For illustration purpose, we only show two
possible states (in the belief state) after applying the first capability,

For one of the two states, we then show two possible states after
applying the second capability. Note that each arrow represents a
sequence of actions in the original action model. Also, the possible
states must be compatible with the specifications of the eventual
states in the capabilities. We see some interesting capabilities being

5It does not have to be three blocks but we assume only three blocks
to simplify the implementation.

1156



learned. For example, the first capability is to pull out a block that
is between two other blocks, and place it somewhere else.

5. MULTI-AGENT PLANNING
In this section, we extend our discussion from single agent plan-

ning to multi-agent planning. In particular, we discuss how capa-
bility models can be used along with other complete models (i.e.,
action models) by a centralized planner to synthesize c-plans. The
settings are similar to those in our motivating example. In particu-
lar, we refer to multi-agent planning with mixed models as MAP-
MM. This formulation is useful in applications in which both hu-
man and robotic agents are involved. While robotic agents are pro-
grammed and hence have complete models, the models of human
agents must be learned. Hence, we use capability models to model
human agents and assume that the models for the human agents are
already learned (e.g., by the robots) for planning.

For robotic agents, we assume STRIPS action model 〈R,O〉, in
which R is a set of predicates with typed variables, O is a set of
STRIPS operators. Each operator o ∈ O is associated with a set of
preconditions Pre(o) ⊆ R, add effects Add(o) ⊆ R and delete
effects Del(o) ⊆ R.

DEFINITION 8. Given a set of robots R = {r}, a set of hu-
man agents Φ = {φ}, and a set of typed objects O, a multi-
agent planning problem with mixed models is given by a tuple Π =
〈Φ, R, b(I), G, ρ〉, where:

• Each r ∈ R is associated with a set of actions A(r) that are
instantiated from O and O, which r ∈ R can perform; each
action may not always succeed when executed and hence is
associated with a cost.

• Each φ ∈ Φ is associated with a capability model Gφ =

〈Vφ, Eφ〉, in which Vφ = Xφ ∪ Ẋφ. Xφ ⊆ X , in which Xφ
represents the state variables of the world and agent φ and
X represents the joint set of state variables of all agents.

Note that the grounded predicates (which are variables) for robots
that are instantiated from R and O also belong to X . Human and
robotic agents interact through the shared variables.

LEMMA 2. The MAP-MM problem is at least PSPACE-complete.

PROOF. We only need to prove the result for one of the extreme
cases: when there are only robotic agents. The problem then es-
sentially becomes a multi-agent planning problem, which is more
general than the classical planning problem, which is known to be
PSPACE-complete.

5.1 State Expansion for MAP-MM
First, we make the same assumption as we made in single agent

planning, such that the monotonicity properties still hold. Given
the current planning state b̂(S) (i.e., sampled from b(S)), for each
s ∈ S, a centralized planner can expand it in the next step using
the following two options in MAP-MM:

• Choose a robot r and an action a ∈ A(r) such that at least
one of the complete states s in S satisfies T (Pre(a)) ⊆
T (s).

• Choose a capability on human agent φ with the specification
sI ⇒ sE , such that at least one of the states s in S satisfies
T (sI) ⊆ T (s).

Figure 4: Illustration of solving a MAP-MM problem with a
robotic and a human agent, in which the robotic agent has an
action model and the human agent has a capability model that
is assumed to be learned by the robotic agent.

If we have chosen an action a, for any s ∈ S that satisfies
T (Pre(a)) ⊆ T (s), the complete state s after applying a be-
comes s′, such that T (s′) = (T (s) ∪ Add(a)) \ Del(a), and
F (s′) = (F (s) ∪ Del(a)) \ Add(a). The probability weight of
s′ in the new belief state after applying a does not change. For
states in S that do not satisfy T (Pre(a)) ⊆ T (s), we assume that
the application of a does not change anything. In this way, we can
construct the new belief state after applying this action.

If we have chosen a capability in the form of sI ⇒ sE from
a human agent φ, for any s ∈ S that satisfies T (sI) ⊆ T (s),
we can use follow discussion in Section 4.1 to compute the new
belief state. Similarly, for states in S that do not satisfy T (sI) ⊆
T (s), we assume that the application of this capability does not
change anything. With the new belief state, we can continue the
state expansion process to expand the c-plan further.

5.2 Planning Heuristic for MAP-MM
In this section, we discuss a planning heuristic that informs us

which state should be chosen to expand at any time. We can adapt
the heuristic in Equation (11) to address MAP-MM. Given the cur-
rent planning state b̂(S), we need to compute h(b̂(S)). For each
s ∈ S, there are three cases:

1) If only capabilities are used afterwards, h(s) can be computed
as in Equation (11), except that all capability models must be con-
sidered. 2) If only actions are going to be used, h(s) can be com-
puted based on the relaxed plan heuristic (i.e., ignoring all deleting
effects), while considering all robot actions. 3) If both capabilities
and actions can be used, h(s) can be computed as the minimum
cost of an action that achieves any variable in Gs. The final h(s)

is chosen as the smallest value among the three cases and h(b̂(S))
can subsequently be computed.

