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ABSTRACT
Manipulation is a problem of fundamental importance in
the context of voting in which the voters exercise their
votes strategically instead of voting honestly to prevent se-
lection of an alternative that is less preferred. The Gibbard-
Satterthwaite theorem shows that there is no strategy-proof
voting rule that simultaneously satisfies certain combina-
tions of desirable properties. Researchers have attempted
to get around the impossibility results in several ways such
as domain restriction and computational hardness of ma-
nipulation. However these approaches have been shown to
have limitations. Since prevention of manipulation seems to
be elusive, an interesting research direction therefore is de-
tection of manipulation. Motivated by this, we initiate the
study of detection of possible manipulators in an election.

We formulate two pertinent computational problems -
Coalitional Possible Manipulators (CPM) and Coalitional
Possible Manipulators given Winner (CPMW), where a sus-
pect group of voters is provided as input to compute whether
they can be a potential coalition of possible manipulators.
In the absence of any suspect group, we formulate two more
computational problems namely Coalitional Possible Manip-
ulators Search (CPMS), and Coalitional Possible Manipula-
tors Search given Winner (CPMSW). We provide polyno-
mial time algorithms for these problems, for several popular
voting rules. For a few other voting rules, we show that
these problems are in NP-complete. We observe that de-
tecting manipulation maybe easy even when manipulation
is hard, as seen for example, in the case of the Borda voting
rule.
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1. INTRODUCTION
On many occasions, agents need to agree upon a common

decision although they have different preferences over the
available alternatives. A natural approach used in these sit-
uations is voting. Some classic examples of the use of voting
rules in the context of multiagent systems are in collabora-
tive filtering [28], rank aggregation in web [8] etc.

In a typical voting scenario, we have a set of m candidates
and a set of n voters reporting their rankings of the candi-
dates called their preferences or votes. A voting rule selects
one candidate as the winner once all the voters provide their
votes. A set of votes over a set of candidates along with a
voting rule is called an election. A basic problem with vot-
ing rules is that the voters may vote strategically instead of
voting honestly, leading to the selection of a candidate which
is not the actual winner. We call a candidate actual win-
ner if, it wins the election when every voter votes truthfully.
This phenomenon of strategic voting is called manipulation
in the context of voting. The Gibbard-Satterthwaite (G-S)
theorem [20, 31] says that manipulation is unavoidable for
any unanimous and non-dictatorial voting rule if we have
at least three candidates. A voting rule is called unanimous
if whenever any candidate is most preferred by all the vot-
ers, such a candidate is the winner. A voting rule is called
non-dictatorial if there does not exist any voter whose most
preferred candidate is always the winner irrespective of the
votes of other voters. The problem of manipulation is par-
ticularly relevant for multiagent systems since agents have
computational power to determine strategic votes. There
have been several attempts to bypass the impossibility re-
sult of the G-S theorem.

Economists have proposed domain restriction as a way out
of the impossibility implications of the G-S theorem. The
G-S theorem assumes all possible preference profiles as the
domain of voting rules. In a restricted domain, it has been
shown that we can have voting rules that are not vulnera-
ble to manipulation. A prominent restricted domain is the
domain of single peaked preferences, in which the median
voting rule provides a satisfactory solution [22]. To know
more about other domain restrictions, we refer to [22, 17].
This approach of restricting the domain, however, suffers
from the requirement that the social planner needs to know
the domain of preference profiles of the voters, which is often
impractical.
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1.1 Related Work
Researchers in computational social choice theory have

proposed invoking computational intractability of manip-
ulation as a possible work around for the G-S theorem.
Bartholdi et al. [1, 2] first proposed the idea of using
computational hardness as a barrier against manipulation.
Bartholdi et al. defined and studied the computational prob-
lem called manipulation where a set of manipulators have to
compute their votes that make their preferred candidate win
the election. The manipulators know the votes of the truth-
ful voters and the voting rule that will be used to compute
the winner. Following this, a large body of research [25,
6, 39, 38, 5, 27, 10, 13, 24, 19, 26, 12, 40, 7, 15, 9] shows
that the manipulation problem is in NP-complete (NPC) for
many voting rules. However, Procaccia et al. [29, 30] showed
average case easiness of manipulation assuming junta distri-
bution over the voting profiles. Friedgut et al. [16] showed
that any neutral voting rule which is sufficiently far from be-
ing dictatorial is manipulable with non-negligible probability
at any uniformly random preference profile by a uniformly
random preference. The above result holds for elections with
three candidates only. A voting rule is called neutral if the
names of the candidates are immaterial. Isaksson et al. [21]
generalize the above result to any number of candidates.
Walsh [32] empirically shows ease of manipulating an STV
(single transferable vote) election – one of the very few vot-
ing rules where manipulation even by one voter is in NPC [1].
In addition to the results mentioned above, there exist many
other results in the literature that emphasize the weakness
of considering computational complexity as a barrier [4, 37,
36, 14, 33]. Hence, the barrier of computational hardness is
ineffective against manipulation in many settings.

