
Adaptive Budgeted Bandit Algorithms for Trust
Development in a Supply-Chain

Sandip Sen
Tandy School of Computer

Science
The University of Tulsa
sandip@utulsa.edu

Anton Ridgway
Tandy School of Computer

Science
The University of Tulsa

anton-
ridgway@utulsa.edu

Michael Ripley
Tandy School of Computer Science

The University of Tulsa
michael-ripley@utulsa.edu

ABSTRACT
Recently, an AAMAS Challenges & Visions paper identified sev-
eral key components of a comprehensive trust management has
been understudied by the research community [13]. We believe that
we can build on recent advances in closely related research in other
sub-fields of AI and multiagent systems to address some of these
issues. For example, the budgeted multi-armed bandit problem in-
volves pulling multiple arms with stochastic rewards with the goal
of maximizing the total reward generated from those arms, while
keeping the cost of pulling the arms beneath a given budget. We
argue that multi-armed bandit algorithms can be adapted to address
research issues in trust engagement and evaluation components of a
comprehensive trust management approach. To support this propo-
sition, we consider a supply-chain application, where a tree of de-
pendent supplier agents can be considered as an arm of the online
bandit problem with budget constraints. Each of the nodes in the
supply chain must then solve their local bandit problem in paral-
lel to determine which of its sub-suppliers is most trustworthy. We
use new arm-selection strategies, and demonstrate how they can be
gainfully applied to the trust-based decision-making in the supply
chain to reduce time to production and hence improve utility by
timely delivery of products.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Performance, Reliability, Algorithms

Keywords
exploration-exploitation; trust management; contracting

1. INTRODUCTION
Research on trust in multiagent systems has given us a variety of

conceptual frameworks to view trust and effective algorithms for
evaluating the trustworthiness of other agents given the history of
mutual interactions [7, 9, 11, 16, 17]. However, it has been posited

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

that to fully harness the effectiveness of trust based decision mak-
ing, it is critical to develop a more comprehensive approach to trust
management that addresses not only trust evaluation but also pro-
vides strategic reasoning procedures that determine who to interact
with, in what context, and how to best utilize the resultant knowl-
edge about the trustworthiness of others [13]. The goal then is to
develop proactive trust mechanisms that explore possible fruitful
partnerships, create situations where interactions will provide dis-
criminatory evidence of the trustworthiness of potential partners,
and use a well-thought-out plan of how to best utilize the trusted
partners given expectations of future goals, plans and resource re-
quirements.

In this paper, we consider the problem of proactive engagement
of potential long-term partners to determine who can be trusted for
providing consistent service on which an agent’s goal is critically
dependent. Whereas most of the research on trust in multiagent
systems focuses on after-the-event, offline evaluation of interaction
histories to determine trustworthiness of partners, real-world sce-
narios demand forward-looking, online schemes that has to choose
to engage interaction partners where the process of engagement in-
curs a cost. This “exploration cost” must be balanced against pos-
sible gain or “exploitation benefit” in the long run from the knowl-
edge of who the more trustworthy partners are. Research in ma-
chine learning, and in particular, reinforcement learning has long
confronted similar exploration versus exploitation dilemmas [12].
However, most of these research has ignored the time and cost of
exploration, and focused primarily on proving convergence to opti-
mal policies for solving the underlying Markov Decision processes
in the limit, i.e., without time or budget constraints. In particu-
lar, the multi-armed bandit (MAB) problem has been proposed as a
theoretical framework for evaluating the utility of interacting with
multiple entities with stochastically varying performance [2, 1].

Though this approach would appear to be a natural mapping of
the problem of evaluation of trust in new partners, on closer in-
spection a key missing aspect underlines the fundamental differ-
ence between the two. The basic MAB model does not consider
any cost for pulling an arm, whereas interacting with a partner to
gather further information to evaluate their trustworthiness involves
risks, time and resource commitment, as well as other costs. More
recently, however, researchers have considered augmentations of
the basic MAB problem, that consider the cost of pulling arms in
combination with a budget limit for exploration [8, 14, 15], i.e.,
a resource constraint that necessitates strategic engagement with
potential partners to quickly identify partnerships which are likely
to deliver maximal long-term benefits. We believe that solution
approaches for the Fixed-Cost Multi-Armed Bandit Problem with
Budget Constraints (MAB-BF) can be adapted to address the is-
sue of strategic engagement and evaluation of potential partner’s

137

trustworthiness under a number of settings and trust metrics such
as reliability, fairness, quality of performance, timeliness, etc. The
MAB-BF has already been utilized for a wide range of reinforce-
ment learning applications, including bidding in ad exchanges, bid
optimization in search, and service provider selection in cloud com-
puting [3, 5, 4, 6, 10].

