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ABSTRACT
Methods for planning in multiagent settings often model other
agents’ possible behaviors. However, the space of these models
– whether these are policy trees, finite-state controllers or inten-
tional models – is very large and thus arbitrarily bounded. This
may exclude the true model or the optimal model. In this paper, we
present a novel iterative algorithm for online planning that consid-
ers a limited model space, updates it dynamically using data from
interactions, and provides a provable and probabilistic bound on
the approximation error. We ground this approach in the context
of graphical models for planning in partially observable multiagent
settings – interactive dynamic influence diagrams. We empirically
demonstrate that the limited model space facilitates fast solutions
and that the true model often enters the limited model space.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Experimentation

Keywords
online planning; multiple agents; influence diagram; mental models

1. INTRODUCTION
Approaches for planning and plan recognition in cooperative

and noncooperative multiagent settings [3, 9, 22] often model
other agents’ possible behaviors. These models could be policy
trees [19], finite-state controllers [15], or intentional models with
beliefs, preferences and capabilities [8]. Because the space of such
models is very large – theoretically, it is countably infinite – a small
subset of models is typically handpicked or arbitrarily selected.
However, this precludes any guarantees that the true model or the
policy tree that is part of an optimal joint plan is included.

Observing that the true behaviors of other agents are revealed
only when the agents interact, we target the following problem set-
ting in this paper: a subject agent repeatedly interacts with another
agent whose behavior (guided by a plan or a policy) is fixed. Start-
ing with a simple “baseline” planning model, how should the sub-
ject agent adapt its model to the beliefs and preferences of others in
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order to improve its planning? Algorithms for this problem setting
enjoy many applications. They could help build new and smarter
AI embedded in real-time strategy games that repeatedly interacts
with the existing AI (whose programmed behavior is usually fixed)
learning its strategy and using it in its own planning. The methods
also find application in building a smart robotic soccer player that
joins an ad hoc team of other soccer players with differently pro-
grammed play [2, 14, 21]. On repeatedly interacting with a team
mate, subject robot adapts its play to the strengths of the team mate.

We focus on individual planning in multiagent settings as for-
malized by the graphical interactive dynamic influence diagrams
(I-DIDs) [8]. Extending single-agent DIDs [11], I-DIDs are a gen-
eral and graphical framework for sequential decision making (plan-
ning) under uncertainty from an individual agent’s perspective in
both competitive and cooperative settings. Emerging applications
in automated vehicles that communicate [13], integration with the
belief-desire-intention framework [4], and toward ad hoc team-
work [3] motivate advances for I-DIDs. Previous efforts focus on
identifying behaviorally equivalent models thereby leading to a
suite of techniques for lossless and lossy compressions of the model
space in I-DIDs [28]. As a large space of distinct behaviors ex-
ists, these algorithms must still maintain a significantly large model
space and are unable to plan for large horizons. In this context, this
paper makes the following contributions:
1. We present an approach that ascribes an arbitrary size-limited

set of models to other agents and adapts this set using trajecto-
ries from online interactions. The approach leads to a novel iter-
ative algorithm, OPIAM, for online planning in settings shared
with other agents as delineated above. The approach is also use-
ful in other algorithms that consider models such as point-based
methods for solving interactive POMDPs [7], memory-bounded
dynamic programming for decentralized POMDPs [19], and on-
line planning for ad hoc teamwork [24].

2. In a first for online planning in multiagent settings, OPIAM
exhibits a provable probabilistic guarantee that the approxima-
tion error is bounded. The probabilistic error bound improves as
more trajectories are obtained.

3. On two problem domains with up to 5 agents, we empirically
demonstrate that by considering a limited but adaptive model
space, the online planning is faster compared to the previous
best compression of model spaces [27], and simultaneously ob-
tains high average rewards. This makes OPIAM outperform cur-
rent I-DID algorithms, although it has the benefit of online in-
teractions. We observe in our experiments that the true model
or its observationally equivalent counterpart almost always gets
included in the limited model space as the interactions progress
and the space is updated. This provides an explanation for the
good quality behavior despite considering a small model space.
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2. BACKGROUND: INTERACTIVE DID
When there are multiple agents operating in a stochastic and

partially observable environment, the corresponding decision mak-
ing processes could be formalized as decentralized partially ob-
servable Markov decision processes (Dec-POMDPs), interactive
POMDPs (I-POMDPs) or others [5]. Dec-POMDPs model cooper-
ative agents as a team who share joint beliefs over states and a local
policy is provided to each agent. I-POMDPs take the perspective of
an individual agent operating in presence of other self-interested
agents. They are suitable for both cooperative and competitive set-
tings. As a graphical counterpart of I-POMDPs, I-DIDs explicitly
model the problem structure and show computational advantages
in complex problem domains [8]. We briefly review I-DIDs below.

2.1 Representation
I-DIDs formalize how a subject agent i optimizes its decisions

while interacting with another agent j whose actions impact their
common states S and rewards R. In addition to regular chance,
decision and utility nodes in DID [23], a new type of node called the
model node, Mj,l−1, models how other agent j makes its decisions
simultaneously at level l−1. More explicitly, it contains all possible
j’s models whose solutions give the predicted behavior Aj , which
is represented by a policy link (the dashed line) connecting Mj,l−1

and Aj . Each model, mj,l−1, could be either a level l− 1 I-DID or
a DID at level 0 where the other agent is not further modeled. Here,
level pertains to the recursive reasoning between agents and agents
at a low level do not model agents at a higher level. For example,
a level 1 agent considers agents at level 0 while level 0 agents only
model the environment.