COROLLARY 1. The heuristic above is admissible for finding a
c-plan for MAP-MM that maxmizes ρ, given that b̂(S) accurately
represents b(S).

5.3 Evaluation
In this section, we describe a simple application of MAP-MM

involving a human and a robot, in which the capability model of
the human is assumed to be learned by the robot. The robot then
makes a multi-agent c-plan for both the human and itself.

The setup of this evaluation is identical to that in the evaluation
of single agent planning, as we discussed in the previous section.

1157



In this example, we associate the robot actions with a constant cost.
After learning the parameters of the human capability model based
on the generated partial plan traces, we apply the capability model
to solve a problem as shown in Figure 4. Initially, we haveOn(B1,
B3), OnTable(B3), and OnTable(B2) (a complete state), and
the goal is to achieve On(B3, B2). The multi-agent c-plan in-
volves the application of two robot actions and one capability of
the human. We show three possible complete states (in the belief
state) which satisfy the goal variable after applying the capability.

6. RELATED WORK
Most existing approaches for representing the dynamics of agents

assume that the models are completely specified. This holds whether
the underlying models are based on STRIPS actions (e.g. PDDL
[7]) or stochastic action models (such as RDDL [19]). This as-
sumption of complete knowledge is also the default in the existing
multi-agent planning systems [3].

Capability models, in contrast, start with the default of incom-
plete models. They are thus related to the work on planning with
incompletely specified actions (c.f. [15, 16, 11]). An important dif-
ference is that while this line of work models only incompleteness
in the precondition/effect descriptions of the individual actions, ca-
pabilities are incomplete in that they completely abstract over ac-
tual plans that realize them. In this sense, a capability has some
similarities to non-primitive tasks in HTN planning [6, 27]. For
example, an abstract HTN plan with a single non-primitive task
only posits that there exists some concrete realization of the non-
primitive task which will achieve the goal supported by the non-
primitive task. However, in practice, all HTN planners use “com-
plete models” in that they provide all the reduction schemas to take
the non-primitive task to its concretization. So, the “uncertainty”
here is “angelic” [12] – the planner can resolve it by the choice of
reduction schemas. In contrast, capability models do not have to
(and cannot) provide any specifics about the exact plan with which
a capability will be realized.

Capability models also have connections to macro operators [2],
as well as options, their MDP counterparts [21, 20, 9], and the BDI
models [17]. Capability models are useful when plans must be
made with partial knowledge. With complete models, this means
that not all actions or macro-actions or options or capabilities in
BDI to achieve the goal are provided. None of HTN, SMDP or
BDI models can handle the question of what it means to plan when
faced with such model incompleteness. Capability models in con-
trast propose approximate plans (referred to as c-plans) as a useful
solution concept in informing the user of how likely there is an
actual complete plan.

On the other hand, due to the inherent incompleteness of capa-
bility models, they are lossy in the following sense. It is possible to
compile a complete model to a capability model (e.g., converting
actions in RDDL [19] to a capability model), but new capabilities
may also be introduced along with the actions. As a result, the
synthesized plans would still be incomplete unless the use of these
new capabilities are forcibly restricted. The learning of capability
models has connections to learning probabilistic relational models
using Bayesian networks [8]. The notion of eventual state captured
in capability models is similar to that captured by the F operator
(i.e., eventually) in LTL and CTL [5, 23]. Although there are other
works that discuss about capability models, e.g., [4], they are still
based on action modeling.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a new representation to model

agents based on capabilities. The associated model, called a ca-
pability model, is an inherently incomplete model that has several
unique advantages compared to traditional complete models (i.e.,
action models). The underlying structure of a capability model is
a generalized 2-TBN, which can encode all the capabilities of an
agent. The associated probabilities computed (i.e., via Bayesian
inference on the capability model) based on the specifications of
capabilities (i.e., a partial initial state coupled with a partial even-
tual state) determine how likely the capabilities can be fulfilled
by an operation (i.e., a complete plan). This information can be
used to synthesize incomplete “plans” (referred to as c-plans). One
of the unique advantages of capability models is that learning for
both model structure and parameters is robust to high degrees of
incompleteness in plan execution traces (e.g., with only start and
end states). Furthermore, we show that parameter learning for ca-
pability models can be performed efficiently online via Bayesian
learning.

Additionally, we provide the details of using capability models in
planning. Compared to traditional models for planning, in a plan-
ning state, capability models only suggest transitions between par-
tial states (i.e., specified by the capabilities), along with the prob-
abilities that specify how likely such transitions can be fulfilled by
an operation. The limitation is that the synthesized c-plans are in-
complete. However, we realize that this is unavoidable for plan-
ning with incomplete knowledge (i.e., incomplete models). In such
cases, the synthesized c-plans can inform the user how likely com-
plete plans exist when following the “guidelines” of the c-plans. In
general, a c-plan with a higher probability of success should imply
that a complete plan is more likely to exist. We discuss using ca-
pability models for single agent planning first, and then extend it to
multi-agent planning (with each agent modeled separately by a ca-
pability model), in which the capability models of agents are used
by a centralized planner. We also discuss how capability models
can be mixed with complete models.