Various metrics for determining the trustworthiness of a part-
ner has been proposed. In this paper, we consider performance,
in terms of reliability, as the objective criteria for trustworthiness.
This choice is motivated by the following observation [13]: Trust
in another agent reduces the uncertainty over that agent’s inde-
pendent actions which positively correlates with the truster’s util-
ity. We consider existing and recently developed approaches to
addressing the MAB problem with cost and budget constraints to
proactively engage and evaluate potential partners to gauge their
reliability and hence long-term trustworthiness. To evaluate the ef-
ficacy of these approaches, we introduce a Supply Chain domain
where a manufacturer has to procure raw materials from contrac-
tors of initially unknown reliability. Contractors in turn have to
depend on sub-contractors to produce their deliverables. The goal
of each agent in the supply chain is to reduce their time to delivery
of their product for which they have to strategically engage their
sub-contractors to discriminate sub-contractors of differing relia-
bility.

We introduce three new algorithms for addressing the MAB-BF
problem. First, we formally present the MAB-BF problem (Sec-
tion 2); then, we introduce recent algorithms proposed for this vari-
ant of the MAB problem, together with our own proposed algo-
rithms, highlighting their interrelationships and differences (Sec-
tion 3). We then introduce the supply chain domain used for eval-
uating the effectiveness of the proposed algorithms in determin-
ing the trustworthiness of the sub-contractors under varying budget
constraints and performance variability (Section 4). In Section 5
we describe the simulation framework used for experiments, and in
Section 6 present a series of experimental results from a variety of
scenarios , varying the branching factor of the arms in each tree, the
payoff distributions of the arms, and the budget available to sample
from the arms. In conclusion, in Section 7 we summarize the key
findings from the comparative experimental evaluation and present
thoughts for future research.

2. FIXED-COST MULTI-ARMED BANDIT
WITH BUDGET CONSTRAINT

We now formally introduce the version of MAB-BF problem
where the goal of the agent is to maximize the reward obtained
by pulling a set of A = {1, . . . ,K} arms, the ith arm has a fixed
cost ci per pull, and arm rewards are drawn from an unknown dis-
tribution with a mean value of µi. The agent has at its disposal a
total budget of B. Let C = 〈c1, . . . , cK〉 and µ = 〈µ1, . . . , µK〉
refer to the vector of pulling costs and mean rewards for the K
arms. We refer to the above problem as the Fixed-Cost Multi-
Armed Bandit with Budget Constraint (MAB-BF), defined by the
tuple P = (A, B,C, µ). The goal of an agent facing such a prob-
lem is to choose a sequence of arms that optimizes the expected
reward without exceeding the total budget for arm pulls. Because
the number of arm pulls in a given sequence is limited by the costs
of the particular arms chosen, we generally consider the utility ra-
tio µi

ci
rather than µi alone to determine the priority of a given arm

i. It should be noted that while one could improve overall perfor-
mance somewhat by incorporating the standard deviation of reward
received, or any other statistical measures, together with the utility
ratio to produce a more general utility index, the result would only

be a general optimization, applicable to any of the algorithms we
consider; for simplicity’s sake, we choose to focus on the utility
ratio only, and leave the determination of a best-case utility index
for another setting. Finally, note that the µ values are not available
to the agent.

The number of arm pulls that an agent can make is dependent
on the multiset of arms it decides to pull. We now introduce some
notations to refer to sequences of arm pulls:
• S = 〈a1, . . . , at〉 refers to the sequence of arms pulled by

the agent in the first t attempts. We will use |S| to refer to
the number of arm pulls in the sequence S and S(i), ∀i ∈
{1, . . . , |S|} to refer to the ith arm pulled in that sequence.
Also we denote the subsequence of pulls in S from t =
t1, . . . , t2 as St1,t2 . We will use a ∈ S to test for the ex-
istence of an arm a in the sequence S or to range over the set
of arms in the sequence.
• nSa represents the number of times arm a ∈ A was pulled in

sequence S.
• At is the set of arms which can still be pulled after the se-

quence of arm pulls S1,t with the remaining budget Bt =
B −

∑t
i=1 cS(i), i.e., At = {a|a ∈ A ∧ ca ≤ Bt}.

• A sequence S is valid if it does not violate the budget con-
straint, i.e.,

∑
a∈S ca ≤ B.

• S = {S|S is valid} is the set of all valid sequences. For the
rest of the paper we will use the term ‘sequence’ for valid
sequences.
• GS =

∑|S|
i rai,i is the total reward obtained from a valid

sequence S, where rai,i is the reward returned from arm
ai ∈ A pulled at time i. As the rewards generated are non-
deterministic, we are more interested the sum of the mean
rewards in the sequence; that is, the Expected Total Reward
of sequence S, E[GS] =

∑|S|
i µai . Correspondingly, we

are interested in the optimal sequence S∗ if the reward dis-
tributions for the arms were known,

S∗ = argmax
S∈S

E[GS] (1)

and the associated payoff E[GS∗]. Note that since the mean
rewards for the arms are not known a priori, we will only
know GS .
• Given a sequence of arm pulls, S, an estimate of the mean

reward for each of the sampled arms, µS , can be formed.
Then µS = 〈µS1 , . . . , µSK〉 where µSi , ∀i ∈ A, is the average
reward obtained from the nSi pulls of arm i in the sequence
S:

µSi =
1

nSi

|S|∑
j=1

I(S(j) = i)ri,j (2)

where I(·) is the Indicator function.
• The expected regret, R(S) of the sequence S is then calcu-

lated as the difference: R(S) = E[GS∗] − E[GS]. The
desirability of a sequence of arm pulls can be measured by
its expected regret and the problem of optimizing expected
reward can be mapped into the problem of minimizing ex-
pected regret.

