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ABSTRACT
Predicting the winner of an election is a favorite problem both
for news media pundits and computational social choice theorists.
Since it is often infeasible to elicit the preferences of all the voters
in a typical prediction scenario, a common algorithm used for win-
ner prediction is to run the election on a small sample of randomly
chosen votes and output the winner as the prediction. We analyze
the performance of this algorithm for many common voting rules.

More formally, we introduce the (ε, δ)-winner determination
problem, where given an election on n voters and m candidates
in which the margin of victory is at least εn votes, the goal is to
determine the winner with probability at least 1 − δ. The margin
of victory of an election is the smallest number of votes that need
to be modified in order to change the election winner. We show in-
teresting lower and upper bounds on the number of samples needed
to solve the (ε, δ)-winner determination problem for many common
voting rules, including scoring rules, approval, maximin, Copeland,
Bucklin, plurality with runoff, and single transferable vote. More-
over, the lower and upper bounds match for many common voting
rules in a wide range of practically appealing scenarios.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems

General Terms
Algorithms, Theory

Keywords
Computational social choice; winner determination; voting; sam-
pling; prediction; polling

1. INTRODUCTION
A common and natural way to aggregate preferences of agents is

through an election. In a typical election, we have a set of candidates
and a set of voters, and each voter reports his preference about the
candidates in the form of a vote. We will assume that each vote is
a ranking of all the candidates. A voting rule selects one candidate
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as the winner once all voters provide their votes. Determining the
winner of an election is one of the most fundamental problems in
social choice theory.

In many situations, however, one wants to predict the winner
without holding the election for the entire population of voters. The
most immediate such example is an election poll. Here, the poll-
ster wants to quickly gauge public opinion in order to predict the
outcome of a full-scale election. For political elections, exit polls
(polls conducted on voters after they have voted) are widely used
by news media to predict the winner before official results are an-
nounced. In surveys, a full-scale election is never conducted, and
the goal is to determine the winner, based on only a few sampled
votes, for a hypothetical election on all the voters. For instance, it
is not possible to force all the residents of a city to fill out an on-
line survey to rank the local Chinese restaurants, and so only those
voters who do participate have their preferences aggregated.

If the result of the poll or the survey has to reflect the true election
outcome, it is obviously necessary that the number of sampled votes
not be too small. Here, we investigate this fundamental question:

What is the minimum number of votes that need to be
sampled so that the winner of the election on the sam-
pled votes is the same as the winner of the election on
all the votes?

This question can be posed for any voting rule. The most im-
mediate rule to study is the plurality voting rule, where each voter
votes for a single candidate and the candidate with most votes wins.
Although the plurality rule is the most common voting rule used
in political elections, it is important to extend the analysis to other
popular voting rules. For example, the single transferable vote rule
is used in political elections in Australia, India and Ireland, and it
was the subject of a nationwide referendum in the UK in 2011. The
Borda voting rule is used in the Icelandic parliamentary elections.
Outside politics, in private companies and competitions, a wide va-
riety of voting rules are used. For example, the approval voting
rule has been used by the Mathematical Association of America,
the American Statistical Institute, and the Institute of Electrical and
Electronics Engineers, and Condorcet consistent voting rules are
used by many free software organizations. Section 2 discusses the
most common voting rules in use.

Regardless of the voting rule, though, the question of finding the
minimum number of vote samples required becomes trivial if a sin-
gle voter in the election can change the winning candidate. In this
case, all the votes need to be counted, because otherwise that single
crucial vote may not be sampled. We get around this problem by
assuming that in the elections we consider, the winning candidate
wins by a considerable margin of victory. Formally, the margin of
victory for an election is defined as the minimum number of votes
that must be changed in order to change the election winner. Note
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that the margin of victory depends not only on the votes cast but
also on the voting rule used in the election.

1.1 Our Contributions
Let the number of voters be n and the number of candidates m.

We introduce and study the following problem1:

Definition 1. ((ε, δ)-winner determination)
Given a voting rule and a set of n votes over a set ofm candidates
such that the margin of victory is at least εn, determine the winner
of the election with probability at least 1 − δ. (The probability is
taken over the internal coin tosses of the algorithm.)

We remind the reader that there is no assumption about the distribu-
tion of votes in this problem. Our goal is to solve the (ε, δ)-winner
determination problem by a randomized algorithm that is allowed to
query the votes of arbitrary voters. Each query reveals the full vote
of the voter. The minimum number of votes queried by any algo-
rithm that solves the (ε, δ)-winner determination problem is termed
the sample complexity. The sample complexity can of course de-
pend on ε, δ, n,m, and the voting rule in use.

A standard result [9] shows that solving the above problem for
the majority rule on 2 candidates requires at least Ω(1/ε2 log 1/δ)
samples (Theorem 2). Also, a straightforward argument (Theorem
4) using Chernoff bounds shows that for any homogeneous voting
rule, the sample complexity is at most O(m!2/ε2 · log(m!/δ)).
So, when m is a constant, the sample complexity is of the order
Θ(1/ε2 log 1/δ) for any homogeneous voting rule that reduces to
majority on 2 candidates (as is the case for all rules commonly used).
Note that this bound is independent of n if ε and δ are constants, for
any reasonable voting rule!

Our main technical contribution is in understanding the depen-
dence of the sample complexity on m, the number of candidates.
Note that the upper bound cited above has very bad dependence on
m and is clearly unsatisfactory in situations whenm is large (such
as in online surveys about restaurants).

– We show that the sample complexity of the (ε, δ)-winner de-
termination problem is Θ( 1

ε2
log 1

δ
) for the k-approval vot-

ing rule when k = o(m) (Theorem 7) and the plurality with
runoff voting rule (Theorem 11). In particular, for the plural-
ity rule, the sample complexity is independent of m as well
as n!