1.2 Motivation
In a situation where multiple attempts for prevention of

manipulation fail to provide a fully satisfactory solution, de-
tection of manipulation is a natural next step of research.
There have been scenarios where establishing the occur-
rence of manipulation is straightforward, by observation or
hindsight. For example, in sport, there have been occa-
sions where the very structure of the rules of the game
have encouraged teams to deliberately lose their matches.
Observing such occurrences in, for example, football (the
1982 FIFA World Cup football match played between West
Germany and Austria) and badminton (the quarter-final
match between South Korea and China in the London 2012
Olympics), the relevant authorities have subsequently either
changed the rules of the game (as with football) or disquali-
fied the teams in question (as with the badminiton example).
The importance of detecting manipulation lies in the poten-
tial for implementing corrective measures in the future. For
reasons that will be evident soon, it is not easy to formally
define the notion of manipulation detection. Assume that
we have the votes from an election that has already hap-
pened. A voter is potentially a manipulator if there exists a
preference �, different from the voter’s reported preference,
which is such that the voter had an “incentive to deviate”
from the former. Specifically, suppose the candidate who
wins with respect to this voter’s reported preference is pre-
ferred (in �) over the candidate who wins with respect to
�. In such a situation, � could potentially be the voter’s
truthful preference, and the voter could be refraining from
being truthful because an untruthful vote leads to a more

favorable outcome with respect to �. Note that we do not
(and indeed, cannot) conclusively suggest that a particular
voter has manipulated an election. This is because the said
voter can always claim that she voted truthfully; since her
actual preference is only known to her, there is no way to
prove or disprove such a claim. Therefore, we are inevitably
limited to asking only whether or not a voter has possibly
manipulated an election.

Despite this technical caveat, it is clear that efficient de-
tection of manipulation, even if it is only possible manipu-
lation, is potentially of interest in practice. We believe that,
the information whether a certain group of voters have pos-
sibly manipulated an election or not would be very useful
to social planners. For example, the organizers of an event,
say London 2012 Olympics, maybe very interested to have
this information. Also, in settings where data from many
past elections (roughly over a fixed set of voters) is readily
available, it is conceivable that possible manipulation could
serve as suggestive evidence of real manipulation. Aggre-
gate data about possible manipulations, although formally
inconclusive, could serve as an important evidence of real
manipulation, especially in situations where the instances of
possible manipulation turn out to be statistically significant.
Thus, efficient detection of possible manipulation would pro-
vide a very useful input to a social planner for future elec-
tions. We remark that having a rich history is typically not
a problem, particularly for AI related applications, since the
data generated from an election is normally kept for future
requirements (for instance, for data mining or learning). For
example, several past affirmatives for possible manipulation
is one possible way of formalizing the notion of erratic past
behavior. Also, applications where benefit of doubt maybe
important, for example, elections in judiciary systems, pos-
sible manipulation detection seems useful. Thus the com-
putational problem of detecting possible manipulation is of
definite interest in this setting.

1.3 Contributions
The novelty of this paper is in initiating research on de-

tection of possible manipulators in elections. We formulate
four pertinent computational problems in this context:

– CPM: In the coalitional possible manipulators prob-
lem, we are interested in whether or not a given subset
of voters is a possible coalition of manipulators [Defi-
nition 4].

– CPMW: The coalitional possible manipulators given
winner is the CPM problem with the additional infor-
mation about who the winner would have been if the
possible manipulators had all voted truthfully [Defini-
tion 2].

– CPMS, CPMSW: In CPMS (Coalitional Possible Ma-
nipulators Search), we want to know, whether there
exists any coalition of possible manipulators of a size
at most k [Definition 6]. Similarly, we define CPMSW
(Coalitional Possible Manipulators Search given Win-
ner) [Definition 5].