3. MAB-BF ALGORITHMS
In this section we introduce the different algorithms we exper-

iment with. We first introduce some existing algorithms and then
discuss our proposed approaches.

138

3.1 Existing Algorithms
We now describe some existing algorithms for the MAB prob-

lem; the first two (ε-first, Greedy) have an initial exploration phase
for estimating the mean rewards of the K arms, and in the subse-
quent exploitation phase pull the arms in a greedy manner, and the
last (fKDE) one stochastically integrates exploration and exploita-
tion while narrowing its focus:
Budget-Limited ε-first: This algorithm, henceforth referred to as

ε-first, uniformly selects from the set of arms, performing
unordered sweeps of each before beginning again, until its
exploration budget, εB, is exhausted (not enough budget re-
mains to pull even the minimum cost arm1). Let Sexplore

ε−first (P)2

be the sequence of arm pulls for the exploration phase for
an ε-first approach with MAB-BF problem P . At the end
of the exploration phase, an estimate of the mean rewards,
µ
S
explore

ε−first
is calculated and subsequently used in the exploita-

tion phase. Next, the arms are sorted by the ratio of their
estimated mean to pulling cost (their reward-cost ratio). The

best such arm, Imax = argmaxi∈A
µ
S
explore

ε−first
i
ci

, which we
refer to as the active arm, is pulled until not enough of the
exploitation budget, (1−ε)B, is left for one more pull of that
arm. This process is repeated with the rest of the arms until
the budget is completely exhausted (not enough remains to
pull even the lowest cost arm). We refer to the sequence of
arms pulled in this exploration phase as Sexploit

ε−first (P) and the
combined exploration-exploitation sequence as Sε−first =

Sexplore
ε−first (P) + Sexploit

ε−first (P). This algorithm is presented in
Algorithm 1.
One key difference between the original formulation of this
algorithm[14] and our implementation of it is that our ver-
sion continues to update the estimates of the arms during the
exploitation phase, so that the active arm in that phase can
change if its utility ratio drops below that of another arm,
even if its cost is still affordable. We refer to our version of
algorithms that behave this way as online-exploitation vari-
ants, in contrast to the original offline-exploitation variants.
Experiments have shown that the online variants significantly
outperform the offline variants in most scenarios and hence
in this paper we present results with the online variants only,
unless otherwise noted.

Greedy Algorithm: The Greedy algorithm is a special case of the
ε-first algorithm where the exploration budget only allows
each arm to be pulled once before the exploitation phase be-
gins. This algorithm is remarkable because to our knowledge
it has not been used before for the MAB-BF problem, but its
online-exploration variant nevertheless performs exception-
ally well on average. Note that since we require all arms to

be pulled at least once, when ε ≤
∑K
i=1 ci
B

, ε-first algorithms
are reduced to the Greedy algorithm.

Fractional Knapsack-based Decreasing ε-greedy (fKDE): The
fractional KDE algorithm [14] is a decreasing exploration
over time approach which first pulls the arms uniformly γ
times and thereafter pulls the arm with the highest estimated
reward-cost ratio with increasing probability. The probability
of uniform random exploration after t arm pulls is set to εt =
min(1, γ

t
). Otherwise, the arm with the highest estimated

1We only consider scenarios where the exploration budget allows
us to pull every arm the same number of times in the exploration
phase.
2We will omit the problem argument P in cases where the context
is clear.

Input : P = (A, B, C, µ): MAB-BF problem;
ε, exploration fraction of budget

Output: S, a sequence of arm pulls;
µ′, a vector of estimated mean rewards from the K arms;
G, total reward from all arm pulls;

1 Exploration phase:

2 t← 1; S ← ∅; G← 0; ExplorationRounds←
⌊

εB∑K
i=1 ci

⌋
;

3 for i = 1→ K do
4 µ′i ← 0

5 for n = 1→ ExplorationRounds do
6 for i = 1→ K do
7 pull arm i to obtain ri,t; G← G+ ri,t;
8 S ← S + i ; // Add i to sequence S
9 µ′i ← µ′i + ri,t;

10 t← t+ 1;

11 for i = 1→ K do
12 µ′i =

µ′i
nSi

; // form reward mean estimates
13 Exploitation phase:
14 RemainingBudget = B − ExplorationRounds ∗

∑K
i=1 ci;

15 A′ = A ; // Initialize available arms
16 while RemainingBudget≥ mini∈A′ ci do
17 Imax = argmaxi∈A

µi
ci

; // pick best arm

18 if RemainingBudget≥ cImax then // if budget
allows to pull arm

19 pull arm Imax to get reward rImax,t;
20 G← G+ rImax,t;

21 µ′Imax ←
µ′Imax∗n

S
Imax+rImax,t

nS
Imax

+1
; // update

mean reward estimate of arm
22 S ← S + Imax;
23 RemainingBudget← RemainingBudget−cImax ;
24 t← t+ 1;
25 else
26 A′ ← A′ \ {Imax} ; // eliminate arm

27 return (S, µ′, G);

Algorithm 1: The ε-first algorithm.

reward-cost ratio, based on the sequence of arms pulled, is
chosen.

