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ABSTRACT
For Markov decision processes with long horizons (i.e., dis-
count factors close to one), it is common in practice to
use reduced horizons during planning to speed computation.
However, perhaps surprisingly, when the model available
to the agent is estimated from data, as will be the case in
most real-world problems, the policy found using a shorter
planning horizon can actually be better than a policy learned
with the true horizon. In this paper we provide a precise
explanation for this phenomenon based on principles of learn-
ing theory. We show formally that the planning horizon is a
complexity control parameter for the class of policies to be
learned. In particular, it has an intuitive, monotonic rela-
tionship with a simple counting measure of complexity, and
that a similar relationship can be observed empirically with
a more general and data-dependent Rademacher complexity
measure. Each complexity measure gives rise to a bound on
the planning loss predicting that a planning horizon shorter
than the true horizon can reduce overfitting and improve test
performance, and we confirm these predictions empirically.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Dynamic programming

Keywords
Reinforcement learning; over-fitting; discount factor

1. INTRODUCTION
When planning with Markov decision processes (MDPs),

we distinguish between two different horizons (or discount
factors). The evaluation horizon, specified by the problem
formulation, is part of the definition of the ultimate measure
of performance for a policy and cannot be changed. The
planning horizon, on the other hand, is a parameter supplied
to the planning algorithm; it affects the resulting policy but
need not match the evaluation horizon. Generally, the deeper
or longer the planning horizon, the greater the computational
expense of computing a policy [1, 2], while in principle the
shallower or shorter the planning horizon (relative to the
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evaluation horizon), the more suboptimal the resulting policy
is likely to be [1]. Thus, there is a tradeoff between compu-
tation and optimality that is relatively well-understood in
cases where the model used for planning is accurate.

In this paper, we argue that there is another important
reason to use shorter planning horizons in the more realistic
case where the model used for planning is estimated from
data: avoiding overfitting. Specifically, we show formally that
the planning horizon controls the complexity of the policy
class—shorter planning horizons define less complex policy
classes. As in supervised learning, the optimal complexity
(and therefore the optimal planning horizon) depends on the
quantity of data used to estimate the model.

We explore two measures of complexity in this paper.
The first is a simple and intuitive counting measure that
we show is monotonically related to the planning horizon.
The second is a Rademacher complexity measure [3], which
affords a more general analysis. For each measure we prove
a bound on the planning loss given a particular choice of
planning horizon. Each bound has two terms that depend
in opposite ways on the planning horizon: one prefers the
longest possible planning horizon (up to the true horizon),
encouraging fidelity to the ultimate evaluation metric, while
the other encourages the shortest possible planning horizon,
keeping the policy class simple and thereby reducing the
possibility of overfitting. In general, the bounds suggest that
some intermediate planning horizon will be optimal. We
verify these predictions empirically, showing that even in the
absence of computational constraints it can be beneficial to
use a reduced planning horizon.

Section 2 provides background on planning in MDPs. Sec-
tions 3 and 4 formalize the counting complexity measure.
Rademacher complexity is discussed in Section 5, and Sec-
tion 6 provides experimental validation of our claims.

2. PRELIMINARIES: MDP PLANNING
An MDP specifies the agent-environment interaction model

as a 5-tuple M = 〈S,A, T,R, γeval〉, where S is the state
space, A is the action space, T : S × A × S → [0, 1] is the
transition probability function, R : S×A→ R is the expected
reward function, and γeval is the evaluation discount factor.
The agent’s goal is to maximize expected utility, the expected
value of the sum of future reward discounted by γeval. We
assume rewards are bounded in the interval [0, Rmax]. A
policy π : S → A is a mapping from states to actions. A
policy that when followed maximizes expected utility in M
is an optimal policy; we denote such a policy as π∗M,γeval to
make explicit its dependence on γeval. We denote the value
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function of policy π evaluated in MDP M using discount
factor γ as V πM,γ ∈ R|S|.

Certainty-equivalence control. In practical settings,
we rarely know the true model of the agent-environment
interaction. Here, we are interested in the case where the
model is estimated from experience data in the real world;
scarcity of data then implies that our model will only be ap-
proximate. In certainty-equivalence control we act according
to the policy that is optimal with respect to the inaccurate
model used for planning. Hereafter, we will be concerned
with the performance of the certainty-equivalence policy de-

rived from an estimated model M̂ using a guidance discount

factor γ (which might not be equal to γeval). (If M̂ = M
and γ = γeval, the certainty-equivalence policy is optimal.)

In particular, we will consider M̂ that differs from M in T
and R, and γ ≤ γeval.

Evaluation. We emphasize that the certainty-equivalence

policy computed using γ in model M̂ will nonetheless be
evaluated in M using γeval. We capture this explicitly in
our definition of the planning loss as the largest (over states)
absolute difference in the values of the optimal policy π∗M,γeval
and the CE-control policy π∗

M̂,γ
when each is evaluated in

the true environment M with the evaluation discount factor
γeval. Formally, we have

Planning loss : ‖V
π∗M,γeval
M,γeval

− V
π∗
M̂,γ

M,γeval
‖∞ , (1)

where ‖·‖∞ denotes the L∞ norm of a vector, i.e., the largest
absolute value of any entry.