– We show that the sample complexity of the (ε, δ)-winner de-
termination problem isO( log(m/δ)

ε2
) and Ω( logm

ε2
(1− δ))for

the k-approval voting rule when k = cm with 0 < c < 1
(Theorem 6), Borda (Theorem 3), approval (Theorem 5),
maximin (Theorem 8), and Bucklin (Theorem 10) voting
rules. Note that when δ is a constant, the upper and lower
bounds match up to constants. We observe a surprising jump
in the sample complexity of the (ε, δ)-winner determination
problem by a factor of logm for the k-approval voting rule
as k varies from o(m) to cm with c ∈ (0, 1).

– We show a sample complexity upper bound ofO(
log3 m

δ
ε2

) for
the (ε, δ)-winner determination problem for the Copelandα

voting rule (Theorem 9) and O(
m2(m+log 1

δ
)

ε2
) for the STV

voting rule (Theorem 12).

We summarize the results in Table 1.
1Throughout this section, we use standard terminlogy from voting
theory. For formal definitions, refer to Section 2.

Voting Rule Sample complexity

k-approval O( 1
ε2

log k
δ
)Theorem 7 Ω( log(k+1)

ε2
. (1− δ))Theorem 3

Scoring Rules
O(

log m
δ

ε2
)Theorem 6

Borda

Ω( logm
ε2

. (1− δ))† Theorem 3

Approval O(
log m

δ
ε2

)Theorem 5

Maximin O(
log m

δ
ε2

)Theorem 8

Copeland O(
log3 m

δ
ε2

)Theorem 9

Bucklin O(
log m

δ
ε2

)Theorem 10

Plurality with runoff O(
log 1

δ
ε2

)Theorem 11

Ω( 1
ε2

log 1
δ
)∗ Corollary 1STV O(

m2(m+log 1
δ
)

ε2
)Theorem 12

Any homogeneous voting rule O(
m!2 log m!

δ
ε2

)Theorem 4

Table 1: Sample complexity of the (ε, δ)-winner determination prob-
lem for various voting rules. †–The lower bound of Ω( logm

ε2
. (1− δ))

also applies to any voting rule that is Condorcet consistent. ∗– The
lower bound of Ω( 1

ε2
log 1

δ
) holds for any voting rule that reduces to

the plurality voting rule for elections with two candidates.

1.2 Related Work
The subject of voting is at the heart of (computational) social

choice theory, and there is a vast amount of literature in this area.
Elections take place not only in human societies but also in man-
made social networks [6, 28] and, generally, in many multiagent
systems [16, 27]. The winner determination problem is the task of
finding the winner in an election, given the voting rule in use and the
set of all votes cast. It is known that there are natural voting rules,
e.g., Kemeny’s rule and Dodgson’s method, for which the winner
determination problem is NP-hard [5, 19, 20].

The general question of whether the outcome of an election can
be determined by less than the full set of votes is the subject of
preference elicitation, a central category of problems in AI. The
(ε, δ)-winner determination problem also falls in this area when the
elections are restricted to those having margin of victory at least εn.
For general elections, the preference elicitation problemwas studied
by Conitzer and Sandholm [11], who defined an elicitation policy as
an adaptive sequence of questions posed to voters. They proved that
finding an efficient elicitation policy is NP-hard for many common
voting rules. Nevertheless, several elicitation policies have been
developed in later work [10,13,23,24,26] that work well in practice
and have formal guarantees under various assumptions on the vote
distribution. Another related work is that of Dhamal and Narahari
[12] who show that if the voters are members of a social network
where neighbors in the network have similar candidate votes, then
it is possible to elicit the votes of only a few voters to determine the
outcome of the full election.

In contrast, in our work, we posit no assumption on the vote dis-
tribution other than that the votes create a substantial margin of vic-
tory for the winner. Under this assumption, we show that even for
voting rules in which winner determination is NP-hard in the worst
case, it is possible to sample a small number of votes to determine
the winner. Our work falls inside the larger framework of property
testing [29], a class of problems studied in theoretical computer sci-
ence, where the inputs are promised to either satisfy some property
or have a “gap” from instances satisfying the property. In our case,
the instances are elections which either have some candidate w as
the winner or are “far” from havingw being the winner (in the sense
that many votes need to be changed).
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The basicmodel of elections has been generalized in several other
ways to capture real world situations. One important consideration
is that the votes may be incomplete rankings of the candidates and
not a complete ranking. There can also be uncertainty over which
voters and/or candidates will eventually turn up. The uncertainty
may additionally come up from the voting rule that will be used
eventually to select the winner. In these incomplete information
settings, several winner models have been proposed, for example,
robust winner [8,23,30], multi winner [25], stable winner [17], ap-
proximate winner [14], probabilistic winner [2]. Hazon et al. [18]
proposed useful methods to evaluate the outcome of an election un-
der various uncertainties. We do not study the role of uncertainty
in our work.

Organization.
We formally introduce the terminologies in Section 2; we present

the results on lower bounds in Section 3; Section 4 contains the re-
sults on the upper bounds for various voting rules; finally, we con-
clude in Section 5.

2. PRELIMINARIES

2.1 Voting and Voting Rules
Let V = {v1, . . . , vn} be the set of all voters and C =
{c1, . . . , cm} the set of all candidates. Each voter vi’s vote is a
complete order over�i over the candidates C. For example, for two
candidates a and b, a �i bmeans that the voter vi prefers a to b. We
denote the set of all complete orders over C byL(C). Hence, L(C)n
denotes the set of all n-voters’ preference profiles (�1, . . . ,�n).

A map r : ]n,|C|∈N+L(C)n −→ C is called a voting rule. Given
a vote profile �∈ L(C)n, we call r(�) the winner. Note that in
this paper, each election has a unique winner, and we ignore the
possibility of ties. A voting rule is called homogeneous if it selects
the winner solely based on the fraction of times each complete order
fromL(C) appears as a vote in the election. All the commonly used
voting rules including the ones that are studied in this paper are
homogeneous.