3.2 New Algorithms
Now, we present algorithms that we have developed for the MAB-

BF problem. We believe these algorithms explore more intelli-
gently compared to their predecessors; the choice of arms to be
pulled during exploration is driven by either the number of arms
|A|, or the distribution of the arm rewards in µ and the costs in
C; past algorithms only made use of uniform or minimal explo-
ration phases, and fixed the exploration budget without consider-
ation of the bandit at hand. Also note that all the algorithms that
we introduce are online algorithms, i.e., an eliminated arm may be
reconsidered if the reward-cost ratio of a sufficient number of pre-
viously preferred arms drops below the corresponding ratio of this
arm upon further sampling.
l-split (lS): This is a generalized Greedy approach. Instead of elim-

inating all but one arm after the first pass, the lS algorithm
successively eliminates (1 − 1

l
) of the arms after each pass:

if AlS(p) is the number of surviving arms after p splitting
passes of the algorithm, then AlS(p + 1) = d 1

l
AlS(p)e.

After dloglKe passes, lS narrows down the choice to one,
and thereafter performs greedy exploitation. The algorithm

139

is presented in detail in Algorithm 2. The simplest of this
family of algorithms is the 2-split (2S) or halving algorithm,
which successively eliminates approximately half of the un-
derperforming arms after each pass.

Progressive exploration ε-first (PEEF): The PEEF algorithm was
developed upon a careful evaluation of the ε-first algorithm.
Whereas the latter expends its exploration budget uniformly
over the set of K arms, we conjectured that in a number of
scenarios, particularly those with a large number of arms,
there might be some low return arms that can be quickly dis-
carded. More importantly, we believe that the exploration
budget can be better utilized to tease out differences between
similar, high reward-cost ratio arms by visiting them with in-
creasing frequency. Hence, rather than uniform exploration,
we propose a progressive exploration scheme where we per-
form a l−split operation, as in the lS algorithm after each
pass. The difference with that algorithm is that in PEEF the
splitting value l is calculated such that the number of remain-
ing arm choices is reduced to 1 approximately at the end of
the exploration phase. Given an exploration budget of εB
then we want l to be such that the following condition holds:

loglK∑
j=1

K

j
cavg = εB, (3)

where cavg = 1
K

∑K
i=1 ci, is the average cost of pulling an

arm3. Solving this equation for l we obtain l = εB−1
εB−K . For

obvious reasons, we will perform a pairwise comparison of
the ε-first algorithm and the corresponding PEEF algorithm
for different scenarios in the experimental section.

Survival of the Above Average (SOAAv): This algorithm also
successively narrows down the set of active arms by elim-
inating underperforming arms. But rather than eliminating
a fixed number of arms after each pass, it eliminates arms
whose estimated reward-cost ratio is below (1+x) times the
average of such ratios of the arms in the last pass.
Setting x = 0 means only above average individuals survive
from one pass of the arms to the next. Note again that this
is an online-exploration approach where a previously elimi-
nated arm can come back into the active set if estimates of
other active arms drop. This algorithm is presented in more
detail in Algorithm 3.

Of the above algorithms, both lS and PEEF are rank-based al-
gorithms, where arms are eliminated based on their ranking by
reward-ratio cost ratios, whereas only the SOAAv algorithm is a
value-based approach, where arms with estimated reward-cost ra-
tios below a certain factor of the average of the currently active set
are eliminated.

4. SUPPLY-CHAIN MODEL
We now introduce the supply-chain model where contractors have

to engage strategically with sub-contractors of initially-unknown
reliability (trustworthiness). Each interaction has a cost and the
contractor’s goal is to distinguish the trustworthiness of all of its
sub-contractors given a fixed budget to pay for the interactions.
This domain allows us to examine how the algorithms developed
for the budget-constrained MAB problem perform in complex, large-
scale systems, while simultaneously examining the algorithms’ ef-
3Note that this calculation of l is necessarily approximate, both
for the use of cavg as the cost per unit pull during the exploration
phase and in the use of loglK as the number of passes during the
exploration phase.

Input : P = (A, B,C, µ): MAB-BF problem;
l, elimination factor

Output: S, a sequence of arm pulls;
µ′, a vector of the arms’ sample mean rewards;
G, total reward from all arm pulls;

1 t← 1; S ← ∅; G← 0; RemainingBudget← B;
NumPasses← 0

2 for i = 1→ K do
3 µ′i ← 0

4 A′ = A ; // Initialize available arms
5 while A′ 6= ∅ do
6 foreach a ∈ A′ do
7 if RemainingBudget≥ cai then // if budget

allows to pull arm
8 pull arm a to obtain reward ra,t;
9 G← G+ ra,t;

10 µ′a ←
µ′a∗n

S
a+ra,t

nSa+1
; // update mean

reward estimate of arm
11 S ← S + a;
12 RemainingBudget← RemainingBudget−ca;
13 t← t+ 1;

14 NumPasses← NumPasses+ 1;
15 A′ = ∅;
16 NumToPull←

⌈
K

lNumPasses

⌉
;

17 while NumToPull > 0 and A−A′ 6= ∅ do
18 A′ ← A′ ∪ {argmaxi∈A

µi
ci
| cai ≤

RemainingBudget, Ai 6∈ S′};
19 NumToPull← NumToPull - 1;

20 return (S, µ′, G);
Algorithm 2: The l-Split algorithm.

ficiency in dealing with trust-based decision making. The trust
that the agent places in each of its sub-contractors in the chain is
based on its past observations while engagement decisions have to
be predicated on remaining uncertainties about discriminating be-
tween potential partners.