Our specific findings are as follows.

– We show that all the four problems above, for scoring
rules and the maximin voting rule, are in P when the
coalition size is one [Theorem 1 and Theorem 4].
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– We show that all the four problems, for any coalition
size, are in P for a wide class of scoring rules which
include the Borda voting rule [Theorem 2, Theorem 3
and Corollary 1].

– We show that, for the Bucklin voting rule [Theorem 6],
both the CPM and CPMW problems are in P, for any
coalition size. The CPMS and CPMSW problems for
the Bucklin voting rule are also in P, when we have
maximum possible coalition size k = O(1).

– We show that both the CPM and the CPMW problems
are in NPC for the STV voting rule [Theorem 7 and
Corollary 2], even for a coalition of size one. We also
prove that the CPMW problem is in NPC for maximin
voting rule [Theorem 5], for a coalition of size two.

We observe that all the four problems are computationally
easy for many voting rules that we study in this paper. This
can be taken as a positive result. The results for the CPM
and the CPMW problems are summarized in Table 1.

Voting Rule CPM, k = 1 CPM CPMW, k = 1 CPMW

Scoring Rules P ? P ?

Borda P P P P

k-approval P P P P

Maximin P ? P NPC

Bucklin P P P P

STV NPC NPC NPC NPC

Table 1: Results for CPM and CPMW (k denotes coalition
size). The ‘?’ mark means that the problem is open.

Organization.
The rest of the paper is organized as follows. We describe

the necessary preliminaries in Section 2; we formally define
the computational problems in Section 3; we present the
results in Section 4 and finally we conclude in Section 5.

2. PRELIMINARIES
Let V = {v1, . . . , vn} be the set of all voters and C =
{c1, . . . , cm} the set of all candidates. If not mentioned oth-
erwise, n and m denote the number of voters and the number
of candidates respectively. Each voter vi’s vote is a prefer-
ence �i over the candidates which is a linear order over C.
For example, for two candidates a and b, a �i b means that
the voter vi prefers a to b. We will use a >i b to denote the
fact that a �i b, a 6= b. We denote the set of all linear orders
over C by L(C). Hence, L(C)n denotes the set of all n-voters’
preference profile (�1, · · · ,�n). We denote the (n − 1)-
voters’ preference profile by (�1, · · · ,�i−1,�i+1, · · · ,�n)
by �−i. We denote the set {1, 2, 3, . . . } by N+. The power
set of C is denoted by 2C , and ∅ denotes the empty set.
A map rc : ∪n,|C|∈N+L(C)n −→ 2C \ {∅} is called a voting

correspondence. A map t : ∪|C|∈N+2C \ {∅} −→ C is called
a tie breaking rule. Commonly used tie breaking rules are
lexicographic tie breaking rules where ties are broken ac-
cording to a predetermined preference �t∈ L(C). A voting
rule is r = t ◦ rc, where ◦ denotes composition of mappings.
Given an election E, we can construct a weighted graph GE

called weighted majority graph from E. The set of vertices
in GE is the set of candidates in E. For any two candi-
dates x and y, the weight on the edge (x, y) is DE(x, y) =

NE(x, y)−NE(y, x), where NE(x, y)(respectively NE(y, x))
is the number of voters who prefer x to y (respectively y to
x). Some examples of common voting correspondences are
as follows.

– Positional scoring rules: Given an m-dimensional vec-
tor ~α = (α1, α2, . . . , αm) ∈ Rm with α1 ≥ α2 ≥ · · · ≥
αm and α1 > αm, we can naturally define a voting rule
- a candidate gets score αi from a vote if it is placed
at the ith position, and the score of a candidate is the
sum of the scores it receives from all the votes. The
winners are the candidates with maximum score. For
α = (m− 1,m− 2, . . . , 1, 0), we get the Borda voting
rule. With αi = 1 ∀i ≤ k and 0 else, the voting rule
we get is known as the k-approval voting rule. The
plurality voting rule is the 1-approval voting rule and
the veto voting rule is the (m−1)-approval voting rule.

– Maximin: The maximin score of a candidate x is
miny 6=xD(x, y). The winners are the candidates with
maximum maximin score.

– Bucklin: A candidate x’s Bucklin score is the minimum
number l such that more than half of the voters rank
x in their top l positions. The winners are the can-
didates with lowest Bucklin score. This voting rule is
also sometimes referred as the simplified Bucklin vot-
ing rule.