Figure 1: A generic two time-slice level l I-DID for agent i. Pol-
icy links are marked as dash lines, while the model update link
is marked as a dotted lines.

Besides the physical state, agent i’s belief is over possible mod-
els of agent j. Moreover, as j acts and receives observations over
time, its models are updated to reflect its changed beliefs. The
model update link, a dotted arrow from M t

j,l−1 to M t+1
j,l−1 in Fig. 1,

represents the update of j’s models over time. The updated models
differ in the beliefs that obtain for a pair of j’s actions and obser-
vations. Consequently, the set of updated models at time t+ 1 will
have up to |Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the num-

ber of models at time step t, and |Aj | and |Ωj | are the largest spaces
of actions and observations respectively. I-DID becomes a regular
DID when the model update link is replaced with regular depen-
dency links and chance nodes. We may employ any DID solution
technique to solve an I-DID. For clarity, we elaborate an example
I-DID for the well-studied multiagent tiger problem [9].

EXAMPLE 1 (LEVEL 1 I-DID). Figure 2 shows the I-DID
for a level 1 agent i who considers two models of j at level 0 in
the two-agent tiger problem. The two models, mt,1

j,0 and mt,2
j,0, differ

in j’s belief about the tiger’s location and are included in the model
node M t

j,0. As indicated by the conditional probability table (CPT)
in Fig. 4, solving the models results in j’s optimal decisions, OL
and L, respectively.
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Figure 2: A two time-slice level 1 I-DID for agent i in the tiger
problem. The model update link has been replaced by regular
arcs in DIDs.

We show the update of mt,1
j,0 and mt,2

j,0 in Fig. 3. As agent j may
receive one of two observations (either GL or GR), four new mod-
els are generated in the model node M t+1

j,0 .
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Figure 3: Details of the model update link where two models
are expanded into four models in the new time step.

The CPT of Mod[M t+1
j,0 ] is shown in Fig. 4. For example, the

first row of the CPT shows that mt,1
j,0 is updated into the model

mt+1,1
j,0 when agent j takes the action OL and observes GL in the

next time step. As neither OR nor L is the optimal decision for
mt,1

j,0, we assign a uniform distribution to indicate that mt,1
j,0 does

not transform into any of the new models for these actions.

Figure 4: The CPTs of the chance nodes At
j and Mod[M t+1

j,0 ].
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2.2 Solutions
Solving a level l I-DID requires the expansion and solution of j’s

models at level l−1. We outline the exact I-DID algorithm in Fig. 5.
Lines 4-5 solve j’s models to obtain the policy link. Line 6 invokes
techniques for compression of the model space based on behavioral
equivalence [17], PruneBehavioralEq (Mj,l−1), and returns rep-
resentative models of j. Lines 7-15 implement the model update
link in an I-DID. Finally, lines 17-18 solve the transformed I-DID
using standard DID algorithms. Previous offline techniques such as
DMU [26] and ε-BE [28] solve I-DIDs by exploiting equivalences
between models. In particular, DMU exactly solves I-DIDs while ε-
BE compromises the solution quality to achieve greater efficiency.

I-DID EXACT(level l ≥ 1 I-DID or level 0 DID, horizon T )
Expansion Phase

1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate Mt+1
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. Recursively call algorithm with the l − 1 I-DID

(or DID) that represents mt
j and horizon, T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mt

j), to the corresponding chance node Aj

6. Mt
j,l−1 ← PruneBehavioralEq(Mt

j,l−1)

7. For each mt
j in Mt

j,l−1 do
8. For each aj in OPT (mt

j) do
9. For each oj in Oj (part of mt

j ) do
10. Update j’s belief, bt+1

j ← SE(btj , aj , oj)

11. mt+1
j ← New I-DID (or DID) with bt+1

j

12. Mt+1
j,l−1

∪← {mt+1
j }

13. Add the model node, Mt+1
j,l−1, and the model update link

14. Add the chance, decision, and utility nodes for t+ 1 time
slice and the dependency links between them

15. Establish the conditional probability tables (CPTs) for each
chance and utility node

Solution Phase
16. If l ≥ 1 then
17. Represent the model nodes, policy links and the model

update links to obtain the DID
18. Use standard look-ahead and backup to solve the expanded DID

Figure 5: Algorithm for exactly solving a level l ≥ 1 I-DID or
level 0 DID expanded over T time steps.

3. ONLINE PLANNING WITH LIMITED
MODEL SPACE

I-DIDs generally maintain a sufficiently large set of candidate
models to capture possible behavior of other agents. Previous re-
search focuses on reducing the expanding space of models at every
time step [26]. Nevertheless, the methods are challenged by the ex-
ponential growth in the number of models over time. Moreover, the
existing de-facto method for updating distributions over the models
is to use a Bayesian update that does not adapt the model space –
prune or replace candidate models.

Using the insight that observations received by agent i can re-
veal the actions performed by agent j which depend on its model,
we propose a new algorithm that exploits agents’ interactions to
improve I-DID solutions by focusing on identifying agent j’s true
behavioral model. We outline the algorithm and discuss the steps.