In our supply-chain model, there is a root agent, which has ac-
cess to a fixed set of contractor agents, represented as the set of
arms A0,0 = 〈a1,0, . . . , a1,k〉, where k is the branching factor.
Each of the other agents al,i, in turn, has access to its own set of
sub-contractorsAl,i = 〈al+1,0, . . . , al+1,k〉, where l is the current
level in the tree. This gives rise to a supply-chain tree, with the
original agent a0,0 at the root. Each agent besides the root agent
possesses a fixed contracting cost cl,i. The utility that each agent
returns to its contracting agent is the inverse of the time that it takes
to complete the task. This time is determined by the time returned
by the agent’s own sub-contractors, added to a value drawn from
a Gaussian distribution internal to the agent, with mean µl,i and
standard deviation σl,i; leaf agents’ times are determined by their
own distributions only. For our implementation of this model, we
chose to hold the branching factor fixed for all the levels of each
branch. Additionally, to maintain a reasonable level of variation
in our experiments, we chose to give each agent in A1 identical
sub-trees.

Especially important is that, because each algorithm must per-
form its own bandit problem on its sub-contractors simultaneously,
and because no agent has the opportunity to sample arms when it
is not pulled, most agents will not be able to complete their explo-

140

Input : P = (A, B, C, µ): MAB-BF problem;
x, elimination factor

Output: S, a sequence of arm pulls;
µ′, a vector of the arms’ sample mean rewards;
G, total reward from all arm pulls;

1 t← 1; S ← ∅; G← 0; RemainingBudget← B;
2 for i = 1→ K do
3 µ′i ← 0

4 A′ = A ; // Initialize available arms
5 while RemainingBudget ≥ mini∈A′ ci do
6 numPullsInPass=0; passAverageRatio=0;
7 foreach a ∈ A′ do
8 if RemainingBudget ≥ ca then // if budget

allows to pull arm
9 pull arm a to obtain reward ra,t;

10 G← G+ ra,t;

11 µ′a ←
µ′a∗n

S
a+ra,t

nSa+1
; // update mean reward

estimate of arm
12 S ← S + a;
13 RemainingBudget← RemainingBudget−ca;
14 t← t+ 1;
15 passAverageRatio← passAverageRatio+ ra,t

ca
;

16 numPullsInPass← numPullsInPass+1;
17 else
18 A′ ← A′ \ {a} ; // eliminate arm

19 if numPullsInPass >0 then
20 passAverageRatio← passAverageRatio

numPullsInPass ;
21 A′ = ∅
22 foreach a ∈ A do
23 if ca <RemainingBudget &

µ′a ≥ (1 + x)passAverageRatio then
24 A′ ← A′ ∪ {a};

25 return (S, µ′, G);

Algorithm 3: The SOAAv algorithm.

ration before the root agent has completed its budget. To remedy
this, we set the budget of agent i on level l to be Bl,i,t = kcl,i,
if it is selected at time t. Thus, if an agent’s budget is distributed
evenly among all its sub-contractor agents, the budget of each sub-
contractor will be equal to that of the original contractor, giving
each agent the chance to explore its options and reach exploitation
in time for its contractor to benefit. Though we chose for simplic-
ity to fix the budget multiplier at a fairly neutral level (the parent’s
branching factor), this value could be altered per-agent or over time
to introduce additional variability in the model. Additionally, be-
cause each agent in the tree is exploring simultaneously, we ex-
pected less aggressive bandit algorithms to have a slight advantage
in this setting, since they will allow the sub-contractors more time
to finish exploring before they begin exploitation.

It is also of note that, because of this set-up, no agent except for
the root knows what its total budget will be until it has already spent
it. Thus, for algorithms that fix their exploration budget in advance,
we provided an estimated exploration budget of the same size as its
contracting agent– since when budget is expended uniformly, each
agent receives the same budget as its contracting agent, this seemed
to be a reasonable measure that would allow these algorithms to be
executed throughout the tree.

5. SIMULATION FRAMEWORK
In our simulation framework, we implemented fixed supply-chain

trees where the ith agent in level l, agent al,i, was provided with a

Gaussian reward distribution defined by {µl,i,σl,i} and a fixed en-
gagement or contracting cost of cl,i. The algorithms’ performance
in each scenario was averaged over one thousand trials. As results
in experiments where arm costs were selected randomly close to 1
were qualitatively similar to those where all arm costs were 1, we
use the results from the latter scenario for uniformity in the results
presented here. This fixed cost constraint could easily be lifted, and
does not substantially affect our results.