– Single Transferable Vote: In Single Transferable Vote
(STV), a candidate with least plurality score is
dropped out of the election and its votes are trans-
ferred to the next preferred candidate. If two or more
candidates receive least plurality score, then some pre-
determined tie breaking rule is used. The candidate
that remains after (m− 1) rounds is the winner.

3. PROBLEM FORMULATION
Consider an election that has already happened in which

all the votes are known and thus the winner x ∈ C is also
known. We call the candidate x the current winner of the
election. The authority may suspect that the voters belong-
ing to M ⊂ V have formed a coalition among themselves
and manipulated the election by voting non-truthfully. The
authority believes that other voters who do not belong to M ,
have voted truthfully. We denote |M |, the size of the coali-
tion, by k. Suppose the authority has auxiliary information,
maybe from some other sources, which says that the actual
winner should have been some candidate y ∈ C other than
x. We call a candidate actual winner if it wins the election
where all the voters vote truthfully. This means that the
authority thinks that, had the voters in M voted truthfully,
the candidate y would have been the winner. We remark
that there are practical situations, for example, 1982 FIFA
World cup or 2012 London Olympics, where the authority
knows the actual winner. This situation is formalized below.

Definition 1. Let r be a voting rule, and (�i)i∈V be a
voting profile of a set V of n voters. Let x be the winning
candidate with respect to r for this profile. For a candidate
y 6= x, M ⊂ V is said to be a coalition of possible manipula-
tors against y with respect to r if there exists a |M |-voters’

profile (�′j)j∈M ∈ L(C)|M| such that x �′j y,∀j ∈ M , and
further, r((�j)j∈V\M , (�′i)i∈M ) = y.
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Using the notion of coalition of possible manipulators, we
formulate a computational problem called Coalitional Pos-
sible Manipulators given Winner (CPMW) as follows.

Definition 2. (CPMW Problem)
Given a voting rule r, a preference profile (�i)i∈V of a set
of voters V over a set of candidates C, a subset of voters
M ⊂ V, and a candidate y, determine if M is a coalition of
possible manipulators against y with respect to r.

In the CPMW problem, the actual winner is given in the
input. However, it may very well happen that the authority
does not have any other information to guess the actual win-
ner - the candidate who would have won the election had the
voters in M voted truthfully. In this situation, the authority
is interested in knowing whether there is a |M |-voter profile
which along with the votes in V \M makes some candidate
y ∈ C the winner who is different from the current winner
x ∈ C and all the preferences in the |M |-voters’ profile prefer
x to y. If such a |M |-voter profile exists for the subset of
voters M , then we call M a coalition of possible manipula-
tors and the corresponding computational problem is called
Coalitional Possible Manipulators (CPM). These notions are
formalized below.

Definition 3. Let r be a voting rule, and (�i)i∈V be a
voting profile of a set V of n voters. A subset of voters M ⊂
V is called a coalition of possible manipulators with respect
to r if M is a coalition of possible manipulators against some
candidate y with respect to r.

Definition 4. (CPM Problem)
Given a voting rule r, a preference profile (�i)i∈V of a set
of voters V over a set of candidates C, and a subset of voters
M ⊂ V, determine if M is a coalition of possible manipula-
tors with respect to r.

In both the CPMW and CPM problems, a subset of voters
which the authority suspect to be a coalition of manipula-
tors, is given in the input. However, there can be situations
where there is no specific subset of voters to suspect. In
those scenarios, it may still be useful to know, what are
the possible coalition of manipulators of size less than some
number k. Towards that end, we extend the CPMW and
CPM problems to search for a coalition of potential pos-
sible manipulators and call them Coalitional Possible Ma-
nipulators Search given Winner (CPMSW) and Coalitional
Possible Manipulators Search (CPMS) respective.

Definition 5. (CPMSW Problem)
Given a voting rule r, a preference profile (�i)i∈V of a set
of voters V over a set of candidates C, a candidate y, and an
integer k, determine whether there exists any M ⊂ V with
|M | ≤ k such that M is a coalition of possible manipulators
against y.

Definition 6. (CPMS Problem)
Given a voting rule r, a preference profile (�i)i∈V of a set
of voters V over a set of candidates C, and an integer k,
determine whether there exists any M ⊂ V with |M | ≤ k
such that M is a coalition of possible manipulators.