3.1 Algorithm Outline
Methods that model others operate in the context of two sets of

models: a large universal set of models and the model set consid-

ered by the method. Given agent i’s belief distribution over a set
of j’s models, bi,l(Mj,l−1), previous algorithms [26] solve i’s I-
DID with the complete set of j’s models. Let M0

j,l−1 denote the
set of j’s models included in the model node of the I-DID ini-
tially. Then, in these approaches M0

j,l−1 =Mj,l−1. Subsequently,
agent i interacts with j using the policy obtained by solving the I-
DID and empirically updates bi,l(Mj,l−1) accordingly. Doshi and
Gmytrasiewicz show that bi,l(Mj,l−1) converges to a probabil-
ity distribution, denoted by b∗i,l(Mj,l−1), after a sufficiently large
number of interactions if the initial belief satisfies the absolute con-
tinuity condition [6].

In contrast, our new algorithm, OPIAM (Online plan, inter-
act and adapt models), solves an initial “baseline” I-DID using
a partial set of j’s models: M0

j,l−1 ⊂ Mj,l−1. Agent i then uses
the solved policy to interact with j for some time and updates
bi,l(M0

j,l−1) using the trajectories of its actions and observations
obtained from the interactions. Subsequently, OPIAM modifies the
I-DID by partially replacing M0

j,l−1 with models from the unex-

plored set (Mj,l−1/M0
j,l−1).

We present OPIAM in Fig. 6. Given a large set of models of agent
j, Mj,l−1, we randomly select a small set of candidate models,
M0

j,l−1, and initialize the I-DID, mi,l, with a uniform distribution
over the models (lines 1-2). Solving mi,l provides an initial policy
that agent i executes to play with agent j online (line 6). Formally,
we denote a T -horizon policy as πT

mi,l
that is represented using a

tree and contains a set of policy paths from the root node to the leaf.

DEFINITION 1 (POLICY PATH). A policy path, hT,(k)
i , is an

action-observation sequence of T steps: hT,(k)
i = {at

i, o
t+1
i }T−1

t=0 ,
where oTi is null.

After an interaction, agent i weights each of j’s candidate model,

Pr(mj,l−1|hT,(k)
i ), given i’s observations and executed actions up

to T steps (line 7). This computation uses Bayes rule in a straight-
forward way:

Pr(mj,l−1|hT,(k)
i ) ∝

∑
s0

Pr(mj,l−1|s0)Pr(h
T,(k)
i |mj,l−1, s

0)

where Pr(mj,l−1|s0) is the prior weight of j’s model given the

state and Pr(h
T,(k)
i |mj,l−1, s

0) the likelihood of i’s policy path.

We compute this by inserting h
T,(k)
i as evidence into the corre-

sponding decision and chance nodes, and mj,l−1 in the model node
of the level l I-DID, mi,l.

After N interactions, the average weight of each model is ob-

tained,
∑N

k=1 Pr(mj,l−1|hT,(k)
i )/N (line 10). As not all of j’s

models are included in the current I-DID, OPIAM next updates
the belief over the partial set of models in the larger model space
Mj,l−1, denoted by bτi,l(M0

j,l−1). This is done by redistribut-
ing the probability mass in i’s belief for the selected models in
M0

j,l−1 over all j’s models in M0
j,l−1 proportionally to their aver-

age weights obtained in the previous step. This is shown in Eq. 1:

bτi,l(mj,l−1) =
1

N

N∑

k=1

Pr(mj,l−1|hT,(k)
i )

×
∑

mj,l−1∈M0
j,l−1

bτ−1
i,l (mj,l−1) (1)

where the second factor that sums bτ−1
i,l (mj,l−1) over all models

in M0
j,l−1 is the total probability mass over models included in

the I-DID, and Pr(mj,l−1|hT,(k)
i ) is the updated weight of model

mj,l−1 given i’s policy path, h
T,(k)
i .
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OPIAM(level l ≥ 1 I-DID of agent i, mi,l; candidate
models of agent j at level l − 1 or level 0, Mj,l−1; horizon T ; ρ)

1. Weight Mj,l−1 equally and set the counter, τ = 1
2. Select a subset of j’s candidate models, M0

j,l−1 ⊂ Mj,l−1

3. Do
4. Solve agent i’s model, mi,l with M0

j,l−1, using

I-DID EXACT in Fig. 5, and output i’s policy πmi,l

Interaction Phase
5. For k = 1 to N interactions of length T do
6. Agent i plays with j according to the policy πmi,l

7. Compute the posterior weights of selected j’s models

Pr(mj,l−1|hT,(k)
i )

8. Compute j’s most probable path ξTj and

update its occurrence ωξj

9. For each mj,l−1 in M0
j,l−1 do

10. Average the posterior weight:
N∑

k=1

Pr(mj,l−1|hT,(k)
i )/N

11. Update beliefs about the selected models bτi,l(M0
j,l−1) using Eq. 1

12. Calculate Δ= ‖bτi,l(Mj,l−1)-b
τ−1
i,l (Mj,l−1)‖2

13. If Δ ≤ ρ then
14. Set τ = 0
15. else
16. Set τ = τ + 1

Model Adaptation Phase

17. Aggregate most probable paths ξTj into HT
j

18. Select the most probable model, ṁj,l−1 ∈ Mj,l−1/M0
j,l−1

19. Select model, mj,l−1 ∈ M0
j,l−1, with the least

average weight
20. Replace mj,l−1 with ṁj,l−1 in M0

j,l−1
21. While τ > 0

Figure 6: OPIAM in combination with a level l I-DID expanded over
T steps allows online planning with a limited model space.