Given an election E, we can construct a weighted graph GE
called weighted majority graph from E. The set of vertices in GE
is the set of candidates in E. For any two candidates x and y, the
weight on the edge (x, y) is DE(x, y) = NE(x, y) − NE(y, x),
where NE(x, y)(respectively NE(y, x)) is the number of voters
who prefer x to y (respectively y to x). A candidate x is called
the Condorcet winner in an election E if DE(x, y) > 0 for every
other candidate y 6= x. A voting rule is called Condorcet consis-
tent if it selects the Condorcet winner as the winner of the election
whenever it exists.
Some examples of common voting rules2 are:
Positional scoring rules: A collection ofm-dimensional vectors

~sm = (α1, α2, . . . , αm) ∈ Rm with α1 ≥ α2 ≥ · · · ≥ αm and
α1 > αm for every m ∈ N naturally defines a voting rule – a
candidate gets score αi from a vote if it is placed at the ith position,
and the score of a candidate is the sum of the scores it receives from
all the votes. The winner is the candidate with maximum score.
Without loss of generality, we assume that for any score vector

~α, there exists a j such that αj = 1 and αk = 0 for all k > j. The
vector α that is 1 in the first k coordinates and 0 otherwise gives
the k-approval voting rule. 1-approval is called the plurality voting
rule, and (m− 1)-approval is called the veto voting rule. The score
vector (m− 1,m− 2, . . . , 1, 0) gives the Borda voting rule.
2In all these rules, the possibilities of ties exist. If they do happen,
we assume that some arbitrary but fixed tie breaking rule is applied.

Approval: In approval voting, each voter approves a subset of
candidates. The winner is the candidate which is approved by the
maximum number of voters.

Maximin: The maximin score of a candidate x is
miny 6=xD(x, y). The winner is the candidate with maximum
maximin score.

Copelandα: The Copelandα score of a candidate x is |{y 6= x :
DE(x, y) > 0}|+ α|{y 6= x : DE(x, y) = 0}|, where α ∈ [0, 1].
The winner is the candidate with the maximum Copeland score.

Bucklin: A candidate x’s Bucklin score is the minimum number
l such that more than half of the voters rank x in their top l positions.
The winner is the candidate with lowest Bucklin score.

Plurality with runoff: The top two candidates according to plu-
rality score are selected first. The pairwise winner of these two can-
didates is selected as the winner of the election. This rule is often
called the runoff voting rule.

Single Transferable Vote: In Single Transferable Vote (STV),
a candidate with least plurality score is dropped out of the election
and its votes are transferred to the next preferred candidate. If two
or more candidates receive least plurality score, then tie breaking
rule is used. The candidate that remains after (m−1) rounds is the
winner.

Among the above voting rules, only the maximin and the
Copeland voting rules are Condorcet consistent.

Given an election, the margin of victory of this election is:

Definition 2. Given a voting profile �, the margin of victory
(MOV) is the smallest number of votes k such that the winner can
be changed by changing k many votes in �, while keeping other
votes unchanged.

Xia [32] showed that for most common voting rules (including all
those mentioned above), when each voter votes i.i.d. according to
a distribution on the candidates, the margin of victory is with high
probability, either Θ(

√
n) or Θ(n).

2.2 Statistical Distance Measures
Given a finite setX , a distribution µ onX is defined as a function

µ : X −→ [0, 1], such that
∑
x∈X µ(x) = 1. The finite set X

is called the base set of the distribution µ. We use the following
distance measures among distributions in our work.

Definition 3. The KL divergence [21] and the Jensen-Shannon
divergence [22] between two distributions µ1 and µ2 onX are de-
fined as follows.

DKL(µ1||µ2) =
∑
x∈X

µ1(x) log
µ1(x)

µ2(x)

JS(µ1, µ2) =
1

2

(
DKL

(
µ1||

µ1 + µ2

2

)
+DKL

(
µ2||

µ1 + µ2

2

))
The Jensen-Shannon divergence has subsequently been general-

ized to measure the mutual distance among more than two distribu-
tions as follows.

Definition 4. Given n distributions µ1, . . . , µn over the same
base set, the generalized Jensen-Shannon divergence3 among them
is:

JS(µ1, . . . , µn) =
1

n

n∑
i=1

DKL

(
µi||

1

n

n∑
j=1

µj

)
3The generalized Jensen-Shannon divergence is often formulated
with weights on each of the n distributions. The definition here puts
equal weight on each distribution and is sufficient for our purposes.
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2.3 Chernoff Bound
We repeatedly use the following concentration inequality:

Theorem 1. Let X1, . . . , X` be a sequence of ` independent
random variables in [0, 1] (not necessarily identical). Let S =∑
iXi and let µ = E [S]. Then, for any 0 ≤ δ ≤ 1:

Pr[|S − µ| ≥ δ`] < 2 exp(−2`δ2)

and
Pr[|S − µ| ≥ δµ] < 2 exp(−δ2µ/3)

The first inequality is called an additive bound and the second mul-
tiplicative.

3. RESULTS ON LOWER BOUNDS
Our lower bounds for the sample complexity of (ε, δ)-winner de-

termination are derived from information-theoretic lower bounds
for distinguishing distributions.

We start from the following basic observation. Let X be a ran-
dom variable taking value 1with probability 1

2
−ε and 0with proba-

bility 1
2

+ε; Y be a random variable taking value 1 with probability
1
2

+ε and 0with probability 1
2
−ε. Then, it is well-known that every

algorithm needs Ω( 1
ε2

log 1
δ
) many samples to distinguish between

X and Y with probability of making an error being at most δ [4,9].
Immediately, we have:

Theorem 2. The sample complexity of the (ε, δ)-winner deter-
mination problem for the plurality voting rule is Ω( 1

ε2
log 1

δ
).