3.1 Discussion
The CPMW problem may look very similar to the manip-

ulation problem [2, 5]- in both the problems a set of voters

try to make a candidate winner. However, in the CPMW
problem, the actual winner must be less preferred to the cur-
rent winner. Although it may look like a subtle difference,
it changes the nature and complexity theoretic behavior of
the problem completely. For example, we show that all the
four problems have an efficient algorithm for a large class
of voting rules that includes the Borda voting rule, for any
coalition size. However, for the manipulation problem for
the Borda voting rule is in NPC, even when we have at least
two manipulators [6, 3]. Another important difference is
that the manipulation problem, in contrast to the problems
studied in this paper, does not take care of manipulators’
preferences. We believe that there does not exist any formal
reduction between the CPMW problem and the manipula-
tion problem.

On the other hand, the CPMS problem is similar to the
margin of victory problem defined by Xia [34], where also
we are looking for changing the current winner by changing
at most some k number of votes, which in turn identical
to the destructive bribery problem [11]. Whereas, in the
CPMS problem, the vote changes can occur in a restricted
fashion. An important difference between the two problems
is that the margin of victory problem has the hereditary
property which the CPMS problem does not possess (there is
no coalition of possible manipulators of size n in any election
for all the common voting rules). These two problems do not
seem to have any obvious complexity theoretic implications.

Now, we explore the connections among the four prob-
lems that we study here. Notice that, a polynomial time
algorithm for the CPM and the CPMW problems gives us a
polynomial time algorithm for the CPMS and the CPMSW
problems for any maximum possible coalition size k = O(1).
Also, observe that, a polynomial time algorithm for the
CPMW (respectively CPMSW) problem implies a polyno-
mial time algorithm for the CPM (respectively CPMS) prob-
lem. Hence, we have the following propositions.

Proposition 1. For every voting rule, if the maximum
possible coalition size k = O(1), then,

CPMW ∈ P⇒ CPM,CPMSW,CPMS ∈ P

Proposition 2. For every voting rule,

CPMSW ∈ P⇒ CPMS ∈ P

4. RESULTS
In this section, we present our algorithmic results for the

CPMW, CPM, CPMSW, and CPMS problems for various
voting rules.

4.1 Scoring Rules
Below we have certain lemmas which form a crucial ingre-

dient of our algorithms. To begin with, we define the notion
of a manipulated preference. Let r be a scoring rule and
�:= (�i,�−i) be a voting profile of n voters. Let �′i be a
preference such that

r(�) >′i r(�′i,�−i).

Then, we say that �′i is a (�, i)-manipulated preference with
respect to r. We omit the reference to r if it is clear from
the context.

Lemma 1. Let r be a scoring rule and �:= (�i,�−i) be
a voting profile of n voters. Let a and b be two candidates
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such that score�−i(a) > score�−i(b), and let �′i be (�, i)-
manipulated preference where a precedes b:

�′i:= · · · > a > · · · > b > · · ·

If a, b are not winners with respect to either (�′i,�−i) or �,
then the preference �′′i obtained from �′i by interchanging a
and b is also (�, i)-manipulated.

Proof: Let x := r(�′i,�−i). If suffices to show that x con-
tinues to win in the proposed profile (�′′i ,�−i). To this end,
it is enough to argue the scores of a and b with respect to
x. First, consider the score of b in the new profile:

score(�′′i ,�−i)
(b) = score�′′i (b) + score�−i(b)

< score�′i(a) + score�−i(a)

= score(�′i,�−i)
(a)

≤ score(�′i,�−i)
(x)

= score(�′′i ,�−i)
(x)

The second line uses the fact that score�′′i (b) = score�′i(a)

and score�−i(b) < score�−i(a). The fourth line comes from
the fact that x is the winner and the last line follows from the
fact that the position of x is same in both profiles. Similarly,
we have the following argument for the score of a in the
new profile (the second line below simply follows from the
definition of scoring rules).

score(�′′i ,�−i)
(a) = score�′′i (a) + score�−i(a)

≤ score�′i(a) + score�−i(a)

= score(�′i,�−i)
(a)

≤ score(�′i,�−i)
(x)

= score(�′′i ,�−i)
(x)

Since the tie breaking rule is according to some predefined
fixed order �t∈ L(C) and the candidates tied with winner
in (�′′i ,�−i) also tied with winner in (�′i,�−i), we have the
following,

r(�) >′′i r(�′′i ,�−i)

�

We now show that, if there is some (�, i)-manipulated
preference with respect to a scoring rule r, then there exists
a (�, i)-manipulated preference with a specific structure.