To evaluate the algorithms under consideration for the supply-
chain problem, and to help discover which situations each could
function best in, we made use of the following test scenarios. There
are two sets of experiments that use different allotment of MAB-BF
algorithms to the different nodes in the supply-chain:

Root-Variation Trees: In the root-variation case, the root agent
employs the algorithm under consideration, while each other
contractor in the tree employs the same "basic" algorithm
(we chose lS) in every case; because the sub-tree of con-
tractors would perform the same for each algorithm tested,
we use this case for comparing all MAB-BF algorithms.

Homogeneous Trees: In the homogeneous case, we employ the
same algorithm at each level of the tree. We expected that
this arrangement would help to amplify each algorithm’s rel-
ative strengths and weaknesses. Because some algorithms
require the total budget to be known initially, but no agent
except for the root knows this in advance, estimated explo-
ration budgets are needed for these to be allowed in the ho-
mogeneous configuration. So experiments with Homoge-
neous trees are run only for algorithms that does not require
the knowledge of the total budget.

In addition, we use different function distributions to generate
the performances of the contractors in the supply-chain. For each
of the root-variation and homogeneous cases, therefore, we also
experimented with several node performance distributions.

Curve Distributions: The simplest function type that we used is
the linear curve-based distribution. That is, the values in the
µl vector were chosen so that successive µl,i values followed
some linear, superlinear (concave down), or sublinear (con-
cave up) curve, with the average time for the first arm being
µl,1 =

µl,max
k

and that of the last arm being µl,k = µmaxl ,
where µmaxl is the maximum mean time for any arm on
level l of the tree. The standard deviation of processing time
was held the same for all agents. Thus, in the linear set,
arms’ means were evenly distanced. In contrast, there were
more (less) arms with high reward in the superlinear (sublin-
ear) curve distributions compared to arms with low rewards.
These configurations allowed us to examine the algorithms’
performance in conditions where either more (superlinear) or
less (sublinear) exploration would be beneficial.

Terraced Agents: We also considered "terraced" agent organiza-
tions, where for agents in the lth level, al,i, a single agent
with a best µ was placed together with some percentage of
“good” performers (around 80% µ values compared to the
best), and the rest were “poor” performers (around 20%); the
payoff variance was chosen to be large enough such that the
best arm was difficult to identify. Contractors with such vari-
able performance allowed us to better examine and evalu-
ate how intelligently algorithms expended their exploration
budget; the poor contractors were chosen to penalize algo-
rithms that explore less intelligently, while the presence of
the "good” contractors required focused sampling to discern
which was the best– a single sweep or any myopic choice
was unlikely to be sufficient.

141

6. EXPERIMENTAL RESULTS
In this section, we discuss the algorithms’ performance for our

trust-based supply-chain scenario. To evaluate the algorithms, we
focused on the reward that they generated as the initial budget var-
ied, and as the standard deviation of completion time of each con-
tractor (fixed at the same value for every agent) varied. The pa-
rameters values chosen for these scenario were varied to determine
when each algorithm would perform at its best, and in which situa-
tions it is less effective.

In general, our experimentation showed that at low budgets, the
more aggressive algorithms, that performed the least exploration,
tended to perform the best. The Greedy and PEEF algorithms con-
verged with sufficiently small budget (they were not allowed to ex-
plore any less than the Greedy, since then some of the arms would
go unexplored); lS and SOAAv were a little worse, while high-
exploration ε-first and KDE were significantly worse (see Figure 1).
As it turns out, the natural advantage that the model provides to less
aggressive algorithms is not enough to overcome the advantage that
more decisive algorithms accrue in a budget-limited environment.

As the budget increased, the lS and SOAAv algorithms quickly
outperformed the other algorithms in nearly every case. Perhaps
surprisingly, the low-exploration ε-first method also proved very
strong (nearly on-par with PEEF), while KDE, despite its supe-
rior, asymptotically-optimal regret bounds [14], performed rela-
tively worse for small budgets. By examining individual contractor-
selection sequences, we determined that this was because, in many
cases, the amount of exploration performed by KDE was not justi-
fied by the savings accrued in being able to locate the best contrac-
tor. By contrast, the ε-first method was still often able to determine
the best contractor eventually, by reordering its contractor ranking
after some number of mistakes during exploitation. With a suffi-
ciently high budget, KDE was able to overtake the low-exploration
ε-first method (see Figure 1), since the reward it missed from in-
creased exploration was eventually surpassed by the savings it in-
curred over the Greedy algorithm’s method, which accrued some
regret over time on average, from the trials where it could not cor-
rectly identify the best contractor.

We also saw that while the PEEF algorithm performed well with
small budget (it becomes identical to Greedy when budget is suf-
ficiently small, since the algorithm must select each contractor at
least once). Its average time to completion, like Greedy, drops off
relative to the others once it begins spending more time exploring–
that is, the other algorithms are able to explore more intelligently.
As was expected, the PEEF method follows the general pattern
of the equivalent ε-first algorithm, while their intelligent choice of
contractors allows it to remain more competitive. The fact that the
ε-first algorithms fall behind KDE in our experiments supports our
understanding that these algorithms have asymptotically worse re-
gret bounds than KDE.