Proof. Consider an election with two candidates a and b. Con-
sider two vote distributionsX and Y . InX , exactly 1

2
+ ε fraction

of voters prefer a to b and thus a is the plurality winner of the elec-
tion. In Y , exactly 1

2
+ ε fraction of voters prefer b to a and thus

b is the plurality winner of the election. Also, the margin of vic-
tory of both the elections corresponding to the vote distributionsX
and Y is εn, since each vote change can change the plurality score
of any candidate by at most one. Any (ε, δ)-winner determination
algorithm for plurality will give us a distinguisher between the dis-
tributions X and Y with probability of error at most δ and hence
will need Ω( 1

ε2
log 1

δ
) samples.

Theorem 2 immediately gives us the following corollary.

Corollary 1. Every (ε, δ)-winner determination algorithm
needs Ω( 1

ε2
log 1

δ
) many samples for any voting rule which reduces

to the plurality rule for two candidates. In particular, the lower
bound holds for approval, scoring rules, maximin, Copeland,
Bucklin, plurality with runoff, and STV voting rules.

Wederive stronger lower bounds in terms ofm by explicitly view-
ing the (ε, δ)-winner determination problem as a statistical classi-
fication problem. In this problem, we are given a black box that
contains a distribution µ which is guaranteed to be one of ` known
distributions µ1, . . . , µ`. A classifier is a randomized oracle which
has to determine the identity of µ, where each oracle call produces a
sample from µ. At the end of its execution, the classifier announces
a guess for the identity of µ, which has to be correct with probability
at least 1− δ. Using information-theoretic methods, Bar-Yossef [3]
showed the following:

Lemma 1. The worst case sample complexity q of a classifier
C for µ1, . . . , µ` which does not make error with probability more
than δ satisfies following.

q ≥ Ω

(
log `

JS (µ1, . . . , µ`)
. (1− δ)

)

The connection with our problem is the following. A set V of n
votes on a candidate set C generates a probability distribution µV
onL(C), where µV (�) is proportional to the number of voters who
voted �. Querying a random vote from V is then equivalent to
sampling from the distribution µV . The margin of victory is pro-
portional to the minimum statistical distance between µV and µW ,
over all the voting profiles W having a different winner than the
winner of V .

Now, suppose we havem voting profiles V1, . . . , Vm having dif-
ferent winners such that each Vi has margin of victory at least εn.
Any (ε, δ)-winner determination algorithm must also be a statisti-
cal classifier for µV1 , . . . , µVm in the above sense. It then remains
to construct such voting profiles for various voting rules which we
do in the proof of the following theorem:

Theorem 3. Every (ε, δ)-winner determination algorithm
needs Ω

(
logm
ε2

. (1− δ)
)

many samples for approval, Borda,
Bucklin, and any Condorcet consistent voting rules, and
Ω
(

log(k+1)

ε2
. (1− δ)

)
many samples for the k-approval vot-

ing rule.

Proof. For each voting rules mentioned in the theorem, we will
show m many distributions µ1, . . . , µm on the votes with the fol-
lowing properties. Let Vi be an election where each vote v occurs
exactly µi(v) · n many times.

1. For every i 6= j, the winner in Vi is different from the winner
in Vj .

2. For every i, the margin of victory of Vi is at least νεn, for
some constant ν 6= 0.

The distributions for different voting rules are as follows. Let the
candidate set be C = {c1, . . . , cm}. Let µ = 1

m

∑m
i=1 µi. For

each case, it is easy to show that DKL(µi||µ) = O(ε2). Hence,
we only show that the margin of victory is as desired and thus the
result follows from Lemma 1.

Approval, k-approval. Fix any arbitrary M := k + 1 many
candidates c1, . . . , cM . For i ∈ [M ], we define a distribution µi on
all k sized subsets of C (for the k-approval voting rule, each vote is
a k-sized subset of C) as follows. Each k sized subset corresponds
to top k candidates in a vote.

µi(x) =


ε

(M−1
k−1 )

+ 1−ε
(Mk )

if ci ∈ x and x ⊆ {c1, . . . , cM}
1−ε
(Mk )

ci /∈ x and x ⊆ {c1, . . . , cM}

0 else

The score of ci in Vi is n
(
ε+ (1− ε) (M−1

k−1 )
(Mk )

)
, the score of any

other candidate cj ∈ {c1, . . . , cM} \ {ci} is n (1− ε) (M−1
k−1 )
(Mk )

, and

the score of the rest of the candidates is zero. Hence, the margin of
victory is at least εn

4
, since each vote change can reduce the score of

ci by at most one and increase the score of any other candidate by at
most one. This proves the result for the k-approval voting rule. We
get the result for the approval voting rule from the fact that every
k-approval election is also an approval election.

Borda, any Condorcet consistent voting rule. The score vector
for the Borda voting rule which we use in this proof is (m,m −
1, . . . , 1). For i ∈ [m], we define a distribution µi on all possible
linear orders over C as follows.

µi(x) =

{
ε

(m−1)!
+ 1−ε

m!
if ci is within top m

2
positions in x.

1−ε
m!

else

1424



The score of ci in Vi is mn2 (1 + ε
2
) whereas the score of any other

candidate cj 6= ci is mn
2
. Hence, the margin of victory is at least

εn
8
, since each vote change can reduce the score of ci by at mostm

and increase the score of any other candidate by at most m. Also,
in the weighted majority graph for the election Vi, w(ci, cj) = εn

2
.

Hence, the margin of victory is at least εn
4
, since each vote change

can change the weight of any edge in the weighted majority graph
by at most two.

Bucklin. For i ∈ [m], we define a distribution µi on all m4 sized
subsets of C as follows. Each m

4
sized subset corresponds to the top

m
4
candidates in a vote.

µi(x) =


1−ε

(m−1
m
4

−1)
+ ε

(mm
4

)
if ci ∈ x

ε

(mm
4

)
else

The candidate ci occurs within the top m4 positions at leastn(1− 3ε
4

)
many times, and any candidate cj 6= ci occurs within the top m

4
positions at most n

3
− εn

12
many times. Hence, the margin of victory

is at least εn
6
, since each vote change can change the number of time

any particular candidate occurs within top m
4
positions by at most

one.

