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ABSTRACT
This paper presents pipelined consensus, an extension of pair-wise
gossip-based consensus, for multi-agent systems using mesh net-
works. Each agent starts a new consensus in each round of gossip-
ing, and stores the intermediate results for the previous k consensus
in a pipeline message. After k rounds of gossiping, the results of
the first consensus are ready. The pipeline keeps each consensus
independent, so any errors only persist for k rounds. This makes
pipelined consensus robust to many real-world problems that other
algorithms cannot handle, including message loss, changes in net-
work topology, sensor variance, and changes in agent population.
The algorithm is fully distributed and self-stabilizing, and uses a
communication message of fixed size. We demonstrate the effi-
ciency of pipelined consensus in two scenarios: computing mean
sensor values in a distributed sensor network, and computing a cen-
troid estimate in a multi-robot system. We provide extensive sim-
ulation results, and real-world experiments with up to 24 agents.
The algorithm produces accurate results, and handles all of the dis-
turbances mentioned above.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Design, Experimentation

Keywords
Distributed, Consensus, Communication Failure, Centroid Estima-
tion, Multi-Robot

1. INTRODUCTION
Constructing local estimates of global state is a critical utility in

multi-agent systems. For example, in an environment monitoring
scenario where a group of mobile agents are deployed to cover a
large area [19], we may be curious about measuring the average
value gathered across all the agents to decide if something unusual
or dangerous is happening. In a social network of human agents [6],
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Figure 1: A network of agents performing pipelined consensus, an
extension to pair-wise gossip-based consensus. Each node stores k
values in their pipeline, which is a queue containing multiple con-
current consensuses. In this example, agents u and v are in the
middle of gossiping. At the beginning of a gossip, a new value
is inserted into the pipeline, and older values are shifted along the
pipeline. The two agents then perform consensus on each cell of
their pipelines. The oldest value in the pipeline is taken as the cur-
rent estimate of the global value. Pipelined consensus is a robust
practical solution to global state estimation problems in multi-agent
systems.

we are interested in how global ideas and opinions form, spread,
and cluster. Knowing the global state information can help agents
coordinate more efficiently. Flocks of birds, schools of fish, and
crowds of people measure the motion of the nearby neighbors in
order to achieve large group-level formations [23]. In a network of
mobile agents, sharing local measurement probability information
can be used to produce a more informative configuration of the po-
sitions of the nodes [9]. In the work on cooperative transportation
by a group of robotic agents [24], inferring the forces from other
agents let each individual agent know how to align its own force
with others’ to achieve efficient cooperation.

These examples all require global state estimates in distributed 
multi-agent systems. Inferring global information from local infor-
mation is a fundamental theme in multi-agent systems. Our goal is 
to estimate, in a distributed, real-time fashion, the mean of a 
dynamic global quantity of interest in a multi-robot system, while 
still using fixed-size messages. The simple approach of broadcast-
ing the local state of each agent will eventually use all available 
communication bandwidth as population increases. Consensus al-
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gorithms can compute global estimates using fixed-size messages
between agents, but are not robust to real-world errors, with a few
exceptions [20]. Real-world networks are subject to many other
types of errors. These include changes in the network’s structure
due to the dynamic nature of wireless communications, topology
changes, communication errors, and sensor errors will cause nor-
mal consensus algorithms to have a poor estimate of the global
value [10].

In this paper, we present the pipelined consensus algorithm. It
differs from existing standard consensus algorithms in that it can
continuously track a changing global mean while being robust to
disturbances such as poor initial conditions, topology changes, sen-
sor errors, and communication failures. It strikes a balance between
communication cost and robustness to allow for effective operation
in real-world systems. These properties make pipelined consensus
highly applicable to multi-agent applications subject to the compli-
cations of the real-world.

The core idea behind our algorithm is that the agents start a
new consensus each round; initializing them with new measure-
ments of local state. Older consensus estimations are stored in a
pipeline queue in order. Consensus estimations corresponding to
similar start times will evolve together in every communication
round, largely independent of estimations belonging to different
start times, as shown in Figure 1. A pipeline size, k, must be cho-
sen such that the estimation will approach the true average before
the pipeline runs out of space. This is the fundamental trade-off of
our approach: the pipeline size, k, must be larger than the natural
convergence time of consensus in the network, t . Larger values for
k allow us to handle larger, more complex networks, but use more
communication bandwidth.