Subsequently, OPIAM prunes the model in M0
j,l−1 with the

lowest weight and replaces it with one from the remaining mod-
els (lines 19-20). The initial belief in the I-DID for the next round of
interactions is a normalized distribution over the updated M0

j,l−1.
We terminate model adaptation when the change in the belief dis-
tribution is less than a small value, ρ, during two consecutive itera-
tions (lines 12-14).

In principle, the online algorithm allows agent i to explore j’s
possible models with the overall goal of identifying j’s true behav-
ior. Next, we present a method for selecting a model in Mj,l−1 as
replacement in the model adaptation phase (lines 17-18).

3.2 Most Probable Model Selection
A key observation is that while the true model of agent j cannot

be directly observed, j’s behavior induces i’s observations, which
in turn provide inferential information about j’s models. Hence,
we focus on the challenge of selecting the most probable model of
j based on i’s action-observation history for adapting model space,
M0

j,l−1.
We point out that every interaction involves only one particular

policy path of j. After every interaction, agent i infers the most
probable policy path for agent j given i’s actions and observations.
Formally, we define the most probable path below.

DEFINITION 2 (MOST PROBABLE PATH). Given agent i’s
model, mi,l, and i’s sequence of actions and observations, hT,(k)

i ,

define the most probable path for agent j as:

ξ
T,(k)
j = argmax

hT
j ∈HT

j

Pr(hT
j |hT,(k)

i )

= argmax
hT
j ∈HT

j

T−1∏
t=1

Pr(atj |hT,(k)
i , ht−1

j , otj) Pr(otj |hT,(k)
i , ht−2

j )

× Pr(a0j |hT,(k)
i )

The computation factorizes the joint probability Pr(hT
j , h

T,(k)
i )

given the graphical structure of the I-DID, and is carried out
through a usual evidence propagation in the level l I-DID. The
value of each term above is obtained from the distributions in nodes
in the I-DID. Here, HT

j = Aj ×∏T−1
t=1 (Ωj ×Aj) are all possible

policy paths of agent j of T steps as in Def. 1.
Because agent j’s set of possible paths is large, we may select the

most probable path approximately by sampling the most probable
action and observation at every time step. Specifically, we compute

the most probable action by maximizing Pr(a0
j |hT,(k)

i ) at time
t = 0, and subsequently sample the most probable observation and
actions over time.

Let HT
j be the set of the most probable paths after N interac-

tions, HT
j =

N⋃
k=1

ξ
T,(k)
j . Subsequently, HT

j will compose the entire

policy tree that j is using, πT
m∗

j
, if agent i interacts with j for a

sufficiently long time, i.e., N → ∞.
Consider a candidate model, mj,l−1 ∈ Mj,l−1, whose solution

is a T -step policy tree, πT
mj

. Let Pr(at
j |πT

mj
) be the proportion

among all actions that action, aj , appears at time step t in all paths
of the policy tree. We seek a measure of how well the candidate
model, mj,l−1, fits the inferred most probable action-observation
histories of j. Let δT denote this measure and we define it as:

δT (mj,l−1,HT
j )

�
=

∑

t

∑

aj∈Aj

|Pr(atj |πT
mj

)− Pr(atj |HT
j )| (2)

where Pr(at
j |HT

j )
�
=

∑

ξ
T,(k)
j ∈HT

j

ωξTj
· Pr(at

j |ξT,(k)
j ). Here,

Pr(at
j |ξT,(k)

j ) is 1 if action aj appears in the most probable path,

ξ
T,(k)
j , at time step t and weight ωξTj

is the normalized occurrence

of ξ
T,(k)
j over N interactions.

Subsequently, we obtain the most probable model for replace-
ment as shown below.

DEFINITION 3 (MOST PROBABLE MODEL). Given the set of
agent j’s models, Mj,l−1, and most probable paths, HT

j , define
the most probable model, ṁj,l−1, for the level l − 1 agent j as:

ṁj,l−1 = argmin
mj,l−1∈Mj,l−1/M0

j,l−1

δT (mj,l−1,HT
j )

We elaborate the computation of the most probable model using an
example in the multiagent tiger problem [9] below.

EXAMPLE 2. Assume that the initial model set, M0
j,l−1, com-

prises of three models, {m1
j ,m

2
j ,m

3
j}, and another candidate

model, m4
j , is available to be selected for updating M0

j,l−1. Fig-
ure 7 shows a combination of policy trees (T = 3) obtained by
solving every model in M0

j,l−1 (on the left), and the policy tree of
m4

j (on the right). After N = 6 interactions, Hj consists of three
policy paths: ξ1=〈OL,GR,L,GR,OL〉, ξ2=〈L,GL,L,GR,L〉
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Figure 7: Policy trees of initial models, M0
j,l−1 (left), and the

candidate model, m4
j (right). Node and edge labels are j’s ac-

tions and observations respectively. Darker (red) edges indicate
the occurrence of most probable paths over interactions.

and ξ3=〈L,GL,L,GL,OR〉. These are inferred with the (normal-
ized) frequencies, ωξ1 = 1/6, ωξ2 = 2/3 and ωξ3 = 1/6, respec-
tively.

Pr(at
j |πm4

j
) at the different time steps is given below. The su-

perscripts on actions denote the time step.

Pr(L1|πm4
j
) = 1; Pr(OL1|πm4

j
) = 0; Pr(OR1|πm4

j
) = 0;

Pr(L2|πm4
j
) = 1; Pr(OL2|πm4

j
) = 0; Pr(OR2|πm4

j
) = 0;

Pr(L3|πm4
j
) = 1/2; Pr(OL3|πm4

j
) = 1/4; Pr(OR3|πm4

j
) = 1/4;

Next, we compute Pr(aj |Hj) for each action at each time step.