4. RESULTS ON UPPER BOUNDS
In this section, we present the upper bounds on the sample com-

plexity of the (ε, δ)-winner determination problem for various vot-
ing rules. The general framework for proving the upper bounds is
as follows. For each voting rule, we first prove a useful structural
property about the election when the margin of victory is known
to be at least εn. Then, we sample a few votes uniformly at ran-
dom to estimate either the score of the candidates for score based
voting rules or weights of the edges in the weighted majority graph
for other voting rules. Finally, appealing to the structural property
that has been established, we argue that, the winner of the election
on the sampled votes will be the same as the winner of the elec-
tion, if we are able to estimate either the scores of the candidates or
the weights of the edges in the weighted majority graph to a certain
level of accuracy.

Before getting into specific voting rules, we prove a straightfor-
ward bound on the sample complexity for the (ε, δ)-winner deter-
mination problem for any voting rule.

Theorem 4. There is a (ε, δ)-winner determination algorithm
for every homogeneous voting rules with sample complexity
O(

m!2 log m!
δ

ε2
).

Proof. We sample ` votes uniformly at random from the set of
votes with replacement. Let Xi be an indicator random variable
that is 1 exactly when x is the i’th sample, and let g(x) be the total
number of voters whose vote is x. Define ĝ(x) = n

l

∑l
i=1Xi.

Using the Chernoff bound (Theorem 1), we have the following:

Pr
[
|ĝ(x)− g(x)| > εn

2m!

]
≤ 2 · exp

(
− ε2`

2m!2

)
By using the union bound, we have the following,

Pr
[
∃x ∈ L(C), |ĝ(x)− g(x)| > εn

2m!

]
≤ 2m! · exp

(
− ε2`

2m!2

)
Since the margin of victory is εn and the voting rule is anonymous,
the winner of the ` sample votes will be same as the winner of the
election if |ĝ(x) − g(x)| ≤ εn

2m!
for every linear order x ∈ L(C).

Hence, it is enough to take ` = O(m!2/ε2 · log(m!/δ)).

4.1 Approval Voting Rule
We derive the upper bound on the sample complexity for the

(ε, δ)-winner determination problem for the approval voting rule.

Lemma 2. If MOV ≥ εn and w be the winner of a approval
election, then, s(w) − s(x) ≥ εn, for every candidate x 6= w,
where s(y) is the number of approvals that a candidate y receives.

Proof. Suppose there is a candidate x 6= w such that s(w) −
s(x) < εn. Then there must exist εn − 1 votes which does not
approve the candidate x. We modify these votes to make it approve
x. This makes w not the unique winner in the modified election.
This contradicts the fact that the MOV is at least εn.

Theorem 5. There is a (ε, δ)-winner determination algorithm
for the approval voting rule with sample complexity O( log(m/δ)

ε2
).

Proof. Suppose w is the winner. We sample ` votes uniformly
at random from the set of votes with replacement. For a candidate x,
letXi be a random variable indicatingwhether the i’th vote sampled
approved x. Define ŝ(x) = n

l

∑l
i=1Xi. Then, by an argument

analogous to the proof of Theorem 4, Pr[∃x ∈ C, |ŝ(x)− s(x)| >
εn/2] ≤ 2m · exp

(
−ε2`/2

)
. Thus since MOV≥ εn and by

Lemma 2, if we take ` = O( logm/δ

ε2
), ŝ(w) is greater than ŝ(x)

for all x 6= w.

4.2 Scoring Rules
Now, we move on to the scoring rules. Again, we first establish a

structural consequence of having large MOV.

Lemma 3. Suppose α = (α1, . . . , αm) be a normalized score
vector and w is the winner of an election using scoring rule α with
MOV ≥ εn. Then, s(w) − s(x) ≥ α1εn/2 for every candidate
x 6= w, where s(w) and s(x) denote the score of the candidates w
and x respectively.

Proof. There must be at least εn many votes where w is pre-
ferred over x, since we can make x win the election by exchanging
the positions of x andw in all these votes andMOV ≥ εn. Let v be
a vote where w is preferred to x. Suppose we replace the vote v by
another vote v′ = x � others � w. We claim that this replacement
reduces the current value of s(w)−s(x) by at leastα1. If we change
εn/2 such votes, then s(w)−s(x) decreases by at leastα1εn/2 but,
at the same time, w must still be the winner after the vote changes
because of the MOV condition. So, s(w)− s(x) ≥ α1εn/2.

To prove the claim, suppose w and x were receiving a score of
αi and αj respectively from the vote v. By replacing the vote v
by v′, the current value of s(w)− s(x) reduces by α1 − αj + αi,
since αm = 0. Now, α1 − αj + αi ≥ α1 since in the vote v, the
candidate w is preferred over x and hence, αj < αi. This proves
the result.

Theorem 6. Suppose α = (α1, . . . , αm) be a normalized
score vector. There is a (ε, δ)-winner determination algorithm for
the α-scoring rule with sample complexity O( log(m/δ)

ε2
).

Proof. It is enough to show the result for the (2ε, δ)-winner
determination problem. We sample ` votes uniformly at random
from the set of votes with replacement. For a candidate x, define
Xi = αi

α1
if x gets a score of αi from the ith sample vote, and let

ŝ(x) = nα1
`

∑`
i=1Xi. Now, using Chernoff bound (Theorem 1),

we have:

Pr [|ŝ(x)− s(x)| ≥ α1εn/4] ≤ 2 exp

(
−ε

2`

2

)
The rest of the proof follows from an argument analogous to the
proof of Theorem 5 using Lemma 3.
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From Theorem 6, we have a (ε, δ)-winner determination algo-
rithm for the k-approval voting rule which needsO( log(m/δ)

ε2
)many

samples for any k. This is tight by Theorem 3 when k = cm for
some c ∈ (0, 1).