One important aspect of tracking a changing consensus is the
rate of convergence. [1, 4, 16, 17], which derived upper bound on
the convergence time under different assumptions and from differ-
ent prospective. In this paper, we study the convergence time t
for a large set of mesh networks, and demonstrate that pipelined
consensus is a feasible solution for the vast majority of them. We
then present two examples and many experiments to demonstrate
the robustness properties of the algorithm : computing the global
mean of a quantity in a distributed sensor network, and estimating
the centroid of a group of robots.

The rest of the paper is organized as follows. Related works are
described in Section 2. We describe our model and assumptions in
Section 3. The pipelined consensus is formally proposed in Sec-
tion 4. Extensive simulation and experiment results are provided in
Section 5, where we use pipelined consensus to track a changing
average and perform centroid estimation. Convergence time and
tracking error subject to different disturbances are also analyzed.
We discuss and conclude our work in Section 6 and 7.

2. RELATED WORK
There is a large literature regarding consensus in multi-agent sys-

tems [11, 14]. The original fundamental work, [15] proposed the a
consensus algorithm where all agents in a group could agree on a
common value only by communicating with their neighbors in the
network. Another major approach to achieve average consensus
is to let agents gossip in a pair-wise fashion and use the coordina-
tion law in [8]. Our work uses this basic approach, but runs mul-
tiple consensus in parallel. Many applications of consensus use a
value that could be constantly changing, such as an environmen-
tal sensor or other controlled signals. To handle this, the concept
of dynamic consensus was introduced in [21, 22] and convergence
was proved. More generally, [3, 25] used a proportional-integral
filter on the typical consensus algorithm to achieve robust average

tracking of time-varying inputs regardless of the initial states. In
both dynamic and robust consensus, the input signals to the nodes
must be known, whereas our pipelined consensus algorithm does
not have this requirement. We apply our pipelined consensus algo-
rithm to estimate the centroid of an object. There are similar work
that use only local reference frames to esitamte the centroid [2, 5].
In Aragues et al work Aragues [2], each agent was assumed to get
the estimate from all its neighbor and processes them in one round.
Franceschelli and Gasparri [5] used a gossip-based consensus to
estimate the centroid. Their consensus algorithm handles the noisy
sensor error; however, the message loss was not addressed in their
work.

Communications failure or message loss is difficult to handle for
most consensus algorithms. The work in [20], injects a portion of
the input signal into the state estimate of each robot during each
round. This lets the estimated global mean on each agent be robust
to communication errors, but at the cost of a large variance across
individual estimates. Our approach produces qualitatively similar
results, but without the additional variance caused by re-injecting
the sensor value into the local estimate.

3. MODEL AND ASSUMPTIONS
We assume that our agents are in an environment too large for

centralized communication. A communication network is built
by the agents using inter-agent communications between nearby
agents within a fixed distance d, where d is much smaller than the
size of the environment. Each agent constitutes a vertex u 2 V ,
where V is the set of all agents and E is the set of all agent-to-
agent communication links. n is |V |, the total number of agents
in the network. We model the agent’s communications network,
G = (V,E), as an undirected unit disk graph. We assume that G
is connected. The neighbors of each vertex u are the set of agents
within line-of-sight communication range d of agent u, denoted by
N (u) = {v 2V | {u,v} 2 E}.

We model algorithm execution as proceeding in a series of dis-
crete rounds. While actual operation in many practical systems
is asynchronous, implementing a synchronizer simplifies analysis
greatly and is easy to implement [12]. In this paper, we focus on
the convergence time of consensus t measured by the number of
rounds of computation required to achieve some e-bound on error.