Discount factors and planning horizon. When com-
puting a policy with guidance discount factor γ, there is an
implicit notion of planning horizon. The larger γ, the longer
the planning horizon, because rewards further into the future
have an effect on the choice of optimal action in the current
state. Indeed, in tree-search based planning algorithms such
as UCT [4, 2], γ is explicitly translated into a planning hori-
zon (usually by setting it to 1

(1−γ)
). Here, we use guidance

discount factor and planning horizon interchangeably with
the understanding that the actual use depends on the nature
of the planning algorithm.

Optimal guidance discount factor. The decoupling
of γeval and γ is fundamental to our work. The former is
specified by the MDP, while the latter is a parameter under

the control of the planning algorithm. If M̂ = M , the only
reason for γ < γeval would be to obtain computational savings
(at the expense of acting suboptimally). Our aim is to show

that when M̂ 6= M there is another important reason to pick
γ < γeval.

Given M and M̂ , an optimal guidance discount factor can
be defined as follows:

γ∗ = arg min
0≤γ≤γeval

‖V
π∗M,γeval
M,γeval

− V
π∗
M̂,γ

M,γeval
‖∞ . (2)

This is the discount factor the certainty-equivalence planner
should use to minimize planning loss. (In general, there
will be a range of optimal values for γ∗; for computational
reasons it is natural to pick the smallest value in that range.)

3. PLANNING HORIZON & COMPLEXITY
Equation 2 suggests that γ∗ < γeval might be optimal—and

indeed this is often observed in practice—but we do not yet
have a clear intuition about when or why that would be true.

We offer the following explanation: γ is a complexity control
parameter for the policy class. Specifically, we will show
in this section that γ monotonically controls the number
of policies that can be optimal given a fixed state space,

action space, and reward function. When M̂ is estimated
from a limited data set, we can therefore avoid overfitting in
policy selection by restricting the number of available policies
through γ. (In Section 5, we will extend this intuition to a
more sophisticated Rademacher measure.)

In the traditional empirical risk minimization setting for
supervised learning, training data are used to evaluate the
models in a given model class, and the model with the lowest
training error is selected [5]. Overfitting occurs when the
model class is too complex compared to the effective size of
the dataset, and one way to avoid overfitting is to limit the
complexity of the model class.

We draw analogies to four elements in this scenario: (1)
the size of the dataset, (2) the complexity of the model class,
(3) empirical risk minimization as a method for selecting a
model from the class of models, and (4) some way to con-
trol model complexity. In our planning setting, the size of
the dataset corresponds to the number of samples used to

estimate M̂ . We assume that for every state-action pair
(s, a), we observe n samples of the successor state drawn
from the true transition function. (For now, we assume that
the rewards R are known exactly.) The model class in our

setting is the set of policies that might be optimal in M̂ , and,
initially, the complexity of the model class corresponds to
the number of policies being searched over. Empirical risk
minimization corresponds to selecting the optimal policy for

M̂ , as achieved by certainty-equivalence planning. These
three correspondences are evident. It remains to show that
reducing the guidance discount factor γ corresponds to re-
ducing the size of the policy class being searched over by
planning. Theorem 1 shows that this is indeed the case.

Theorem 1. For any fixed state space S, action space A,
and reward function R, define

ΠR,γ = {π : ∃ T s.t. π is optimal in 〈S,A, T,R, γ〉}. (3)

Then the following claims hold:

1.
∣∣ΠR,0

∣∣ = 1
if, for all s ∈ S, arg maxa∈AR(s, a) is unique.

2. ∀γ, γ′ : 0 ≤ γ ≤ γ′ < 1, ΠR,γ ⊆ ΠR,γ′ .

3. ∃ γ ∈ [0, 1),
∣∣ΠR,γ

∣∣ ≥ |A||S|−2

if ∃ s, s′ ∈ S, maxa∈AR(s, a) > maxa′∈AR(s′, a′) .

The assumption for claim 1 ensures that there are no ties
in the maximal reward for each state, and the assumption
for claim 3 requires that one cannot obtain the maximal
reward at every state. Note that ΠR,γ counts policies that
are optimal as T is allowed to vary arbitrarily, but explicitly
depends on the fixed, known reward function R. (If R were
allowed to vary with T , then every policy could be optimal
at every γ.) In Section 5 we will show how this restriction
can be lifted.

Taken together, the three claims of Theorem 1 show that
γ monotonically adjusts the size of the policy class from 1 to
at least |A||S|−2, which is “almost all” of the |A||S| possible
policies. Thus the choice of guidance discount factor tightly
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Figure 1: Learning curves as a function of γ, the guidance dis-
count factor. For each MDP M sampled from the Random-

MDP distribution specified in Section 6 we build M̂ by
sampling each state-action pair n = 2, 5, 10, or 20 times; the
different subgraphs correspond to different values of n. The
reward function is assumed known, and γeval = 0.99. The
training loss is the negative value of the certainty-equivalence

policy on the estimated model M̂ : − 1
|S|
∑
s∈S V

π∗
M̂,γ

M̂,γeval
(s),

and the test loss is the negative value of that same policy

on the actual MDP M : − 1
|S|
∑
s∈S V

π∗
M̂,γ

M,γeval
(s). Confidence

intervals are computed using 1000 i.i.d. draws of M .

controls complexity. Figure 1 illustrates this by showing
that, as γ varies from 0 to γeval, we recover the traditional
learning curves from supervised learning (see caption for
details). Training loss decreases monotonically as γ increases,
while test loss is U-shaped, indicating that an overly large
γ causes overfitting. We can also see in Figure 1 that the
location of the minimum of the test loss curve—that is, the
optimal test γ—shifts to the right as we get more data.