Pr(L1|Hj) = 5/6; Pr(OL1|Hj) = 1/6; Pr(OR1|Hj) = 0;

Pr(L2|Hj) = 1; Pr(OL2|Hj) = 0; Pr(OR2|Hj) = 0;

Pr(L3|Hj) = 4/6; Pr(OL3|Hj) = 1/6; Pr(OR3|Hj) = 1/6;

Finally, the distance, δ, between the two distributions gives a mea-
sure of closeness of m4

j to the observed trajectories:

δ =(|1− 5/6|+ |0− 1/6|) + (|1− 1|)
+ (|1/2− 2/3|+ |1/4− 1/6|+ |1/4− 1/6|) = 2/3

4. SAVINGS AND PAC BOUND
It is well known that the primary complexity of solving I-DIDs is

due to the exponentially growing number of j’s models over time.
At time step t, there could be |M0

j,l−1|(|Aj ||Ωj |)t many models

of the other agent j, where |M0
j,l−1| is the number of models con-

sidered initially. Previous approaches consider the entire candidate
set of j’s models, M0

j,l−1 = Mj,l−1, where Mj,l−1 is generally
large as it seeks to cover as much as feasible possible models of j.

In contrast, OPIAM considers a relatively small set of j’s models
initially and iteratively explores the rest online. While the adap-
tation phase eventually solves all models in the initial Mj,l−1

(Eq. 2), the primary computational savings arise in the state
space during the look ahead expansion: |M0

j,l−1|(|Aj ||Ωj |)t �
|Mj,l−1|(|Aj ||Ωj |)t, because |M0

j,l−1| � |Mj,l−1|. This makes
solving I-DIDs faster – facilitating real-time solution constraints –
and scales up the solution in the planning horizon.

Recall that we adapt the model space by including the most prob-
able model. As indicated in Def. 3, the model ṁj,l−1 is likely to be
selected when its predicted actions, Pr(aj |ṁj,l−1), are similar to
those found in the most probable paths, Pr(aj |HT

j ), in the com-
parison between policy paths. Hence, exploring j’s model space
online and including the most probable model reduces agent i’s
loss in value due to misprediction. We take further steps to bound
such loss after each iteration of N interactions.

We consider the (typical) condition that agent j’s true model
m∗

j,l−1 is part of Mj,l−1. Let η be the worst L1-norm error in the
prediction of j’s actions at any time step due to the model replace-
ment, η = max

t∈T

∑
aj∈Aj

|Pr(at
j |ṁj,l−1) − Pr(at

j |m∗
j,l−1)|. The

expected value of agent i’s optimal policy given by the I-DID is:

V T (mi,l) = ρ(bi,l, a
∗
i ) +

∑
oi

Pr(oi|bi,l, a∗i )V T−1(m′
i,l)

where ρ(bi,l, a
∗
i )=

∑
s,mj,l−1

bi,l(s,mj,l−1)
∑
aj

Ri(s, a
∗
i , aj)

×Pr(aj |mj,l−1). Here, a∗
i is i’s optimal action and m′

i,l is the up-
dated model of agent i containing the updated belief at the next
time step. We denote the expected value and the immediate ex-
pected reward of agent i’s optimal policy when j’s predicted be-
havior is Pr(aj |ṁj,l−1), instead of Pr(aj |m∗

j,l−1), as V̇ T (mi,l)
and ρ̇(bi,l, ai), respectively. Denote the maximal reward value in
the reward function as Rmax

i .
Proposition 1 with help from Lemmas 1 and 2 gives the differ-

ence in the value functions due to the misprediction, η.

LEMMA 1. For any i’s belief, bi,l, and action, ai,

|ρ(bi,l, ai)− ρ̇(bi,l, ai)| ≤ ηRmax
i

LEMMA 2. For any pair of updated models of agent i, m′
i,l, and

ṁ′
i,l, where the latter is due to differing predictions of j’s actions,

|Pr(oi|bi,l, ai) V
T−1(m′

i,l)− Ṗ r(oi|bi,l, ai) V
T−1(ṁ′

i,l)|
≤ 3η(T − 1) Rmax

i |Ωj |
We use Lemmas 1 and 2 to establish Proposition 1. Brief proofs

of the lemmas and propositions below are given in the Appendix.

PROPOSITION 1. For a given I-DID with initial belief of agent
i, mi,l, let V T (mi,l) be the expected reward from solving a T -
horizon I-DID optimally, and V̇ T (ṁi,l) be the expected reward
from solving a T -horizon I-DID by considering the most probable

model instead of the true model in the set. Let ET �
= |V T (mi,l)−

V̇ T (ṁi,l)|. Then,

ET ≤ ηRmax
i ((T − 1)(1 + 3(T − 1)|Ωi||Ωj |) + 1)

Proposition 1 does not as yet bound the error because a non-
trivial bound for η is not established. Proposition 2 provides the
crucial missing piece probabilistically bounding η using δT and an
error term, ε, that is flexible.

PROPOSITION 2. η ≤ (δT + ε) with probability at least 1 −
|Aj |T

e
2NT (ε/|Aj |T )2

.