We assume our agents are homogeneous and are modeled as a
disk. Each agent is situated at the origin of its own local coordi-
nate frame with the x̂-axis aligned with its current heading. Agents
can measure the relative pose of its neighbors. The relative pose
between two agents u and v is given by three measurements, bear-
ing Buv, orientation Ouv, and range Ruv. Bearing is the angle from
agent u’s heading to agent v’s relative position. Orientation is the
angle of agent v’s heading from Buv. Range is the distance between
agent u and v.

4. PIPELINED CONSENSUS

4.1 The Algorithm
Pipelined consensus is based upon gossip consensus, in which

agents perform pairwise averages with neighboring agents. In
pipelined consensus, each agent stores k values instead of only one
value (See Figure 1). Pipelined consensus is described in Algo-
rithm 1. At first, every agent’s pipeline, Pi, is initialized with null
values (Line1). Pipeline values are updated each round of success-
ful pair-wise gossip with a neighbor. During a gossip, each agent
first checks the size of non-null cells in the pipeline, |Pi|. If the
pipeline is filled with values, the oldest value is removed from the
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Figure 2: (a) Viability of algorithms under networks of different degrees and diameters. 300 networks were sampled for 20 trials each. The
red dots show a region where a global message is preferred, while the black dots show where pipelined consensus is preferred. Algorithm
preference was determined by message size. If the pipeline’s size k was greater or equal to n, the size of the network, a global message
was preferred. Otherwise, pipelined consensus was preferred, because it needs the smaller message size. The majority of results showed
that pipelined consensus was preferred. (b) Plot of convergence time for 10% error as a variable of diameter and degree of a network.
Convergence time t is in number of rounds. The same networks as in (a) were used, 20 trials each. The time of convergence is strongly
related to the connectivity of the network. Networks with a large average degree have a smaller t even in the network with high dimension.
However, the diameter in the network with the lower degree affects on the time of convergence, such that the network with low degree and
high dimension have the larger t .

Algorithm 1 Pipelined Consensus

1: Pi NULL . Initialize all pipeline cells with null values
2: Repeat forever on each robot u
3: Randomly choose a neighbor v 2N (u) to gossip
4: if |Pu|= k then . |Pu| is the number of non-null cells
5: REMOVE(Pu) . Remove the oldest value
6: end if
7: INSERT(Pu, xu0) . Insert new input value
8: for t = 0 : MIN(|Pu|, |Pv|) do . Perform consensus on pipeline
9: xut = CONSENSUS(xut , xvt )

10: end for

tail of the pipeline (Lines 4-7). This keeps the size of the pipeline
constant at k, as values are always inserted. The current input value,
xi0, is inserted to the head of the pipeline. Next, consensus is per-
formed on each respective cell in the pipelines.

Note in Line 8 of Algorithm 1, we take the minimum of the size
of the two pipelines. Consensus is only performed on values that
can be paired between the two pipelines, bounded by the minimum
size of the pipelines.This is done because equal pipeline sizes are
not guaranteed. A feature of pair-wise gossip algorithms is that for
each round, every agent may or may not preform a consensus. As
values are only inserted upon successful pairings and consensuses,
the pipeline sizes are not always equal. This is done to be more ef-
ficient with our sampling and message size. Inserting a new value
every round where consensus may not occur would dramatically

increase the size of k. By accepting different sizes of pipelines, our
message size stays reasonable. Disadvantageous network configu-
rations and poor random choices can lead an agent not to perform
consensus for a long time. However, for applications that sample
values and errors from time independent distributions, the effects of
this desynchronization are irrelevant. The reason we chose to only
perform consensus on the beginning cells of the pipeline is that
those values will have gone through the same number of rounds of
consensus, and are therefore more temporally similar.

4.2 Convergence Time
Convergence time and other properties of a consensus algorithm

are well understood to be related to the connectivity matrix of a
network [15]. Since our agents are assumed to only have a local
knowledge about the network topology, they cannot find the exact
time of convergence. As our algorithm is an extension to consensus
algorithms, it has the same properties. Therefore, we cannot con-
verge faster than the linear consensus algorithm, but we can handle
different errors that are more relevant to our applications in the real
world, as we show in the experiment section.