We now prove the three claims in turn. The first is straight-
forward; given the stated assumption, the optimal policy does
not depend on T when γ = 0. Thus, the policy that picks
the action with the highest immediate reward is the only one
that can be optimal.

Proof of Theorem 1, claim 2. We will prove that for
γ ≤ γ′, π ∈ ΠR,γ ⇒ π ∈ ΠR,γ′ . Let T be a transition
function for which π is optimal in 〈S,A, T,R, γ〉. We will
construct T ′ such that the MDP M ′ = 〈S,A, T ′, R, γ′〉 has
the property that for all π′ : S → A,

V π
′

M′,γ′ = cV π
′

M,γ , (4)

where c is a positive constant that only depends on γ and
γ′. Consequently, π is also optimal in M ′. Let T ′(s, a, s′) =
(1 − α)T (s, a, s′) + αI(s = s′), where I(·) is the indicator
function and α is a scalar in the range [0, 1]. That is, T ′ is a
transition function where, with probability 1−α, transitions
behave according to T , but with probability α, a state simply

transitions to itself. Recall that

V π
′

M,γ = (I − γ[Tπ
′
])−1Rπ

′
(5)

V π
′

M′,γ′ = (I − γ′[T ′π
′
])−1Rπ

′
, (6)

where [Tπ
′
] is the |S|×|S|matrix with [Tπ

′
](s, s′) = T (s, π′(s), s′)

and Rπ
′

is the |S| × 1 vector with Rπ
′
(s) = R(s, π′(s)). We

have

[T ′π
′
] = (1− α)[Tπ

′
] + αI , (7)

hence

V π
′

M′,γ′ =
(
I − γ′

(
(1− α)[Tπ

′
] + αI

))−1

Rπ
′

=
(

(1− γ′α)I − γ′(1− α)[Tπ
′
]
)−1

Rπ
′

=
1

1− γ′α

(
I − γ′(1− α)

1− γ′α [Tπ
′
]

)−1

Rπ
′
.

Letting γ′(1−α)
1−γ′α = γ, we get α = 1−γ/γ′

1−γ , which is between 0

and 1 since 0 ≤ γ ≤ γ′ < 1, and thus

V π
′

M′,γ′ =
1− γ
1− γ′ V

π′
M,γ . (8)

This completes the proof.

Proof of Theorem 1, claim 3. The proof is by con-
struction. Let (s∗, a∗) be a state-action pair that achieves
the highest reward among all state-action pairs. Let s′ be a
state whose maximal reward action a′ gives reward strictly
less than R(s∗, a∗). Such a state always exists under the
assumption for this claim in the theorem. Consider an arbi-
trary policy π, with the only constraints that π(s∗) = a∗ and
π(s′) = a′. Then the following transition function makes π
optimal for large enough γ:

∀ s ∈ S T (s, a, ·) =

{
1s∗ if a = π(s), s 6= s′

1s′ otherwise
(9)

where 1(·) denotes the delta distribution. The optimality of
π at s∗ and s′ is trivial, as both states are absorbing and π
chooses the action that maximizes immediate reward. In any
other state s, we show that π is optimal by comparing the
optimal Q-value of (s, π(s)) to that of (s, a) for any other
action a:

Q∗(s, π(s)) = R(s, π(s)) +
γ

1− γR(s∗, a∗), (10)

Q∗(s, a) = R(s, a) +
γ

1− γR(s′, a′). (11)

We know R(s∗, a∗) − R(s′, a′) > 0, and as γ approaches
one, γ/(1− γ) tends to infinity, so for sufficiently large γ we
can guarantee that Q∗(s, π(s)) > Q∗(s, a). Recall that we
constrained π in only two states, hence the number of such
policies is |A||S|−2.

4. PLANNING LOSS BOUND
Completing the connection to model class complexity in

supervised learning, we show that the loss of the certainty-

equivalence policy for M̂ is bounded, with high probability, in
terms of the policy class complexity |ΠR,γ |. This is analogous
to a standard generalization bound [6], and implies that an
intermediate value of γ will generally be optimal; moreover,
as the amount of data (n) increases, so does the optimal γ.
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Figure 2: The relationship between empirical Rademacher

complexity (maxs,a R̂Ds,a(FM,γ))1and guidance discount fac-
tor γ. Results are averaged over 10,000 MDPs sampled from
the Random-MDP distribution (see Section 6), and both the
reward and transition functions are estimated from samples.