Moreover, the juxtaposition of lS and PEEF emphasize the im-
portance of how the algorithms are parameterized. The two algo-
rithms are structurally identical, but because PEEF’s exploration
budget is dependent on the size of the budget, while lS’s is de-
pendent on the number of arms, lS is better able to cope with a
variety of different datasets without altering its parameters, when
the given budget is of a moderate to large size. For the same rea-
son, SOAAv’s parameter is sufficiently general that the algorithm
remains effectively adaptive without fine tuning.

6.1 Curve-Based Distributions for Base-
Variation and Homogeneous Trees

When testing with the curve-based distributions, we consider
cases where the σl,i values were set at 20, and µl,i values were

Figure 1: Time v. Budget for Curve-based Base-variation Trees
- Linear (left), Superlinear (center), and Sublinear (right)

chosen 10 units apart. The branching factor was k = 10. All con-
tracting costs were set to 1 unit, and contracting budgets ranged
from 50 (five times the cost to pull all arms available to the root)
to 500 (fifty times). Results from these experiments are plotted in
Figures 1 and 2; here, time values are considered relative to the
mean time values of all the algorithms to highlight differences be-
tween their performances. We can see that as budget increases, the
differences between the KDE and ε-first algorithms become much
smaller, while the other algorithms tend to spread out. The overall
trends in the algorithms’ rankings at low and high budgets matched
those discussed earlier: the lS algorithm performed the best at
large budgets, with SOAAv generally very close behind. While both
PEEF and low-exploration ε-first were preferable to these for very
small budgets, they became worse as budget became larger.

Also of note is the fact that KDE and ε-first are much less com-
petitive to begin with, but begin to increase fast enough to overtake
the other algorithms when budget becomes sufficiently large, as it
does for ε-first and PEEF in the range of our experiments. This
suggests that they could perform very well in very long-term cases.
For the budget-limited scenario, however, this is of limited value.

In considering the sublinear and superlinear utility distribution
trials, we found that the Greedy and PEEF algorithms tend to do
relatively better in the sublinear case, and worse in the superlinear
and linear cases. This makes sense, since these are more aggres-

142

Figure 2: Time v. Standard Dev for Linear, Homogeneous Trees

sive algorithms, and are better able to take advantage of the more
obvious best contractor location possible in the sublinear case. The
other algorithms were fairly stably in their relative utility.

For the case of homogeneous trees we found that the algorithms’
results were much closer together, and that the low-exploration ε-
first and PEEF algorithms perform much closer to the adaptive al-
gorithms as budget increased. This indicates that more aggressive
algorithms tended to perform better when the other contractors in
their sub-trees finished exploration at the same time that they did.

Finally, we also considered the completion time of each algo-
rithm as standard deviation of task completion time of the bottom
level contractors in the tree varied, as seen in Figure 4. Here, we
considered the linear utility distribution case only, and found that,
intriguingly, the same pattern applied. This observation reinforced
the conjecture that the relative performance of the algorithms was
directly related to the extent of their exploration. Increasing the
contractor’s standard deviation, and effectively bringing the agents’
time distributions closer together, had the same effect as increasing
the amount of interaction required to discriminate effectively be-
tween the contractors – the algorithms that acted more aggressively,
PEEF and ε-first (ε = 0.1), became worse over time than the more
deliberate algorithms KDE and ε-first (ε = 0.25), while the adaptive
SOAAv and lS algorithms performed the best overall.

6.2 Terraced Distributions for Base-variation
Trees

We also experimented with terraced arm configurations (see Fig-
ure 5), which provided key insights into the relative merits of these
algorithms. We constructed a case where we used 1 best contractor
(µi = 10), 4 good contractors (µi = 15), and 5 poor contractors (µi
= 25), with σi = 20 for all but the best and σi = 0 for the best. We
observed that the high-exploration ε-first algorithm and KDE was
able to perform significantly better than any of the others at high
budgets. The others performed somewhat worse, but retained the
same ranking as before. What this case corroborated was the hy-
pothesis that in cases where the best contractor has close competi-
tors, more extensive exploration periods are more beneficial in the
long-term (i.e., high budget) trials, even in the presence of the risk
of contracting poor contractors that penalize continued sampling.

7. CONCLUSION AND DISCUSSIONS
In this paper we have evaluated the use of existing and recently-

developed algorithms for solving the Fixed-Cost Multi-Armed Ban-

Figure 3: Time from Mean for Linear, Homogeneous Trees - at
Low (left), Moderate (center), and High Budgets (right)

dit Problem with Budget Constraint (MAB-BF) for addressing the
core comprehensive trust management issues of engagement and
evaluation of long-term reliability, and hence trustworthiness, of
potential partners. We used a supply-chain domain where contrac-
tor agents have to depend on sub-contractors of initially unknown
reliability to be able to fulfill their own production targets with the
goal of minimizing time-to-completion of their orders. Algorithms
that engage in strategic engagement, being cognizant of both cur-
rent reliability estimates and remaining budgets for engagement be-
fore making final partner selections, have been used to develop trust
estimates in potential long-term business partners.