Selecting an appropriate pipeline size k is key in piplelined con-
sensus. If k is not large enough, the final estimate from the pipeline
for any round will not have sufficiently converged. This gives a
larger error and variance in the estimate. Based on the convergence
time of the network t , we select a pipeline size k to to reach a
desired amount of convergence. However, large values of k have a
large message size which is a limiting factor on real communication
systems with limited bandwidth. In order to find a balance between
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t and k, we analyze the convergence time of different networks to
understand t and k more thoroughly. Figure 2b shows the time of
convergence for the same sample of networks used in Figure 2a.
This result illustrates the relation between the degree and diameter
of the network, and the convergence time of the network.

In pipelined consensus, each agent shares the contents of its
pipeline with its neighbors, which is a message of size k, the
pipeline size. If k is equal to or greater than n, i.e. the number
of agents in the network, then there is no advantage in using the
pipelined consensus algorithm. In cases such as this, agents could
use a Global Message to share its estimate with other agents. This
message would consist of the value from each agent network, from
which the global value could be obtained. We tested the pipelined
consensus algorithm on a large sample of networks of varying de-
gree and diameter to show the viability of the algorithm as a so-
lution to global state estimation. As Figure 2a shows, pipelined
consensus is more practical than a global message in the majority
of cases. However, the global message is more useful in networks
with low degree and high diameter. This is because consensus per-
forms poorly on networks with weak connectivity(low degree) and
a large path between two agents(large diameter).

5. EXPERIMENTS
We tested pipelined consensus on both simulated and physical

platforms. For our physical experiments, we used the r-one robot
[13] as our platform. These robots use an infra-red communication
system to communicate with their neighbors in synchronous rounds
of 1500 milliseconds. The communication system also measures
the relative pose to each neighboring robot (see Section 3). We
tested pipelined consensus in two applications: Linear Average and
Centroid Estimation. Pipelined consensus is also highly robust to
change in values, sensor errors, population changes, and commu-
nication failures. All of these are a feature of real applications and
can be handled by our algorithm. We show how our algorithm re-
acts to these effects in both simulations and physical experiments.

5.1 Global Linear Average

5.1.1 Physical Experiment, Ideal Conditions
We validated the pipelined consensus algorithm on real robotic

agents. We distributed 24 agents on the floor in a grid shape of 4 by
6, which creates a network with the average degree of 5 and a diam-
eter of 5. We used average consensus for the gossip protocol in the
pipeline. Each agent starts estimation from some constant random
initial value. This experiment was carried out under the most ideal
conditions possible on the physical platform. However, sensor er-
rors and communication failures inherent to physical systems still
occurred. Figure 3a shows the estimation progress in each agent in
an example experiment. The pipeline size k for this experiment is
20. The result shows how pipelined consensus produces estimates
on all robots that have a mean error of approximately zero, but with
some variance.

We ran 6 trials of this experiment. Figure 3b summarizes the
result in tracking the mean of the error estimate with deviations
over these trials.

5.1.2 Simulation, Communication Failure
In pairwise average consensus, a single measurement is taken

and used by the agents to come to agreement. This means that any
communication failure that occurs can lead to a large divergences
in the estimated value. Pipelined consensus solves this problem by
constantly inputting and pushing values out of the pipeline, so that
values that contain error are flushed out after a maximum k rounds.
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Figure 5: Light tracking experiment by 20 robots. The read sensor
value was averaged together. The light began off for 20 minutes,
was then turned on for 20 minutes, and then back off for the final
20 minutes. Note the delay of a factor of k rounds in the read input
signal to the estimated value. The red dashed line shows the actual
average of light measurement on 20 robots. The black dashed line
shows the average of reported values from the consensus on robots.
Solid lines show each robot’s estimation. One robot had a large
bias in reading the light intensity. As a feature of consensus, this
value washed out after the consensus occurred.

Figure 4a shows how communication errors effect both pipelined
consensus and average consensus. Average consensus converges to
a value with very small variance but with an offset from the actual
global mean. On the other hand, pipelined consensus continually
estimates values with some variance around the global mean with
an average error of approximately zero. The variance demonstrated
by pipelined consensus can be decreased by increasing the size of
k. Pipelined consensus can tolerate communication failure, but an
increase in communication failure requires a larger time to con-
verge to an adequate value. That requires pipeline size increases as
communication failure increases. Figure 4b shows the effects of
increasing communication error to the size of a pipeline for differ-
ent error tolerance.