When k = o(m), we have a lower bound of Ω( 1
ε2

log 1
δ
) for

the k-approval voting rule (see Corollary 1). We show next that
this lower bound is also tight for the k-approval voting rule when
k = o(m). Before embarking on the proof of the above fact, we
prove the following lemma which will be crucially used.

Lemma 4. Let f : R −→ R be a function defined by f(x) =

e−
λ
x . Then,

f(x) + f(y) ≤ f(x+ y), for x, y > 0,
λ

x+ y
> 2, x < y

Proof. For the function f(x), we have following.

f(x) = e−
λ
x

⇒ f ′(x) =
λ

x2
e−

λ
x

⇒ f ′′(x) =
λ2

x4
e−

λ
x − 2λ

x3
e−

λ
x

Hence, for x, y > 0, λ
x+y

> 2, x < y we have
f ′′(x), f ′′(y), f ′′(x + y) > 0. This implies following for x < y
and an infinitesimal positive δ.

f ′(x) ≤ f ′(y)

⇒ f(x− δ)− f(x)

δ
≥ f(y)− f(y − δ)

δ
⇒ f(x) + f(y) ≤ f(x− δ) + f(y + δ)

⇒ f(x) + f(y) ≤ f(x+ y)

Theorem 7. There is a (ε, δ)-winner determination algorithm
for the k-approval voting rule with sample complexity O(

log( k
δ
)

ε2
).

Proof. It is enough to show the result for the (2ε, δ)-winner de-
termination problem. We sample ` votes uniformly at random from
the set of votes with replacement. For a candidate x, letXi be a ran-
dom variable indicating whether x is among the top k candidates for
the ith vote sample. Define ŝ(x) = n

`

∑l
i=1Xi, and let s(x) be

the actual score of x. Then by the multiplicative Chernoff bound
(Theorem 1), we have:

Pr [|ŝ(x)− s(x)| > εn] ≤ 2 exp

(
− ε2`n

3s(x)

)
By union bound, we have the following,

Pr[∃x ∈ C, |ŝ(x)− s(x)| > εn]

≤
∑
x∈C

2 exp

(
− ε2`n

3s(x)

)
≤ 2k exp

(
−ε2`/3

)
Let the candidate w be the winner of the election. The second in-
equality in the above derivation follows from the fact that, the func-
tion

∑
x∈C exp

(
− ε2`n

3s(x)

)
is maximized in the domain, defined by

the constraint: for every candidate x ∈ C, s(x) ∈ [0, n] and∑
x∈C s(x) = kn, by setting s(x) = n for every x ∈ C′ and

s(y) = 0 for every y ∈ C \ C′, for any arbitrary subset C′ ⊂ C of
cardinality k (due to Lemma 4). The rest of the proof follows by an
argument analogous to the proof of Theorem 4 using Lemma 3.

Notice that, the sample complexity upper bound in Theorem 7
is independent of m for the plurality voting rule. Theorem 7 in
turn implies the following Corollary which we consider to be of
independent interest.

Corollary 2. There is an algorithm to estimate the `∞ norm
`∞(µ) of a distribution µ within an additive factor of ε by query-
ing only O( 1

ε2
log 1

δ
) many samples, if we are allowed to get i.i.d.

samples from the distribution µ.

Such a statement seems to be folklore in the statistics community
[15]. Recently in an independent and nearly simultaneous work,
Waggoner [31] obtained a sharp bound of 4

ε2
log( 1

δ
) for the sample

complexity in Corollary 2.

4.3 Maximin Voting Rule
We now turn our attention to the maximin voting rule. The idea

is to sample enough numer of votes such that we are able to estimate
the weights of the edges in the weighted majority graph with certain
level of accuracy which in turn leads us to predict winner.

Lemma 5. SupposeMOV ≥ εn andw be the winner of a max-
imin election. Then, s(w)−s(x) ≥ εn, for every candidate x 6= w,
where s(.) is the maximin score.

Proof. Let w be the winner and x be any arbitrary candidate
other than w. Suppose, for contradiction, s(w)− s(x) < εn. Sup-
pose y be a candidate such that N(w, y) = s(w). Now there exist
at least εn− 1 votes as below.

c1 � · · · � w � · · · � y � · · · � cm−2

We replace εn− 1 of such votes by the votes as below.

c1 � · · · � y � · · · � cm−2 � w

This makes the maximin score of w less than the maximin score of
x. This contradicts the assumption that MOV ≥ εn.

Theorem 8. There is a (ε, δ)-winner determination algorithm
for the maximin voting rule with sample complexity O(

log m
δ

ε2
).

Proof. Let x and y be any two arbitrary candidates. We sample
` votes uniformly at random from the set of votes with replacement.
LetXi be a random variable defined as follows.

Xi =

{
1, if x � y in the ith sample
−1, else

Define D̂(x, y) = n
l

∑l
i=1Xi. We estimate D̂(x, y) within the

closed ball of radius εn/2 around D(x, y) for every candidates
x, y ∈ C and the rest of the proof follows from by an argument
analogous to the proof of Theorem 5 using Lemma 5.

4.4 Copelandα Voting Rule
Now, we move on to the Copelandα voting rule. The approach

is similar to the maximin voting rule. However, it turns out that we
need to estimate the edge weights of the weighted majority graph
more accurately for the Copelandα voting rule. Xia introduced the
brilliant quantity called the relative margin of victory (see Section
5.1 in [32]) which will be used crucially for showing sample com-
plexity upper bound for the Copelandα voting rule. Given an elec-
tion, a candidate x ∈ C, and an integer (may be negative also) t,
s′t(V, x) is defined as follows.

s′t(V, x) =|{y ∈ C : y 6= x,DE(y, x) < 2t}|
+ α|{y ∈ C : y 6= x,DE(y, x) = 2t}|
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For every two distinct candidates x and y, the relative margin of
victory, denoted by RM(x, y), between x and y is defined as the
minimum integer t such that, s′−t(V, x) ≤ s′t(V, y). Let w be
the winner of the election E . We define a quantity Γ(E) to be
minx∈C\{w}{RM(w, x)}. Notice that, given an election E , Γ(E)
can be computed in polynomial amount of time. Now we have the
following lemma.