Lemma 2. Let r be a scoring rule and �:= (�i,�−i)
be a voting profile of n voters. If there is some (�, i)-
manipulated preference with respect to r, then there also
exists a (�, i)-manipulated preference �′i where the actual
winner y immediately follows the current winner x:

�′i:= · · · > x > y > · · ·

and the remaining candidates are in nondecreasing ordered
of their scores from �−i.

Proof: Let �′′ be a (�, i)-manipulated preference with re-
spect to r. Let x := r(�), y := r(�′′,�−i). From Lemma 1,
without loss of generality, we may assume that, all candi-
dates except x, y are in nondecreasing order of score�−i(.)
in the preference �′′. If �′′i := · · · � x � · · · � y � · · · � · · · ,
we define �′i:= · · · � x � y � · · · � · · · from �′′i where
y is moved to the position following x and the position of

the candidates in between x and y in �′′i is deteriorated by
one position each. The position of the rest of the candidates
remain same in both �′′i and �′i. Now we have following,

score(�′i,�−i)
(y) = score�′i(y) + score�−i(y)

≥ score�′′i (y) + score�−i(y)

= score(�′′i ,�−i)
(y)

We also have,

score(�′i,�−i)
(a) ≤ score(�′′i ,�−i)

(a),∀a ∈ C \ {y}

Since the tie breaking rule is according to some predefined
order �t∈ L(C), we have the following,

r(�) >′i r(�′,�−i)

�

Using Lemma 1 and 2, we now present the results for the
scoring rules.

Theorem 1. The CPMW, CPM, CPMSW, and CPMS
problems for scoring rules are in P for a coalition of size 1
(that is, k = 1).

Proof: From Proposition 1, it is enough to give a polynomial
time algorithm for the CPMW problem. So consider the
CPMW problem. We are given the actual winner y and
we compute the current winner x with respect to r. Let
�[j] be a preference where x and y are in positions j and
(j + 1) respectively, and the rest of the candidates are in
nondecreasing order of the score that they receive from
�−i. For j ∈ {1, 2, . . . ,m− 1}, we check if y wins with the
profile (�−i,�[j]). If we are successful with at least one
j we report YES, otherwise we say NO. The correctness
follows from Lemma 2. Thus we have a polynomial time
algorithm for CPMW when k = 1. �

Now, we study the CPMW and the CPM problems when
k > 1. If m = O(1), then both the CPMW and the CPM
problems for any anonymous and efficient voting rule r can
be solved in polynomial time by iterating over all possible(
m!+k−1

m!

)
ways the manipulators can have actual preferences.

A voting rule is called efficient if winner determination under
it is in P, for any coalition size.

Theorem 2. For scoring rules with α1 − α2 ≤ αi −
αi+1, ∀i, the CPMW and the CPM problems are in P, for
any coalition size.

Proof: We provide a polynomial time algorithm for the
CPMW problem in this setting. Let x be the current
winner and y be the given actual winner. Let M be the
given subset of voters. Let ((�i)i∈M , (�j)j∈V \M ) be the
reported preference profile. Without loss of generality, we
assume that x is the most preferred candidate in every
�i, i ∈ M . Let us define �′i, i ∈ M, by moving y to
the second position in the preference �i. In the profile
((�′i)i∈M , (�j)j∈V \M ), the winner is either x or y since
only y’s score has increased. We claim that M is a coalition
of possible manipulators with respect to y if and only if y
is the winner in preference profile ((�′i)i∈M , (�j)j∈V \M ).
This can be seen as follows. Suppose there exist preferences
�′′i , with x �′′i y, i ∈ M, for which y wins in the profile
((�′′i )i∈M , (�j)j∈V \M ). Now without loss of generality, we
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can assume that y immediately follows x in all �′′i , i ∈ M,
and α1 − α2 ≤ αi − αi+1, ∀i implies that we can also
assume that x and y are in the first and second positions
respectively in all �′′i , i ∈ M . Now in both the profiles,
((�′i)i∈M , (�j)j∈V \M ) and ((�′′i )i∈M , (�j)j∈V \M ), the
score of x and y are same. But in the first profile x wins
and in the second profile y wins, which is a contradiction. �

Theorem 3. For scoring rules with α1 − α2 ≤ αi −
αi+1, ∀i, the CPMSW and the CPMS problems are in P,
for any coalition size.