5.1.3 Physical Experiment, Changing Value
As pipelined consensus is robust to changing values, it can track

a changing input signal. This feature can be used to calculate the
average of a sensor value across a collection of nodes spread out in
an environment, such as temperature or light. We tested this fea-
ture by having our robots measure the ambient light over time. We
changed the intensity of the light by turning on and off the overhead
lights in our lab in 20 minute intervals. Figure 5 shows the result of
light signal tracking by 20 robots. This figure illustrates the ability
to successfully track a changing input signal with accuracy. It also
shows the algorithms tolerance to sensor errors. In this experiment,
one robot had a very large bias in the light sensor value. However,
the converging values still reached consensus over the network.

5.2 Centroid Estimation
In multi-agent manipulation tasks, mobile agents require knowl-

edge of the geometry of the object they are transporting in order to
properly manipulate the object [7]. The centroid is a value of the
object that can be estimated by agents using only their own posi-
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Figure 3: (a) Experiment result of pipeline consensus for a network with 24 agents to estimate the linear average of global values. The
average degree of network is 5 and its diameter is 5. Agents only give their estimate after the pipeline has been fully filled, which gives the
leading edges of their input values at the start of the experiment. The average error of their estimate is 2.07% in this experiment. (b) The
result of pipelined consensus for 6 trials of the same experiment in (a). We take the average error estimate in each trial. The solid red line
shows the average of the average errors over 6 trials. The standard deviation of the average error is shown by the shaded red area. This result
shows that the error decreases to 2% with pipelined consensus with small variance.
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Figure 4: (a) Comparison of pipelined consensus and average consensus in a network of 20 agents in computing linear average. The com-
munication failure is 75%. Agents initially have random value between 0 to 5. The size of k in this experiment was 100. The communication
errors cause the variance of the result from the pipelined consensus to increase, but the estimated mean remains stable around the actual
mean. Average consensus converges to an erroneous value and remains. (b) The effect of communication failure in the range of 0% to 90%
on the time of convergence with error in the consensus estimate less than 10% (blue solid line) and less than 5% (red solid line). The network
is of 72 agents. This result shows the average and standard deviation of the convergence time over 12 trails.

tions. We assume that the robots are distributed around the object
in such a configuration that they approximate the shape of the ob-
ject. In this case, the centroid can be approximated by taking the
average of the positions of all the robots. Simulations and hardware
experiments in this section show that the centroid can be found even
without a global reference frame by using pipelined consensus.

We assume there is no global reference frame, which means
robots estimate in their local reference frames. Therefore, the re-
sulting consensus values are all different for each robot, although
they correspond to a common point in the global frame. How-
ever, it is impossible for the robots to actually know this in a dis-
tributed system. In order to communicate values from one robot to
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Figure 6: (a) Physical Experiment: centroid estimation by 10 robots in a concave shape configuration. The robots positions are designated
by the solid circles numerically labeled. Three of robot’s estimate over time is shown by the solid lines of similar color emanating from the
circle. Each robots average estimate is shown by the colored diamonds. The true centroid is shown by the black circle. The average error is
9.28% for this experiment. (b) We fit Kernel density model to the distribution of centroid estimation error for each robot in the experiment
illustrated in (a). The colors match with ones in the illustration(a). The mean error is 9.28% and is shown by dashed black line.

another, a coordinate transformation between different local refer-
ence frames must be performed. Consider a point x in the global
reference frame. Its coordinates in robot u’s and v’s local refer-
ence frame are denoted by ux and vx respectively. The relationship
between ux and vx is given by:

ux =u
v Mvx, (1)

where

u
vM =

2

4
cos(qvu) �sin(qvu) dvu cos(Bvu)
sin(qvu) cos(qvu) dvu sin(Bvu)

0 0 1

3

5

is a coordinate transformation matrix, and

qvu = p�Ovu +Bvu.