Lemma 6. Suppose MOV ≥ εn and w be the winner of a
Copelandα election. Then, RM(w, x) ≥ εn

2(dlogme+1)
, for every

candidate x 6= w.

Proof. Follows from Theorem 11 in [32].

Theorem 9. There is a (ε, δ)-winner determination algorithm
for Copelandα voting rule with sample complexity O(

log3 m
δ

ε2
).

Proof. Let x and y be any two arbitrary candidates and w the
Copelandα winner of the election. We estimateD(x, y) within the
closed ball of radius εn

5(dlogme+1)
around D(x, y) for every candi-

dates x, y ∈ C in a way analogous to the proof of Theorem 8. This
needsO(

log3 m
δ

ε2
) many samples. The rest of the proof follows from

Lemma 6 by an argument analogous to the proof of Theorem 4.

4.5 Bucklin Voting Rule
For the Bucklin voting rule, we will estimate how many times

each candidate occurs within the first k position for every k ∈ [m].
This eventually leads us to predict the winner of the election due to
the following lemma.

Lemma 7. Suppose MOV of a Bucklin election be at least εn.
Letw be the winner of the election and x be any arbitrary candidate
other than w. Suppose

bw = min
i
{i : w is within top i places in at least n

2
+
εn

3
votes}

bx = min
i
{i : x is within top i places in at least n

2
− εn

3
votes}

Then, bw < bx.

Proof. We prove it by contradiction. So, assume bw ≥ bx. Now
by changing εn

3
votes, we can make the Bucklin score of w to be at

least bw. By changing another εn
3

votes, we can make the Bucklin
score of x to be at most bx. Hence, by changing 2εn

3
votes, it is

possible not to make w the unique winner which contradicts the
fact that the MOV is at least εn.

Theorem 10. There is a (ε, δ)-winner determination algorithm
for Bucklin voting rule with sample complexity O(

log m
δ

ε2
).

Proof. Let x be any arbitrary candidate and 1 ≤ k ≤ m. We
sample l votes uniformly at random from the set of votes with re-
placement. LetXi be a random variable defined as follows.

Xi =

{
1, if x is within top k places in ith sample
0, else

Let ŝk(x) be the estimate of the number of times the candidate x has
been placed within top k positions. That is, ŝk(x) = n

l

∑l
i=1Xi.

Let sk(x) be the number of times the candidate x been placed in
top k positions. Clearly,E[ŝk(x)] = n

`

∑`
i=1E[Xi] = sk(x). We

estimate ŝk(x) within the closed ball of radius εn/2 around sk(x)
for every candidate x ∈ C and every integer k ∈ [m], and the rest
of the proof follows from by an argument analogous to the proof of
Theorem 5 using Lemma 7.

4.6 Plurality with Runoff Voting Rule
Now, we move on to the plurality with runoff voting rule. In this

case, we first estimate the plurality score of each of the candidates.
In the next round, we estimate the pairwise margin of victory of the
two candidates that qualifies to the second round.

Lemma 8. Suppose MOV ≥ εn, and w and r be the winner
and runner up of a plurality with runoff election respectively, and x
be any arbitrary candidate other than and r. Then, following holds.
Let s(.) denote plurality score of candidates. Then following holds.

1. D(w, r) > 2εn.

2. For every candidate x ∈ C \{w, r}, 2s(w) > s(x)+s(r)+
εn.

3. If s(x) > s(r)− εn
2
, thenD(w, x) > εn

2
.

Proof. If the first property does not hold, then by changing εn
votes, we can make r winner. If the second property does not hold,
then by changing εn votes, we can make both x and r qualify to the
second round. If the third property does not hold, then by changing
εn
2

votes, the candidate x can be sent to the second round of the
runoff election. By changing another εn

2
votes, x can be made to

win the election. This contradicts the MOV assumption.

Theorem 11. There is a (ε, δ)-winner determination algorithm
for the plurality with runoff voting rule with sample complexity
O(

log 1
δ

ε2
).

Proof. Let x be any arbitrary candidate. We sample l votes uni-
formly at random from the set of votes with replacement. Let, Xi
be a random variable defined as follows.

Xi =

{
1, if x is at first position in the ith sample
0, else

The estimate of the plurality score of x be ŝ(x). Then ŝ(x) =
n
l

∑l
i=1Xi. Let s(x) be the actual plurality score of x. Then we

have following,

E[Xi] =
s(x)

n
,E[ŝ(x)] =

n

l

l∑
i=1

E[Xi] = s(x)

By Chernoff bound, we have the following,

Pr[|ŝ(x)− s(x)| > εn] ≤ 2

exp{ε2ln/3s(x)}
By union bound, we have the following,

Pr[∃x ∈ C, |ŝ(x)− s(x)| > εn] ≤
∑
x∈C

2

exp{ε2ln/3s(x)}

≤ 2

exp{ε2l/3}
The last line follows from Lemma 4. Notice that, we do not need
the random variables ŝ(x) and ŝ(y) to be independent for any two
candidates x and y. Hence, we can use the same l sample votes to
estimate ŝ(x) for every candidate x.
Now, let y and z be the two candidates that go to the second round.

Yi =

{
1, if y � z in the ith sample
−1, else

The estimate of D(y, z) be D̂(y, z). Then D̂(y, z) = n
l

∑l
i=1 Yi.