Theorem 2. Let M be an MDP with non-negative re-

wards and evaluation discount factor γeval. Let M̂ be an
MDP comprising the true reward function of M and a transi-
tion function estimated from n samples for each state-action

pair. Then certainty-equivalence planning with M̂ using guid-
ance discount factor γ ≤ γeval has planning loss

‖V
π∗M,γeval
M,γeval

− V
π∗
M̂,γ

M,γeval
‖∞ ≤

γeval − γ
(1− γeval)(1− γ)

Rmax+

2Rmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ |
δ

(12)

with probability at least 1− δ.

The proof of the theorem is in Appendix A. The upper
bound in Theorem 2 has two terms. The first is a bound on
the planning loss incurred by using the guidance discount
factor γ instead of the evaluation discount factor γeval in the
true M . This term goes to zero as γ increases and approaches
γeval. The second term isolates the planning loss due to the

use of M̂ instead of M , but does not depend on γeval. In
contrast to the first term, this term increases with γ, since
greater policy class complexity allows performance on M

and M̂ to diverge more dramatically. The dependence on
the policy complexity

∣∣ΠR,γ

∣∣ is the novelty of our bound,
compared to related work bounding loss by model errors or
Bellman residuals [7, 8, 9].

The two terms in the bound of Theorem 2 depend in
opposite ways on γ, therefore the bound will be optimized at
some intermediate value. As the amount of data n increases,
the second term will shrink and the bound will prefer larger
values of γ. We will observe this behavior empirically in
Section 6.

5. RADEMACHER COMPLEXITY BOUND
In the previous sections we showed how |ΠR,γ | can be used

to bound the loss of certainty-equivalence planning. While

1Since we cannot feasibly enumerate all possible values of
{σi}ni=1 to compute the expectation in Equation 13, we take
the standard approach and sample them uniformly to obtain
an approximation [10, 11]. We found that 100 samples was
sufficient to give low variance.

this simple complexity measure has the advantage of being
easy to interpret and allowed us to prove a clean, monotonic
relationship with the guidance discount factor, the analysis
required assuming that the reward function was known. Fur-
thermore, hypothesis-counting measures of complexity are
typically weak, whereas modern data-dependent measures
can be significantly tighter and more sensitive [12].

In this section, we present an alternative analysis using a
Rademacher complexity measure [3] that does not assume
the reward function is known. We provide a loss bound
parallel to that in Theorem 2, which is also optimized at an
intermediate γ that increases with sample size.

Theorem 3. Let M be an MDP with non-negative re-

wards and evaluation discount factor γeval. Let M̂ be an
MDP comprising reward and transition functions estimated
from n samples for each state-action pair. Then certainty-

equivalence planning with M̂ using guidance discount factor
γ ≤ γeval has planning loss

‖V
π∗M,γeval
M,γeval

− V
π∗
M̂,γ

M,γeval
‖∞ ≤

γeval − γ
(1− γeval)(1− γ)

Rmax+

2

1− γ

(
2 max
s∈S
a∈A

R̂Ds,a(FM,γ) +
3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)
,

with probability at least 1− δ, where

• FM,γ = {fπM,γ : π ∈ S → A}, with

fπM,γ(r, s′) = r + γV πM,γ(s′) .

• Ds,a is the set of n pairs of immediate reward & next-
state sampled from (s, a) in dataset D.

• R̂Ds,a(FM,γ) is the empirical Rademacher complexity
of function class FM,γ w.r.t. input points Ds,a, i.e.,

E
σi

i.i.d.∼ unif{−1,1}
i=1,...,n

 sup
f∈FM,γ

1

n

∑
(r,s′)∈Ds,a

σif(r, s′)

 . (13)

The proof of the theorem is in Appendix B. The bound
has the same decomposition as Theorem 2, but replaces the

second term (loss due to planning with M̂ under γ) with a
bound in terms of the Rademacher complexity of a function
class FM,γ in which each function corresponds to a policy in

the MDP. For each state-action pair, the empirical model M̂
can be viewed as implicitly learning the expected values of
all the functions in FM,γ simultaneously from input samples
Ds,a. The maximal deviation (over all functions) can be
bounded by a state-action specific Rademacher complexity,
and the worst case complexity (over all state-action pairs)
translates to planning loss.

To show that the bound is optimized by an intermediate
γ which increases with sample size n, it suffices to show
that the second term increases with γ and decreases with
n. This would be straightforwardly true if we knew that

maxs∈S,a∈A R̂Ds,a(FM,γ) increased monotonically with γ in
the manner of Theorem 1. We leave a formal result to future
work; here we show empirically that the data-dependent
Rademacher complexity is strongly and positively correlated
with γ in practice: see Figure 2, where the relationship
appears clearly monotonic. Thus Theorem 3 has the same
qualitative interpretation as Theorem 2 while employing the
more sensitive Rademacher measure.
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Figure 3: Planning loss as a function of γ for a single MDP
drawn from Random-MDP. From top to bottom, the curves
correspond to increasing dataset sizes and are labeled by the
number of trajectories in the dataset.