Proof: From Proposition 2, it is enough to prove that
CPMSW ∈ P. Let x be the current winner, y be the
given actual winner and s(x) and s(y) be their current
respective scores. For each vote v ∈ V, we compute a
number ∆(v) = α2 − αj − α1 + αi, where x and y are
receiving scores αi and αj respectively from the vote v.
Now, we output yes iff there are k votes vi, 1 ≤ i ≤ k such
that,

∑k
i=1 ∆(vi) ≥ s(x)− s(y), which can be checked easily

by sorting the ∆(v)’s in nonincreasing order and checking
the condition for the first k ∆(v)’s, where k is the maximum
possible coalition size specified in the input. The proof of
correctness follows by exactly in the same line of argument
as the proof of Theorem 2. �

For the plurality voting rule, we can solve all the prob-
lems easily using max flow. Hence, from Theorem 2 and
Theorem 3, we have the following result.

Corollary 1. The CPMW, CPM, CPMSW, and CPMS
problems for the Borda and k-approval voting rules are in P,
for any coalition size.

4.2 Maximin Voting Rule
For the maximin voting rule, we show that all the four

problems are in P, when we have a coalition of size one.

Theorem 4. The CPMW, CPM, CPMSW, and CPMS
problems for maximin voting rule are in P for coalition size
k = 1 or maximum possible coalition size k = 1.

Proof: Given a n-voters’ profile �∈ L(C)n and a voter vi,
let the current winner be x := r(�) and the given actual
winner be y. We will construct �′= (�′i,�−i), if it exists,
such that r(�) >′i r(�′) = y, thus deciding whether vi is
a possible manipulator or not. Now, the maximin score
of x and y in the profile �′ can take one of values from
the set {score�−i(x) ± 1} and {score�−i(y) ± 1}. The
algorithm is as follows. We first guess the maximin score
of x and y in the profile �′. There are only four possible
guesses. Suppose, we guessed that x’s score will decrease
by one and y’s score will decrease by one assuming that
this guess makes y win. Now notice that, without loss of
generality, we can assume that y immediately follows x
in the preference �′i since y is the winner in the profile
�′. This implies that there are only O(m) many possible
positions for x and y in �′i. We guess the position of x and
thus the position of y in �′i. Let B(x) and B(y) be the
sets of candidates with whom x and respectively y performs
worst. Now since, x’s score will decrease and y’s score will
decrease, we have the following constraint on �′i. There
must be a candidate each from B(y) and B(x) that will
precede x. We do not know a-priori if there is one candidate

that will serve as a witness for both B(x) and B(y), or if
there separate witnesses. In the latter situation, we also do
not know what order they appear in. Therefore we guess
if there is a common candidate, and if not, we guess the
relative ordering of the distinct candidates from B(x) and
B(y). Now we place any candidate at the top position of
�′i if this action does not make y lose the election. If there
are many choices, we prioritize in favor of candidates from
B(x) and B(y) — in particular, we focus on the candidates
common to B(x) and B(y) if we expect to have a common
witness, otherwise, we favor a candidate from one of the
sets according to the guess we start with. If still there are
multiple choices, we pick arbitrarily. After that we move
on to the next position, and do the same thing (except we
stop prioritizing explicitly for B(x) and B(y) once we have
at least one witness from each set). The other situations
can be handled similarly with minor modifications. In
this way, if it is able to get a complete preference, then it
checks whether vi is a possible manipulator or not using
this preference. If yes, then it returns YES. Otherwise,
it tries other positions for x and y and other possible
scores of x and y. After trying all possible guesses, if it
cannot find the desired preference, then it outputs NO.
Since there are only polynomial many possible guesses, this
algorithm runs in a polynomial amount of time. The proof
of correctness follows from the proof of Theorem 1 in [2]. �

We now show that the CPMW problem for maximin vot-
ing rule is in NPC when we have k > 1. Towards that,
we use the fact that the unweighted coalitional manipulation
(UCM) problem for maximin voting rule is in NPC [39],
when we have k > 1. The UCM problem is as follows.