Then we have following,

E[Yi] =
D(y, z)

n
,E[D̂(y, z)] =

n

l

l∑
i=1

E[Yi] = D(y, z)
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By Chernoff bound, we have the following,

Pr[|D̂(y, z)−D(y, z)| > εn] ≤ 2

exp{ε2l/3}

LetA be the event that ∀x ∈ C, |ŝ(x)−s(x)| ≤ εn and |D̂(y, z)−
D(y, z)| ≤ εn. Now we have,

Pr[A] ≥ 1− (
2

exp{ε2l/3} +
2

exp{ε2l/3} )

Since we do not need independence among the random variables
ŝ(a), ŝ(b), D̂(w, x), D̂(y, z) for any candidates a, b, w, x, y, and
z, we can use the same l sampled votes. Now, from Lemma 8, if
|ŝ(x)−s(x)| ≤ εn

5
for every candidatex and |D̂(y, z)−D(y, z)| ≤

εn
5

for every candidates y and z, then the plurality with runoff win-
ner of the sampled votes coincides with the actual runoff winner.
The above event happens with probability at least 1−δ by choosing
an appropriate l = O(

log 1
δ

ε2
).

4.7 STV Voting Rule
Now we move on the STV voting rule. The following lemma

provides an upper bound on the number of votes that need to be
changed to make some arbitrary candidate win the election. More
specifically, given a sequence ofm candidates {xi}mi=1 with xm not
being the winner, the lemma below proves an upper bound on the
number of number of votes that need to be modified such that the
candidate xi gets eliminated at the ith round in the STV voting rule.

Lemma 9. Suppose V be a set of votes and w be the winner
of a STV election. Consider the following chain with candidates
x1 6= x2 6= . . . 6= xm and xm 6= w.

C ⊃ C \ {x1} ⊃ C \ {x1, x2} ⊃ . . . ⊃ {xm}

Let sV(A, x) be the plurality score of a candidate x when all the
votes in V are restricted to the set of candidates A ⊂ C. Let us
define C−i = C\{x1, . . . , xi} and s∗V(A) := minx∈A{sV(A, x)}.
Then, we have the following.

m−1∑
i=0

(sV (C−i, xi+1)− s∗V (C−i)) ≥ MOV

Proof. We will show that by changing∑m−1
i=0 (sV (C−i, xi+1)− s∗V (C−i)) votes, we can make the

candidate xm winner. If x1 minimizes sV(C, x) over x ∈ C, then
we do not change anything and define V1 = V . Otherwise, there
exist sV(C, x1)− s∗V(C) many votes of following type.

x1 � a1 � a2 � . . . � am−1, ai ∈ C, ∀1 ≤ i ≤ m− 1

We replace sV(C, x1)− s∗V(C) many votes of the above type by the
votes as follows.

a1 � x1 � a2 � . . . � am−1

Let us call the new set of votes by V1. We claim that, sV(C \
x1, x) = sV1(C \x1, x) for every candidate x ∈ C \ {x1}. Fix any
arbitrary candidate x ∈ C \ {x1}. The votes in V1 that are same as
in V contributes same quantity to both side of the equality. Let v be
a vote that has been changed as described above. If x = a1 then, the
vote v contributes one to both sides of the equality. If x 6= a1, then
the vote contributes zero to both sides of the equality. Hence, we
have the claim. We repeat this process for (m−1) times. Let Vi be
the set of votes after the candidate xi gets eliminated. Now, in the
above argument, by replacing V by Vi−1, V1 by Vi, the candidate

set C by C \ {x1, . . . , xi−1}, and the candidate x1 by the candidate
xi, we have the following.

sVi−1(C−i, x) = sVi(C−i, x)∀x ∈ C \ {x1, . . . , xi}

Hence, we have the following.

sV(C−i, x) = sVi(C−i, x)∀x ∈ C \ {x1, . . . , xi}

In the above process, the total number of votes that are changed is∑m−1
i=0 (sV (C−i, xi+1)− s∗V (C−i)).

Theorem 12. There is a (ε, δ)-winner determination algorithm
for the STV voting rule with sample complexity O(

m2(m+log 1
δ
)

ε2
).

Proof. We sample l votes uniformly at random from the set of
votes with replacement and output the STV winner of those l votes
say w′ as the winner of the election. Let, w be the winner of the
election. We will show that there exist l = O(

m2(m+log 1
δ
)

ε2
) for

whichw = w′ with probability at least 1− δ. LetA be an arbitrary
subset of candidates and x be any candidate in A. Let us define a
random variablesXi, 1 ≤ i ≤ l as follows.

Xi =

{
1, if x is at top ith sample when restricted to A
0, else

Define another random variable ŝV(A, x) :=
∑l
i=1Xi. Then we

have, E[ŝV(A, x)] = sV(A, x). Now, using Chernoff bound, we
have the following,

Pr[|ŝV(A, x)− sV(A, x)| > εn

m
] ≤ 2

exp{ ε2l
3m2 }

Let E be the event that ∃A ⊂ C and ∃x ∈ A, |ŝV(A, x) −
sV(A, x)| > εn

m
. By union bound, we have,

Pr[Ē] ≥ 1− m2m+1

exp{ ε2l
3m2 }

The rest of the proof follows by an argument analogous to the proof
of Theorem 4 using Lemma 9.

5. CONCLUSION
In this work, we introduced the (ε, δ)-winner determination prob-

lem and showed (often tight) bounds for the sample complexity for
many common voting rules. Besides closing the remaining gaps in
the bounds, here are a few open directions to pursue in the future:

– Is there an axiomatic characterization of the voting rules for
which the sample complexity is independent ofm and n? We
note that a similar problem in graph property testing was the
subject of intense study [1, 7].

– Specifically for scoring rules, is the sample complexity deter-
mined by some natural property of the score vector, such as
its sparsity?

– Is it worthwhile for the algorithm to elicit only part of the vote
from each sampled voter instead of the full vote? As men-
tioned in the Introduction, vote elicitation is a well-trodden
area, but as far as we know, it has not been studied how as-
suming amargin of victory can change the number of queries.

– How can knowledge of a social network on the voters be
used to minimize the number of samples made? Some ini-
tial progress in this direction has been made by Dhamal and
Narahari [12] and by Agrawal and Devanur (private commu-
nication).
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