6. EXPERIMENTAL RESULTS
We now show experimentally that the phenomena pre-

dicted by the preceding theoretical discussion do, in fact,
appear in practice. In particular, we will see that the optimal
choice of guidance discount factor can be smaller than γeval,
and as we increase the amount of data used to estimate the
model, a larger γ tends to be preferable.

For these experiments we randomly sampled 1,000 MDPs
with 10 states and 2 actions from a distribution we refer to
as Random-MDP, defined as follows. For each state-action
pair (s, a), the distribution over the next state, P (s, a, ·), is
determined by choosing 5 non-zero entries uniformly from
all 10 states, filling these 5 entries with values uniformly
drawn from [0, 1], and finally normalizing P (s, a, ·). The
mean rewards were likewise sampled uniformly and indepen-
dently from [0, 1], and the actual reward signals have additive
Gaussian noise with standard deviation 0.1. For all MDPs
we fixed γeval = 0.99.

For each generated MDP M , and for each value of n ∈
{5, 10, 20, 50}, we independently generated 1,000 data sets,
each consisting of n trajectories of length 10 starting at uni-
formly random initial states and choosing uniformly random
actions. While our theoretical results assume the data set
comprises n samples for each state-action pair, for our ex-
periments we chose to generate trajectories since for most
applications they are a more realistic way to collect data.
(We also performed the same experiments using samples of
state-action pairs and the results were qualitatively similar.)

For each datasetD, we set M̂ to be the maximum-likelihood

model; that is, the estimated reward R̂(s, a) is the mean of
the rewards observed at (s, a), and the estimated transition

probability T̂ (s, a, s′) is the number of times we observe the
transition (s, a)→ s′ in D divided by the number of times
we observe (s, a). If some (s, a) has never been seen in a

dataset, we set R̂(s, a) = 0.5 and T̂ (s, a, s′) = 1/|S|.
For each value of γ ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99}, we compute

the empirical loss

1

|S|
∑
s∈S

(
V
π∗M,γeval
M,γeval

(s)− V
π∗
M̂,γ

M,γeval
(s)

)
, (14)

and pick the γ that minimizes the loss as an estimate of γ∗

(see Equation 2), breaking ties randomly.
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Figure 4: Optimal guidance discount factor as a function of
dataset size, averaged over 1,000 MDPs from Random-MDP
and 1,000 datasets for each MDP. Higher values (closer to
one) are optimal for minimizing the planning-loss of certainty-
equivalence policies as the amount of data increases.
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Figure 5: Histogram of the correlation between dataset size
and γ∗ over 1,000 randomly generated MDPs from Random-
MDP. For almost all the MDPs, there is a positive correlation
between dataset size and γ∗, indicating that γ∗ increasing
with dataset size does not only hold in the average sense, but
also applies to individual problems.

Figure 3 shows the empirical loss averaged over datasets
as a function of the guidance discount factor γ for a char-
acteristic MDP. Each curve in the figure corresponds to a
particular number of trajectories as data. The error bars
in this figure and elsewhere show 95% confidence intervals.
We can see that the curves exhibit the U-shape predicted by
the theory, with minimum planning loss achieved at some γ∗

less than γeval. As expected, increasing dataset size reduces
planning loss in general, and shifts γ∗ to the right.

Figure 4 explicitly measures this shift by averaging the
estimated γ∗ across all 1,000 generated MDPs and their
datasets. We can see clearly that as the amount of data
increases, the optimal guidance discount factor increases as
well. In the limit, of course, γ∗ should equal γeval. However,
for these values of dataset size the average γ∗ is always
significantly less than γeval; this means that using the true
evaluation horizon for planning will lead to an increase in
loss. While, conventionally, the use of a shorter horizon for
planning has been justified based on computational savings,
our result shows that in this setting it can decrease loss as
well.

To complement the average-case analysis in Figure 4, Fig-
ure 5 shows the distribution of the correlation between
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Figure 6: Performance of UCT as a function of planning
depth. For each curve, the number of UCT trajectories is
fixed to 5,000, 20,000, or 100,000. For each point on the
graph, the UCB scalar has been separately optimized by
sweeping through the values in 10 · exp{−2,−1, 0, 1, 2}. For
the 5,000 and 20,000 trajectory curves, each point is an
average of 5,000 independent trials; the 100,000 trajectory
curve is an average over 1,000 trials.

dataset size and γ∗ over 1,000 individual MDPs. This corre-
lation is positive with very high probability, implying that
in almost all cases (under Random-MDP) the theoretical
relationship between dataset size and γ∗ is borne out in
practice.

6.1 Optimal planning depth in UCT
The previous experiments used small-state problems for

which we could and did use perfect planning algorithms
(value iteration) on the MDPs estimated from data. How-
ever, another common planning setting is one where we have
an accurate (generative or probability) model, but the size
of state space is so large that exact planning is impossible.
Instead, incremental planning algorithms such as UCT must
be used [2]. These algorithms repeatedly sample a search tree
(rooted at the current state) that implicitly defines an inaccu-

rate local model M̂ from which a policy is derived. Here we
show that the main intuition obtained above—that planning
horizon controls complexity, hence the more inaccurate the
model the shorter the planning horizon that should be used—
holds for UCT as well (see [13] for an alternative approach
to controlling complexity in UCT via state abstractions).