In future work, we plan to further investigate the relationships
between capability models and traditional models. We also plan to
explore applications of capability models in our ongoing work on
human-robot teaming [22, 13]. For example, we plan to investigate
how to enable robots to learn capability models of humans and plan
to coordinate with the consideration of these models.

Acknowledgments
This research is supported in part by the ARO grant W911NF-13-1-
0023, and the ONR grants N00014-13-1-0176, N00014-13-1-0519
and N00014-15-1-2027.

REFERENCES
[1] C. Backstrom and B. Nebel. Complexity results for sas+

planning. Computational Intelligence, 11:625–655, 1996.
[2] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer.

Macro-ff: Improving ai planning with automatically learned
macro-operators. Journal of Artificial Intelligence Research,
24:581–621, 2005.

[3] R. I. Brafman and C. Domshlak. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
ICAPS, pages 28–35. AAAI Press, 2008.

1158



[4] J. Buehler and M. Pagnucco. A framework for task planning
in heterogeneous multi robot systems based on robot
capabilities. In AAAI Conference on Artificial Intelligence,
2014.

[5] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching time temporal
logic. In D. Kozen, editor, Logics of Programs, volume 131
of Lecture Notes in Computer Science, pages 52–71.
Springer Berlin Heidelberg, 1982.

[6] K. Erol, J. Hendler, and D. S. Nau. Htn planning:
Complexity and expressivity. In In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages
1123–1128. AAAI Press, 1994.

[7] M. Fox and D. Long. PDDL2.1: An extension to pddl for
expressing temporal planning domains. Journal of Artificial
Intelligence Research, 20:2003, 2003.

[8] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In In IJCAI, pages
1300–1309. Springer-Verlag, 1999.

[9] P. J. Gmytrasiewicz and P. Doshi. Interactive pomdps:
Properties and preliminary results. In Proceedings of the
Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 3, AAMAS ’04, pages
1374–1375, Washington, DC, USA, 2004. IEEE Computer
Society.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. J. Artif. Int. Res.,
4(1):237–285, May 1996.

[11] S. Kambhampati. Model-lite planning for the web age
masses: The challenges of planning with incomplete and
evolving domain models, 2007.

[12] B. Marthi, S. J. Russell, and J. Wolfe. Angelic semantics for
high-level actions. In Proceedings of the Seventeenth
International Conference on Automated Planning and
Scheduling (ICAPS), 2007.

[13] V. Narayanan, Y. Zhang, N. Mendoza, and S. Kambhampati.
Automated planning for peer-to-peer teaming and its
evaluation in remote human-robot interaction. In ACM/IEEE
International Conference on Human Robot Interaction
(HRI), 2015.

[14] R. E. Neapolitan. Learning Bayesian networks. Prentice
Hall, 2004.

[15] T. Nguyen and S. Kambhampati. A heuristic approach to
planning with incomplete strips action models. In
International Conference on Automated Planning and
Scheduling, 2014.

[16] T. A. Nguyen, S. Kambhampati, and M. Do. Synthesizing
robust plans under incomplete domain models. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Advances in Neural Information Processing Systems
26, pages 2472–2480, 2013.

[17] L. Padgham and P. Lambrix. Formalisations of capabilities
for bdi-agents. Autonomous Agents and Multi-Agent Systems,
10(3):249–271, May 2005.

[18] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1994.

[19] S. Sanner. Relational dynamic influence diagram language
(rddl): Language description, 2011.

[20] S. Seuken and S. Zilberstein. Memory-bounded dynamic
programming for dec-pomdps. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence,
IJCAI’07, pages 2009–2015, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[21] R. S. Sutton, D. Precup, and S. Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artif. Intell., 112(1-2):181–211,
Aug. 1999.

[22] K. Talamadupula, G. Briggs, T. Chakraborti, M. Scheutz, and
S. Kambhampati. Coordination in human-robot teams using
mental modeling and plan recognition. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2957–2962, Sept 2014.

[23] M. Vardi. An automata-theoretic approach to linear temporal
logic. In F. Moller and G. Birtwistle, editors, Logics for
Concurrency, volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer Berlin Heidelberg, 1996.

[24] B. Y. White and J. R. Frederiksen. Causal model
progressions as a foundation for intelligent learning
environments. Artificial Intelligence, 42(1):99 – 157, 1990.

[25] C. Yuan and B. Malone. Learning optimal bayesian
networks: A shortest path perspective. J. Artif. Int. Res.,
48(1):23–65, Oct. 2013.

[26] H. H. Zhuo and S. Kambhampati. Action-model acquisition
from noisy plan traces. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence,
IJCAI’13, pages 2444–2450. AAAI Press, 2013.

[27] H. H. Zhuo, H. Muñoz Avila, and Q. Yang. Learning
hierarchical task network domains from partially observed
plan traces. Artificial Intelligence, 212:134–157, July 2014.

1159