Together, Propositions 1 and 2 establish a PAC bound on the
worst error incurred by OPIAM after a single iteration of N inter-
actions between agents i and j. The error accumulates with more
iterations until the algorithm terminates due to which the overall
bound on the error of OPIAM is loose. For the pathological condi-
tion when m∗

j,l−1 /∈ Mj,l−1, the probability is not guaranteed to
improve with increasing samples unless bi,l(Mj,l−1) continues to
satisfy the absolute continuity condition [12].

5. EXPERIMENTAL RESULTS
We implemented OPIAM (Fig. 6) to improve planning in level

1 I-DIDs. As a baseline, another model replacement technique (re-
placing line 18 in Fig. 6) that randomly selects a new model from
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Mj,l−1/M0
j,l−1, labeled as ROnline is used. Previous best ap-

proach for solving I-DIDs compares partial policy trees and be-
lief distributions at the leaf nodes for approximate equivalence and
clustering models [28]. This method, labeled as ε-BE, compacts the
complete model space, Mj,l−1; it is also allowed to interact and
update priors. This approach serves as a high quality benchmark.
A non-adaptive exact method, DMU [26], serves to demonstrate
the benefits of adaptation. All experiments are run on a Windows
platform with 1.9 GHz i3 processor and 6 GB memory.

We compare their performances on two noncoopera-
tive problem domains: the small multiagent tiger (|S|=2,
|Ai|=|Aj |=3, |Ωi|=6, |Ωj |=3, T=6) and the larger multi-unmanned
aerial vehicle (multiUAV) reconnaissance problem (|S|=25,
|Ai|=|Aj |=5,|Ωi|=|Ωj |=5, T=4) [26]. Models of other agents are
IDs that encode the problem and differ in their initial beliefs.
Though this space is continuous, BE offers a way to make this
space discrete and include the true model. Instead, we evaluated
all algorithms for two arbitrary sets of candidate models – Mj =
50 or 100 – from which we select different smaller sets of initial
models (M0

j ). This allowed us to experiment with settings where
the true models of others are not in Mj . The parameter ρ that
guides the termination of the algorithm (Fig.6, line 13) is set as
0.01. Proposition 2 provides a way to obtain N given T , ε and
least probability. This resulted in N ≈ 100 (T = 6, |Aj |=3, ε=0.15
and least probability 0.9) and it varies with T .
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Figure 8: Increasing model weights on the true model (left)
and improving average rewards (right) over time for the case:
m∗

j,l−1 ∈ Mj,l−1, in the multiagent tiger problem. The hor-
izontal line denotes the average reward from the exact DMU
method given a uniform prior over Mj,l−1.

We evaluate OPIAM’s performance under two conditions: (i)
A typical case when the true model, m∗

j,l−1 ∈ Mj,l−1; and (ii)
Because Mj,l−1 is itself finite in practice, a pathological and bold
case where m∗

j,l−1 /∈ Mj,l−1. The latter is often utilized to test
methods for ad hoc cooperation.

For the former case, Fig. 8 (left) demonstrates the probability
mass on the true model with time for different configurations of
M0

j,l−1 and Mj,l−1 in the tiger problem. Increasing weights in-
dicate that m∗

j,l−1 enters the smaller model set. More importantly,

Figure 9: Model weight differences (left) and average rewards
(right) for the case: m∗

j �∈ Mj , in tiger. The weight difference,
Δ in line 12 of Fig. 6 reaches zero.

this model receives much more attention from agent i over time
than its initial weight. Here, time is a function of increasing iter-
ations and interaction lengths. Observe that the model weight sta-
bilizes and the difference in distributions approaches zero with the
algorithm terminating.

Simultaneously, Fig. 8(right) shows the reward obtained over T
steps averaged over N . This increases with time indicating that
OPIAM is progressively generating higher-valued policies that bet-
ter predict agent j’s actions. ROnline’s performance is uneven on
both the true model probability and average rewards. Importantly,
OPIAM is faster than ε-BE whose performance also improves with
time due to improved priors, but holding the entire model space
slows it down considerably despite its aggressive compression.
Each point on the curves indicates a model space adaptation (by
OPIAM and ROnline) and prior update (by OPIAM, ROnline and
ε-BE). Generally fewer points for ε-BE suggests that it is slow, de-
spite its compression, in generating a new plan with updated priors
compared to others.

For the latter case, Fig. 9 (left) shows the differences in model
weights over time, as mentioned in line 12 of Fig. 6. The difference
eventually approaches zero and stays there. The average rewards
do not improve as steadily as they do in the previous case, and they
reach values that are close to positive but lower than those when the
true model is present in the space. However, OPIAM’s performance
remains significantly better than ε-BE, ROnline and DMU. This is
insightful revealing that a combination of models, which can be
seen as an approximation, may partly compensate for the absence
of the true model from the considered space.

In Figs. 10 and 11, we show the performance of OPIAM in the
context of the larger multiUAV problem. While the time duration
has increased, OPIAM continues to exhibit average rewards that
improve on both ε-BE and ROnline. In this larger problem domain,
ε-BE carried out much less rounds of prior update in the given time
period. In some cases, the interaction based on ε-BE takes too much
time to be shown. Importantly, the true model enters M0

j,l−1 when
it’s included in the larger set. But, in its absence, the model weight
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Figure 10: Most probable model weights and average rewards
for the case: m∗

j ∈ Mj , in the larger multiUAV problem.

Figure 11: Weight differences over time and average rewards
for the case: m∗

j �∈ Mj , in UAV problem.

difference approaches zero and stays there. Helped by the online
interactions, both OPIAM and ε-BE reach rewards that improve on
the exact DMU indicated by the flat line.