In this setting, we do not have “data” in the sense of
recorded experiences; instead, the accuracy of the local model
is mediated by the number of trajectories sampled at the cur-
rent state. Similarly, rather than manipulating a continuous
discount factor γ we will control complexity via the planning
depth, a discrete hyperparameter that sets the maximum
length of the sampled trajectories. Our aim is to show that
the relationship we have established between dataset size and
discount factor for value iteration holds analogously between
the number and depth of UCT trajectories.

We used a benchmark POMDP domain RockSample [14]
and evaluated UCT’s performance with different numbers
of trajectories and different maximum depths. A detailed
description of this infinite-sized belief-state space domain
can be found in [15]; we used a map of size 7× 8. Since this
problem is episodic, we use the average cumulative reward
per episode as our evaluation metric in place of planning loss
(and so higher is better). Since episodes are usually on the
order of hundreds of time steps, setting the planning depth

to this level is computationally infeasible. However, Figure 6
shows that choosing a small planning depth not only speeds
computation but also helps performance when the number
of trajectories is limited.

In particular, an intermediate value of planning depth
always achieves the highest cumulative reward. Moreover,
as the number of trajectories grows from 5000 to 20000
to 100000, that optimal planning depth increases. This is
qualitatively the same behavior we have seen before.

6.2 Selecting γ via cross-validation
We have seen that choosing γ < γeval often improves

performance, but how should we go about selecting the
optimal γ in practice? In supervised learning, k-fold cross-
validation is one of the most common techniques for selecting
hyperparameters to avoid overfitting, and it is easy to apply
here as well. (Indeed, we suspect cross-validation is often
used in practice for choosing discount factors though we are
unaware of any specific reference.)

Specifically, given a dataset D drawn from MDP M , we can
split the sample trajectories into (state, action, reward, next-
state) tuples, and then divide the tuples randomly into k folds
of equal size, D1, . . . ,Dk. For each fold j = 1, 2, . . . , k, the

validation model M̂j is defined to be the maximum-likelihood

model learned from Dj , and the training model M̂−j is the
one learned from D \Dj . Then for each candidate γ, the
validation value on fold j is given by

ValidationValuej(γ) =
1

|S|
∑
s∈S

V
π∗
M̂−j ,γ

M̂j ,γeval
(s) . (15)

Cross-validation selects the value of γ that maximizes the
validation value averaged over all folds.

However, there is a potential problem. While cross-validation
produces unbiased estimates of loss in most supervised set-
tings, in certainty-equivalence planning the use of a finite
validation set biases our estimate of a policy’s true value.
This happens because, although the transition and reward
functions in the validation model are themselves unbiased,
the validation value of a policy is computed via a nonlin-
ear matrix inverse (see Equation 6). Thus, for instance, a
myopic policy may perform well in a model estimated from
a small validation set due to reduced stochasticity. Under
mild assumptions the bias can be shown to decrease much
faster than variance when sample size is sufficiently large [16];
however, in practice our data sets are often relatively small.

Despite this caveat, our experiments in this section show
that, at least in some instances, cross-validation can still be
an effective practical tool for choosing γ. We leave the design
and analysis of other cross-validation schemes for MDPs to
future work; see also [17] for some discussion of this issue.

Figure 7 shows the average loss when choosing γ via 3-fold
cross-validation compared to the losses obtained using fixed
values of γ. We can see that small values of γ incur relatively
large loss when there are sufficient samples, and large values
of γ incur relatively large loss when there are few samples. In
other words, no fixed γ dominates the others over all sample
sizes. In contrast, cross-validation is able to achieve loss close
to the best fixed γ at each sample size simultaneously by
selecting γ adaptively as sample size changes.
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Figure 7: 3-fold cross-validation vs. fixed γ . Domain distri-
bution and candidate guidance discount factors are the same
as in Figure 4. We plot average loss as a function of sample
size in terms of the number of trajectories.

7. RELATED WORK
The loss induced by a finite planning horizon is known

as truncation loss (see related bounds in [1]). Separately, it
is also well-understood how planning loss relates to model
inaccuracy, which can come from estimation error when the
model is constructed from data [7, 16], and/or approximation
error when approximations are employed in planning (i.e.,
state abstractions [18]). It has been noted that such loss can
have significant dependence on horizon [8, 19, 9]. To our
knowledge, [20] is the first work to show how a short horizon
can reduce loss when the model is inaccurate due to approxi-
mation errors. Our work explores a similar phenomenon due
to estimation errors, and our analysis exploits the structure
of these errors as well as established principles in supervised
learning to obtain stronger claims about γ∗ and dataset size.

8. CONCLUSION
We presented a connection between model complexity and

planning horizon by developing a theoretical and empirical
analogy to overfitting in supervised learning. We showed
that the planning horizon controls the complexity of the
policy space, and proved bounds on the loss of the certainty-
equivalence policy using a simple counting complexity mea-
sure as well as Rademacher complexity. Each bound sets up
a tradeoff between a term in which a larger planning horizon
reduces the loss incurred in an accurate model and a term in
which a smaller planning horizon reduces the complexity of
the policy space and thereby controls overfitting. Empirical
results confirm that the optimal choice of guidance discount
factor is usually smaller than the discount factor defined by
the problem, and that the optimal guidance discount factor
increases with the amount of data.
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APPENDIX
A. PROOF OF THEOREM 2

We begin by proving Lemma 1 and Lemma 2.