Our experimental evaluation of the proposed algorithms show
that our proposed algorithms are successful in discriminating be-
tween partners of variable reliability in the face of domain uncer-
tainty, in the form of stochastic performance variation over multi-
ple levels of the supply-chain, by effectively managing exploration
budget and partial reliability estimates. Experiments over a wide
range of problem scenarios show that the lS and PEEF methods’
improvement on the weaknesses of the ε-first algorithm allowed
them to be highly competitive in tightly-constrained cases where
other algorithms with better theoretical bounds cannot excel. At the
same time, the SOAAv algorithm was able to perform very well in
general, consistently outperforming Greedy along with the others
in the majority of our test cases. Surprisingly, the simple Greedy

143

Figure 4: Time v. Standard Deviation for the Linear Case

Figure 5: Time v. Budget for the Terraced Case

algorithm, not used in the literature earlier for the MAB-BF prob-
lem, held its own, underscoring the usefulness of maximizing the
exploitation phase in most scenarios.

We plan to expand on this initial promising results of using MAB-
BF algorithms for engagement and trust evaluation in a supply-
chain domain by studying cases for variable, rather than uniform,
topological configurations for each contractor below the first level
in the supply-chains. It could be fruitful to study the effects of using
algorithms in entire sub-trees, or entire levels of the tree.

We would like to develop variants of the proposed algorithms for
the variable cost MAB problems which would be useful when con-
tracting costs vary between contractors. We also plan to study an in-
tegrated approach that address, together with engagement and eval-
uation, other aspects of comprehensive trust management, e.g., the
strategic use of known trustworthiness of contractors future con-
tractor selection given expectations of upcoming task load distribu-
tions. Finally, we would like to characterize the applicability of the
MAB-BF model and algorithms for trust management in diverse
real-life problems.

Acknowledgments
Anton Ridgway and Michael Ripley were funded in part by the
Tulsa Undergraduate Research Challenge (TURC) program at The
University of Tulsa.

REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finitetime analysis

of the multiarmed bandit problem. Machine Learning,
47(2):235–256, 2002.

[2] R. Agrawal, M. Hedge, and D. Teneketzis. Asymptotically
efficient adaptive allocation rules for the multiarmed bandit
problem with switching cost. Automatic Control, IEEE
Transactions on, 33(10):899–906, 1988.

[3] D. Ardagna, B. Panicucci, and M. Passacantando. A game
theoretic formulation of the service provisioning problem in
cloud systems. In Proceedings of the 20th international
conference on World wide web, pages 177–186. ACM, 2011.

[4] C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesami, and
M. Mahdian. Dynamics of bid optimization in online
advertisement auctions. In Proceedings of the 16th
international conference on World Wide Web, pages
531–540. ACM, 2007.

[5] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
Deconstructing amazon ec2 spot instance pricing. In Cloud
Computing Technology and Science (Cloud-Com), 2011
IEEE Third International Conference on, pages 304–311.
IEEE, 2011.

[6] T. Chakraborty, E. Even-Dar, S. Guha, Y. Mansour, and
S. Muthukrishnan. Selective call out and real time bidding.
In Internet and Network Economics, pages 145–157, 2010.

[7] C. Castelfranchi and R. Falcone. Principles of trust for MAS:
Cognitive autonomy, social importance, and quantification.
In ICMAS-98 pages 72–79, Los Alamitos, CA, 1998. IEEE
Computer Society.

[8] W. Ding, T. Qin, X.Zhang, and T. Liu. Multi-armed bandit
with budget constraint and variable costs. In AAAI-13. AAAI
Press, 2013.

[9] D. Gambetta. Trust. Basil Blackwell, Oxford, 1990.
[10] S. Guha and K. Munagala. Approximation algorithms for

budgeted learning problems. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of
computing, pages 104–113. ACM, 2007.

[11] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An
integrated trust and reputation model for open multi-agent
systems. Journal of Autonomous Agents and Multi-Agent
Systems, 13(2):119–154, 2006.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[13] S. Sen. A comprehensive approach to trust management. In
AAMAS’13, pages 797–800, 2013.

[14] L. Tran-Thanh, A. Chapman, J. Munoz De Cote Flores Luna,
A. Rogers, and N. Jennings. Epsilon-first policies for
budget-limited multi-armed bandits. In AAAI-10, pages
1211–1216, 2010.

[15] L. Tran-Thanh, A. Chapman, A. Rogers, and N. Jennings.
Knapsack based optimal policies for budget-limited
multi-armed bandits. In AAAI-12, pages 1134–1140, 2012.

[16] P. Yolum and M. P. Singh. Engineering self-organizing
referral networks for trustworthy service selection. IEEE
Transactions on System, Man, and Cybernetics,
35(3):396–407, 2005.

[17] J. Zhang, R. Cohen, and K. Larson. Combining Trust
Modeling and Mechanism Design for promoting Honesty in
E-Marketplaces. Computational Intelligence 28(4): 549-578
(2012).

144