Finally, we demonstrate the speed up that OPIAM brings in prob-
lems with longer planning horizons and when more agents are shar-
ing the setting. Table 1 shows significant speed up compared to ε-
BE; speed up that increases with problem sizes. ε-BE exhibits poor
scalability with more agents and the corresponding speed ups im-
prove to multiple orders of magnitude. Such speed ups gradually
bring online planning in partially observable multiagent settings to
the realistic time requirements imposed on these algorithms.

2-agent Tiger (sec) 2-agent UAV (sec)
T ε-BE OPIAM Speedup T ε-BE OPIAM Speedup
8 65 11.7 5.6 6 2,973 106 28
15 217 67 3.2 8 * 836 n.a.

5-agent Tiger (sec) 4-agent UAV (sec)
T ε-BE OPIAM Speedup T ε-BE OPIAM Speedup
3 13,818 590 23 2 29,638 840 35
6 * 8,394 n.a. 4 * 7,840 n.a.

Table 1: OPIAM exhibits significant speed up compared to ε-BE
with comparable average rewards. These times reflect multiple
rounds until convergence.

6. RELATED WORK
In settings where others’ actions are not directly observable but

may be inferred through state changes, Sonu and Doshi [20] present
a bimodal approach in which the subject agent initially uses a
single-agent POMDP controller, and switches online to a multia-
gent controller when it is sufficiently certain of the physical state.
Unlike OPIAM, planning is offline and model space is not updated
based on data.

While approaches such as OPIAM that target settings shared
with other agents with possibly conflicting preferences have been
sparse, multiple approaches of online planning for cooperation ex-
ist. Wu et al. [25] use policy equivalence to reduce the size of his-
tories so that agents can continue to coordinate under the condi-
tion of limited communication. A second approach, OPAT, by Wu
et al. [24] performs online planning for ad hoc teams. It targets a
simpler problem setting where the state and joint actions are fully
observable. However, Chandrasekaran et al. [3] show that extend-
ing OPAT to partial observability did not demonstrate better per-
formance than an I-DID based solution when the type of the other
agent is not known a’priori. Harsanyi-Bellman Ad Hoc Coordina-
tion (HBA) [1] provides a generalized stochastic game framework
that maintains a distribution over a set of user-defined teammate
types. Reinforcement learning is utilized to learn the agent’s opti-
mal actions online. However, similar to OPAT, HBA targets settings
where the states and joint actions of others are perfectly observed.

Different from existing online POMDP-based methods [18],
OPIAM targets multiagent settings and adapts the model space
thereby repeatedly changing the state space of the problem.
OPIAM’s focus on a limited set of others’ models is reminiscent
of point-based value iteration for POMDPs [16] and interactive
POMDPs [7]. In these techniques, limited belief points are gen-
erated from simulated trajectories of the subject agent. However, a
key difference is that OPIAM selects models based on probabilis-
tic observations by the subject agent of others’ trajectories, which
help build the most probable paths of others. As we mentioned
previously, OPIAM’s approach could also be utilized in other al-
gorithms that consider models such as memory-bounded dynamic
programming for decentralized POMDPs [19].

7. CONCLUDING REMARKS
A key contribution of OPIAM is its capability to work with a

small model space and adapt it in order to perform fast online plan-
ning. Empirical evaluations demonstrate that average rewards im-
prove with time. In particular, the performance reveals an important
insight: when the true model is absent even from the larger model
space, combinations of models could approximately fit observed
trajectories in a form of equivalence. This is evident from improv-
ing rewards in both the problems for this pathological case. Con-
sequently, OPIAM represents a significant pragmatic step toward
individual online planning in multiagent settings with applications
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in ad hoc cooperation and other methods that maintain models. Our
future work involves exploring other ways of adapting the model
set that exhibits improved accuracy and demonstrating the bene-
fit of this approach in cooperative algorithms as well that ascribe
models to others. The greater speedups in larger domains also en-
courage further investigation into representation and solution tech-
niques for I-DIDs.
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APPENDIX
Denote the maximal reward value in the utility function as Rmax

i .

PROOF OF LEMMA 1. Since both m∗
j,l−1 and mj,l−1 are con-

sidered as behaviorally equivalent models and are assigned with the
same beliefs in the I-DID, we proceed:

|ρ(bi,l, ai)− ρ̇(bi,l, ai)| = | ∑
s,mj,l−1

bi,l(s,mj,l−1)

∑
aj

Ri(s, ai, aj)(Pr(aj |m∗
j,l−1)− Pr(aj |ṁj,l−1))|

≤ η
∑

s,mj,l−1

bi,l(s,mj,l−1)
∑
aj

Rmax
i ≤ ηRmax

i

Next, we give the proof of Lemma 2 in Section 4, which corre-
sponds to Lemma 4 here. First, we establish Lemmas 1 and 2,
which will be needed by Lemma 4.

LEMMA 2. For any, bi,l, ai, oi, and aj , |Pr(oi|bi,l, ai) −
Ṗ r(oi|bi,l, ai)| ≤ η|Ωj |.

LEMMA 3. For any pair of beliefs, b′i,l and ḃ′i,l, obtained by up-
dating the same initial belief and the latter obtained by considering
j’s most probable models for predicting its actions,

Pr(oi|bi,l, ai)|b′i,l − ḃ′i,l|1 ≤ 2η|Ωj |
PROOF SKETCH OF LEMMA 4. Lemmas 2 and 3 combined to-

gether result in Lemma 4 in a straightforward way.