Lemma 1. For any MDP M with rewards in [0, Rmax],
∀π : S → A and γ ≤ γeval,

V πM,γ ≤ V πM,γeval ≤ V πM,γ +
γeval − γ

(1− γeval)(1− γ)
Rmax . (16)

Proof. The lower bound on V πM,γeval follows directly
from the assumption that reward is non-negative and that
γ ≤ γeval. For the upper bound, (letting [Tπ] denote the
transition probability matrix for policy π)∥∥V πM,γeval − V πM,γ∥∥∞

=
∥∥∥ ∞∑
t=1

(γeval
t−1 − γt−1)[Tπ]t−1Rπ

∥∥∥
∞

≤
∞∑
t=1

(γeval
t−1 − γt−1)Rmax

= (
1

1− γeval
− 1

1− γ )Rmax =
γeval − γ

(1− γeval)(1− γ)
Rmax.2

Lemma 2. Given true MDP M , let M̂ be an MDP com-

prising reward function R̂ = R and transition function T̂
estimated from n samples for each state-action pair, then∥∥∥∥V π∗M,γM,γ − V

π∗
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ |
δ

with probability at least 1− δ.

We prove Lemma 2 with two additional lemmas: Lemma 3
translates planning loss to value error, and Lemma 4 relates
value error to a Bellman-residual-like quantity that has a
uniform deviation bound which depends on

∣∣ΠR,γ

∣∣.
Lemma 3. For any M̂ = 〈S,A, T̂ , R̂, γ〉 with R̂ bounded

by [0, Rmax],∥∥∥∥V π∗M,γM,γ − V
π∗
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π:S→A

∥∥∥V πM,γ − V πM̂,γ

∥∥∥
∞
. (17)

In particular, if R̂ = R, we have∥∥∥∥V π∗M,γM,γ − V
π∗
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π∈ΠR,γ

∥∥∥V πM,γ − V πM̂,γ

∥∥∥
∞
. (18)

Proof. ∀s ∈ S,

V
π∗M,γ
M,γ (s)− V

π∗
M̂,γ

M,γ (s)

=
(
V
π∗M,γ
M,γ (s)− V π

∗
M,γ

M̂,γ
(s)
)
−
(
V
π∗
M̂,γ

M,γ (s)− V
π∗
M̂,γ

M̂,γ
(s)

)
+(

V
π∗M,γ
M̂,γ

(s)− V
π∗
M̂,γ

M̂,γ
(s)

)
≤
(
V
π∗M,γ
M,γ (s)− V π

∗
M,γ

M̂,γ
(s)
)
−
(
V
π∗
M̂,γ

M,γ (s)− V
π∗
M̂,γ

M̂,γ
(s)

)
≤ 2 max

π∈
{
π∗
M̂,γ

,π∗
M,γ

}
∣∣∣V πM,γ(s)− V π

M̂,γ
(s)
∣∣∣ .

Equation 17 follows from taking max over all states on both
sides of the inequality and noticing that the set of all poli-

cies is a trivial superset of
{
π∗
M̂,γ

, π∗M,γ

}
. If R̂ = R, the

bound can be tightened since
{
π∗
M̂,γ

, π∗M,γ

}
⊆ ΠR,γ and

Equation 18 follows.
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Lemma 4. For any M̂ = 〈S,A, T̂ , R̂, γ〉 with R̂ bounded
by [0, Rmax], ∀π : S → A,∥∥∥QπM,γ −QπM̂,γ

∥∥∥
∞

≤ 1

1− γ max
s∈S,a∈A

∣∣∣R̂(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)
∣∣∣ .

Proof. Given any policy π, define state-action value func-
tions Q0, Q1, Q2, . . . , Qm, . . . such that Q0 = QπM,γ , and

Qm(s, a) = R̂(s, a) + γ〈T̂ (s, a, ·), Vm−1〉,

where Vm−1(s) = Qm−1(s, π(s)). Notice that

‖Qm −Qm−1‖∞
= γ max

s∈S,a∈A

∣∣∣〈T̂ (s, a, ·), (Vm−1 − Vm−2)〉
∣∣∣

≤ γ max
s∈S,a∈A

‖T̂ (s, a, ·)‖1 ‖Vm−1 − Vm−2‖∞

= γ ‖Vm−1 − Vm−2‖∞ ≤ γ ‖Qm−1 −Qm−2‖∞ ,

so

‖Qm −Q0‖∞ ≤
m−1∑
k=0

‖Qk+1 −Qk‖∞ ≤ ‖Q1 −Q0‖∞
m−1∑
k=1

γk−1.

Taking the limit of m→∞, Qm → Qπ
M̂,γ

, and we have∥∥∥QπM̂,γ
−Q0

∥∥∥
∞
≤ 1

1− γ ‖Q1 −Q0‖∞ .