In the equations above, Bvu and Ovu are the bearing angle and ori-
entation angle respectively and dvu is the distance between agent
u and v measured by agent u [13]. All these angles and distance
can be measured locally by sensors. qvu is the relative heading of v
from u.

In order to estimate the centroid, each robot maintains two
pipelines, one for x coordinate and another for y coordinate of the
estimated centroid. The initial input values for two pipelines are
both zero, which represents the robot’s position in its own refer-
ence frame. The relative poses of the neighbors are measured in
every round. Robots use Algorithm 1 to update pipelined consen-
sus in each round. However, the robots transform their neighbor’s
pipeline values by using the aforementioned coordinate transforma-
tion. The value in the last cell of the x and y pipeline is considered
as the current estimation for the centroid.

5.2.1 Physical Experiment, Ideal Conditions
We tested pipelined centroid estimation on real agents. We used

the r-one robot as our robotic agents. 10 robots were used in a con-

figuration illustrated in Figure 6a. This figure shows the robot’s
estimation of the centroid over the time. In this experiment, the av-
erage error of the estimate was 9%. The distribution of error for the
centroid estimate is approximated by the kernel density estimation
in Figure 6b. In this experiment we used the AprilTag system [18]to
measure distance between robots, eliminating error resulting from
poor distance measurements on the robots. However, the error re-
sulting from poor angular pose estimation using the infrared sen-
sors still influenced the result. The resolution of the bearing and
orientation is limited to 22.5� slices [13]. This result shows that
the centroid is accurately estimated by pipelined consensus in the
presence of sensor error.

5.2.2 Simulated Experiment, Sensor Error
In centroid estimation, sensor error is introduced by using the

coordinate transformation. The angular and distance measurements
sampled by the agents could be very noisy. In an average consen-
sus, the estimate value evolves based upon a single sensor mea-
surement or value taken at the beginning. This value has some
unknown error from the sensor measurement that is never removed
from the estimate. Our pipelined consensus algorithm continually
re-samples the state of the network and sensors, and thus reduces
error in estimation. In Figure 7, we demonstrate how the variance
of the centroid estimation is related to the variance of the sensor
measurements in a randomly generated unit disc graph. The dis-
tance and angle measurements are modeled by zero-mean Gaussian
model. As we can see in the figure, the variance of the centroid es-
timation is almost linear to the variance of the sensor, and the angle
measurement has a larger impact on the accuracy of the estimation.
This is due to the coordinate transform, as angular errors will result
in points moving a much greater distance from their actual positions
than errors in the distance. Figure 8 provides a comparison between
centroid estimation using average consensus and pipelined consen-
sus. Average consensus has a larger estimation error, despite be-
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Figure 7: Simulation of centroid estimation with 20 robots. The
graph is a randomly generated unit disc graph. The average degree
is 7 and the network diameter is 3. We model the noisy sensor
using zero-mean Gaussian model. The 3D plot here demonstrates
the change of average variance of the centroid estimations of all
robots as we increase variance of angle and distance measurements
from 0 to 0.5.

ing much smoother than the values from pipelined consensus. Our
pipelined consensus approach gives a much lower mean of rela-
tive error, but also has greater variance than the average consensus.
Note that the average consensus does not reach a common value in
this case because the sensor reading qvu 6= �quv, dvu 6= duv due to
noise. This inconsistency, when robots exchange their estimations
using coordinate transformation, causes the estimations of different
robots to diverge.

5.2.3 Physical Experiment, Population Changes
Another feature of pipelined consensus is that it is self-

stabilizing in regards to changing population and topology. We
examined the effect of population changes on a network of robots
performing centroid estimation. We began the test with 5 robots,
and added and subtracted robots from the population in different
areas of the network over time. Figure 9 shows the error in the esti-
mate over time with changes in population. We added and removed
robots only after the estimate has stabilized to a sufficient degree.
Results show the error in the estimation remains around 9% for all
population sizes and changes.