PROOF OF PROPOSITION 1. Note that, V T (mi,l) =
max
ai∈Ai

QT (mi,l, ai). We get

|V T (mi,l)− V̇ T (mi,l)| ≤ max
ai∈Ai

|QT (mi,l, ai)− Q̇T (mi,l, ai)|

Let ai be the particular action that maximizes the above difference.
Construct an intermediate action-value function,

Q̈T (mi,l, ai) = ρ̇(bi,l, ai) +
∑

oi

Ṗ r(oi|bi,l, ai)V T−1(ṁ′
i,l)

Note that Q̈T (mi,l, ai) differs from Q̇T (mi,l, ai) in using the

value function, V T−1(ṁ′
i,l), instead of V̇ T−1(ṁ′

i,l). In other
words, it uses the exact value function at the next time step.

Subsequently, we may rewrite the above as,

|QT (mi,l, ai)− Q̇T (mi,l, ai)| ≤
|QT (mi,l, ai)− Q̈T (mi,l, ai)|+ |Q̈T (mi,l, ai)− Q̇T (mi,l, ai)|

(3)
Focusing on the first term of the right side of (3),

|QT (mi,l, ai)− Q̈T (mi,l, ai)| ≤ |(ρ(bi,l, ai)− ρ̇(bi,l, ai)|
+

∑
oi

|Pr(oi|bi,l, ai)V T−1(m′
i,l)Ṗ r(oi|bi,l, ai)V T−1(ṁ′

i,l)|
≤ ηRmax

i (1 + 3(T − 1)|Ωi||Ωj |)
(4)

Focusing on the second term in the inequality of (3),

|Q̈T (mi,l, ai)− Q̇T (mi,l, ai)| ≤ |(ρ̇(bi,l, ai)− ρ̇(bi,l, ai)|+
|∑
oi

Ṗ r(oi|bi,l, ai)(V T−1(ṁ′
i,l)− V̇ T−1(ṁ′

i,l))|
≤ ∑

oi

Ṗ r(oi|bi,l, ai)|V T−1(m′
i,l)− V̇ T−1(ṁ′

i,l)|
= ET−1

∑
oi

Ṗ r(oi|bi,l, ai) = ET−1

(5)

Substituting (4) and (5) into the inequality of (3) we get,

ET ≤ ηRmax
i (1 + 3(T − 1)|Ωi||Ωj |) + ET−1

≤ ηRmax
i (T − 1)(1 + 3(T − 1)|Ωi||Ωj |) + E1

≤ ηRmax
i (T − 1)(1 + 3(T − 1)|Ωi||Ωj |) + ηRmax

i

= ηRmax
i ((T − 1)(1 + 3(T − 1)|Ωi||Ωj |) + 1)

Observe that the difference in value of agent i’s policy is linearly
bounded by the prediction error, η. The selection of most proba-
ble models, ṁj,l−1, reduces this error, which optimizes the perfor-
mance of our algorithm.

PROOF OF PROPOSITION 2. Let HT
j = ξ

T,(1)
j , ξ

T,(2)
j , . . .,

ξ
T,(N)
j be the N most probable paths of agent j obtained from the

interactions before the adaptation phase in OPIAM. These paths are
likely to be simulations of j’s true model, m∗

j,l−1. Then,

Pr(aj |HT
j )

�
=

∑
ξ
T,(k)
j ∈HT

j

ωξTj
Pr(aj |ξT,(k)

j )

We may view Pr(aj |HT
j ) as the sample mean and Pr(aj |m∗

j,l−1)
as the true mean. Hoeffding’s inequality [10] provides a bound on
the probable rate of convergence of the sample mean to true mean:

Pr(|Pr(atj |HT
j )− Pr(atj |m∗

j,l−1)| > ε̂) ≤ 1

e2NTε̂2

Pr(
∑

t

∑

aj

|Pr(atj |HT
j )− Pr(atj |m∗

j,l−1)| > |Aj |T ε̂) ≤ |Aj |T 1

e2NTε̂2

Pr(
∑

t

∑

aj

|Pr(atj |HT
j )− Pr(atj |m∗

j,l−1)| > ε) ≤ |Aj |T 1

e2NT (ε/|Aj |T )2

where ε = |Aj |ε̂.
Pr(aj|m∗

j,l−1)

Pr(aj|mj,l−1)

η̃ ε

P r(aj|HT
j )

δT

Figure 12: η̃, δT , and ε form a triangle.

Subsequently,

Pr(
∑

t

∑

aj

|Pr(atj |HT
j )−Pr(atj |m∗

j,l−1)| ≤ ε) ≥ 1−|Aj |T 1

e2NT (ε/|Aj |T )2

(6)

Recall that, η = max
t

∑
aj

|Pr(at
j |ṁj,l−1) − Pr(at

j |m∗
j,l−1)| and

δT =
∑
t

∑
aj∈Aj

|Pr(at
j |πT

ṁj
)−Pr(at

j |HT
j ))|, where ṁj,l−1 is the

most probable model selected for inclusion in M0
j,l−1 per Def. 3.

Let η̃ =
∑
t

∑
aj

|Pr(at
j |ṁj,l−1)− Pr(at

j |m∗
j,l−1)| where η ≤ η̃.

Figure 12 shows the relationships between the three differences.
Subsequently, from the law of triangle inequality, η ≤ η̃ ≤
(δT + ε) where upper bound ε obtains with probability at least

1− |Aj |T
e
2NT (ε/|Aj |T )2

.
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