This completes the proof, noticing that Q0 = QπM,γ , V0 =

V πM,γ , and Q1(s, a) = R̂(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉.

Proof of Lemma 2 From Equation 18 in Lemma 3 and
Lemma 4, we have∥∥∥∥V π∗M,γM,γ − V

π∗
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π∈ΠR,γ

∥∥∥V πM,γ − V πM̂,γ

∥∥∥
∞

≤ 2 max
π∈ΠR,γ

∥∥∥QπM,γ −QπM̂,γ

∥∥∥
∞

= 2 max
s∈S,a∈A
π∈ΠR,γ

∣∣∣QπM,γ(s, a)−Qπ
M̂,γ

(s, a)
∣∣∣

≤ 2

1− γ max
s∈S,a∈A
π∈ΠR,γ

∣∣∣R(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)
∣∣∣ .

For any particular s, a, π tuple, according to Hoeffding’s
inequality, ∀t > 0,

P
{ ∣∣∣R(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)

∣∣∣ > t
}

≤ 2 exp

{
− 2nt2

R2
max/(1− γ)2

}
, (19)

as (R(s, a)+γ〈T̂ (s, a, ·), V πM,γ〉) is the average of i.i.d. samples
bounded in [0, Rmax/(1 − γ)], with mean QπM,γ(s, a). To
obtain a uniform bound over all (s, a, π) tuples, we set the
right-hand side of Equation 19 to δ/|S||A||ΠR,γ |, and solve
for t, and the theorem follows.

Proof of Theorem 2. ∀s ∈ S,

V
π∗M,γeval
M,γeval

(s)− V
π∗
M̂,γ

M,γeval
(s) =

(
V
π∗M,γeval
M,γeval

(s)− V
π∗M,γeval
M,γ (s)

)
+

(
V
π∗M,γeval
M,γ (s)− V

π∗
M̂,γ

M,γeval
(s)

)
.

By Lemma 1, the first term can be bounded by

V
π∗M,γeval
M,γeval

(s)− V
π∗M,γeval
M,γ (s) ≤ γeval − γ

(1− γeval)(1− γ)
Rmax

and by Lemma 2, the second term can be bounded as follows
w.p. at least 1− δ:

V
π∗M,γeval
M,γ (s)− V

π∗
M̂,γ

M,γeval
(s) ≤ V

π∗M,γeval
M,γ (s)− V

π∗
M̂,γ

M,γ (s)

≤ V
π∗M,γ
M,γ (s)− V

π∗
M̂,γ

M,γ (s) (π∗M,γ is optimal for (M,γ))

≤ 2Rmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ |
δ

.

B. PROOF OF THEOREM 3
We prove Theorem 3 by the following lemma that parallels

Lemma 2.

Lemma 5. Given the true MDP M , let M̂ be an MDP

comprising reward function R̂ and transition function T̂ both
estimated from n samples for each state-action pair, then∥∥∥∥V π∗M,γM,γ − V

π∗
M̂,γ

M,γ

∥∥∥∥
∞

(20)

≤ 2

1− γ

(
2 max
s∈S
a∈A

R̂Ds,a(FM,γ) +
3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)
,

with probability at least 1− δ.
Proof. From Equation 17 in Lemma 3 and Lemma 4, we

have∥∥∥∥V π∗M,γM,γ − V
π∗
M̂,γ

M,γ

∥∥∥∥
∞

≤ 2

1− γ max
s∈S,a∈A
π:S→A

∣∣∣R̂(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)
∣∣∣

=
2

1− γ max
s∈S,a∈A

max
π:S→A

∣∣∣R̂(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)
∣∣∣ .

Recall that in the statement of Theorem 3, we defined fπM,γ
to be the mapping (r, s′) 7→ r + γV πM,γ(s′). So

max
π:S→A

∣∣∣R̂(s, a) + γ〈T̂ (s, a, ·), V πM,γ〉 −QπM,γ(s, a)
∣∣∣

= max
π:S→A

∣∣∣∣∣∣ 1n
∑

(r,s′)∈Ds,a

fπM,γ(r, s′)− E
(r,s′)∼Ps,a

{
fπM,γ(r, s′)

}∣∣∣∣∣∣ ,
where (r, s′) ∈ Ds,a means that (r, s′) is a sample reward
& next-state pair from (s, a) in dataset D, and Ps,a is the
underlying true distribution. By noticing that fπM,γ has
function value bounded in [0, Rmax/(1 − γ)], we have the
following bound from the standard Rademacher complexity
literature (e.g., [3]; also see [21]): for each s ∈ S, a ∈ A,
w.p. ≥ 1− δ/(|S||A|),

max
π:S→A

∣∣∣∣∣∣ 1n
∑

(r,s′)∈Ds,a

fπM,γ(r, s′)− E
(r,s′)∼Ps,a

{
fπM,γ(r, s′)

}∣∣∣∣∣∣
≤ 2

1− γ

(
2R̂Ds,a(FM,γ) +

3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)
.

And the theorem follows directly from union bound and
taking the maximal empirical Rademacher complexity among
all state-action pairs.
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