6. DISCUSSION AND LIMITATIONS
Consensus algorithms are anytime algorithms, however the

amount of variance in the value is dependent on the time it has
been running. The value k that we introduce can be changed to
determine the amount of variance that is desired in the final value
of the pipeline. As the pipeline contains a discrete amount of val-
ues, it cannot be left to run indefinitely and therefore has to have a
bounded variance. With an understanding of the network, we can
determine k suitable to a level of variance that is acceptable. In real
applications, robots themselves cannot make this decision. This
would require global knowledge of the network, which they cannot
know from a distributed perspective.
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Figure 8: Comparison of average consensus and pipelined con-
sensus over time on the same network as Figure 7. The y-axis
shows the relative error, defined as the distance between the true
and the estimated centroid, divided by the distance between the
robot and the true centroid. Relative errors of all the robots using
either pipelined or average consensus are plotted. The variances of
both the distance and angle error in sensor reading are set to 0.1.
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Figure 9: Physical experiment: illustration of robustness of
pipelined consensus to population changes during the centroid es-
timation. Robots were added and removed over time after estimate
stabilization. The robots removed and added were in different phys-
ical areas of the network each time. Each time a robot is added or
removed from the network, error increases as the actual centroid
no longer matches the estimated centroid. Over time, the estimate
reconverges to the actual centroid within an error of 9% for all pop-
ulations.
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Our pipeline consensus algorithm achieves dynamic average
tracking with high robustness to the initial condition, sensor errors,
population changes, and communication failures. There are other
algorithms that do the similar job, like the PI consensus filter de-
signed in [3]. However, each agent must know the input signal for
this approach. This may not be true in all multi-agent systems as
some agents may not know the input signal for themselves or can
only know the input signals for their neighbors. For example, in the
centroid estimation task we described above, the only thing robots
know about themselves is their position in their reference frame,
which is always [0,0]. There is no knowledge about the input sig-
nal in this case, so the algorithm is not applicable.

Pipelined consensus is time-sensitive in nature. Data inserted in
the pipeline will only be produced from the pipeline after t rounds
of successful consensus with neighbors. However, the consensus
operation is not related to time. The shifting values in pipeline con-
sensus make it important to stay relatively synchronized. A poor
configuration in the network or simple unluckiness may lead to an
agent taking significantly longer time to produce an updated re-
sult. This can be seen in practice in Figure 3a. Some robots in
the experiment produced an estimate much later than others, taking
more time to achieve consensus t times. This also can lead to stale
data reentering the system and affecting the final result. For a sys-
tem with a changing input signal, a robot who has not performed
consensus for a relatively long time may perform consensus with
another, more up-to-date robot. Performing consensus with the old
data inserts error into the system, as the result for the temporally
offset input values will be different.

The centroid estimation is sensitive to motion of the agents. This
is because geometric measurements used in consensus are sensi-
tive to the geometry of the network at the time the measurement
was taken. The consensus estimate will become offset by the an-
gular and translational motion. Since there is a lag of at least t in
pipeline consensus for information update, the error between the
true centroid and the current estimation will grow the faster the
agents change position. Hopefully, this error can be reduced by in-
creasing the frequency of the communication. The estimation error
caused by moving robots can be handled more efficiently by main-
taining history information of pose of other agents at each stage of
the pipelined consensus. This solution is left as a future work.

7. CONCLUSION
We have demonstrated that Pipelined consensus is a robust and

practical extension to pairwise consensus algorithms for multi-
agent systems. In all of our experiments, the algorithm handled
many different types of errors well, quickly converging to accurate
global estimates. In the future, we plan to rigorously study how
to more accurately compute t , which is related to features of the
graph topology such as number of nodes, average degree, diameter,
closeness, min-cut, etc. A mathematical characterization of t will
help ensure the effectiveness and efficiency of the pipelined con-
sensus algorithm. Analysis of the variance introduced by commu-
nications errors can help understand the convergence rates in tough
communications environments. As for the centroid estimation, we
plan to integrate it into a multi-robot manipulation task and test its
performance when the robots actually move with the object.

We tested pipelined consensus on the experiment in which the
mean value of global state is desired. In our future work, we will
show pipelined consensus can be used for any convex operation.
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