Definition 7. (UCM Problem)
Given a voting rule r, a set of manipulators M ⊂ V, a pro-
file of non-manipulators’ vote (�i)i∈V\M , and a candidate
z ∈ C, we are asked whether there exists a profile of manipu-
lators’ votes (�′j)j∈M such that r((�i)i∈V\M , (�′j)j∈M ) = z.
Assume that ties are broken in favor of z.

We define a restricted version of the UCM problem called
R-UCM as follows.

Definition 8. (R-UCM Problem)
This problem is the same as the UCM problem with a given
guarantee - let k := |M |. The candidate z loses pairwise
election with every other candidate by 4k votes. For any two
candidates a, b ∈ C, either a and b ties or one wins pairwise
election against the other one by margin of either 2k + 2 or
of 4k or of 8k. We denote the margin by which a candidate
a defeats b, by d(a, b).

The R-UCM problem for maximin voting rule is in NPC
[39], when we have k > 1. We will need the following lemma
to manipulate the pairwise difference scores in the reduction.
The lemma has been used before [23, 35].

Lemma 3. For any function f : C × C −→ Z, such that

1. ∀a, b ∈ C, f(a, b) = −f(b, a).

2. ∀a, b ∈ C, f(a, b) is even,

there exists a n voters’ profile such that for all a, b ∈ C, a
defeats b with a margin of f(a, b). Moreover,

n = O

 ∑
{a,b}∈C×C

|f(a, b)|
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Theorem 5. The CPMW problem for maximin voting
rule is in NPC, for a coalition of size at least 2.

Proof: Clearly the CPMW problem for maximin voting rule
is in NP. We provide a many-one reduction from the R-
UCM problem for the maximin voting rule to it. Given
a R-UCM problem instance, we define a CPMW problem
instance Γ = (C′, (�′i)i∈V′ ,M ′) as follows.

C′ := C ∪ {w, d1, d2, d3}

We define V ′ such that d(a, b) is the same as the R-UCM
instance, for all a, b ∈ C and d(d1, w) = 2k + 2, d(d1, d2) =
8k, d(d2, d3) = 8k, d(d3, d1) = 8k. The existence of such a
V ′ is guaranteed from Lemma 3. Moreover, Lemma 3 also
ensures that |V ′| is O(mc). The votes of the voters in M is
w � . . . . Thus the current winner is w. The actual winner
is defined to be z. The tie breaking rule is �t= w � z � . . . ,
where z is the candidate whom the manipulators in M want
to make winner in the R-UCM problem instance. Clearly
this reduction takes polynomial amount of time. Now we
show that, M is a coalition of possible manipulators iff z
can be made a winner.

The if part is as follows. Let �i, i ∈M be the votes that
make z win. We can assume that z is the most preferred
candidate in all the preferences �i, i ∈ M . Now consider
the preferences for the voters in M is follows.

�′i:= d1 � d2 � d3 � w �i, i ∈M

The score of every candidate in C is not more than z. The
score of z is −3k. The score of w is −3k − 2 and the scores
of d1, d2, and d3 are less than −3k. Hence, M is a coalition
of possible manipulators with the actual preferences �′i:=
d1 � d2 � d3 � w �i, i ∈M .

The only if part is as follows. Suppose M is a coalition
of possible manipulators with actual preferences �′i, i ∈ M .
Consider the preferences �′i, i ∈ M , but restricted to
the set C only. Call them �i, i ∈ M . We claim that
�i, i ∈ M with the votes from V makes z win the elec-
tion. If not then, there exists a candidate, say a ∈ C,
whose score is strictly more than the score of z - this
is so because the tie breaking rule is in favor of z. But
this contradicts the fact that z wins the election when the
voters in M vote �′i, i ∈M along with the votes from V ′. �

4.3 Bucklin Voting Rule
In this subsection, we design polynomial time algorithms

for both the CPMW and the CPM problem for the Buck-
lin voting rule. Again, we begin by showing that if there
are profiles witnessing manipulation, then there exist pro-
files that do so with some additional structure, which will
subsequently be exploited by our algorithm.

Lemma 4. Consider a preference profile (�i)i∈V , where
x is the winner with respect to the Bucklin voting rule. Sup-
pose a subset of voters M ⊂ V form a coalition of possible
manipulators. Let y be the actual winner. Then there ex-
ist preferences (�′i)i∈M such that y is a Bucklin winner in
((�i)i∈V\M, (�′i)i∈M ), and further:

1. y immediately follows x in each �′i.

2. The rank of x in each �′i is in one of the following -
first, b(y)−1, b(y), b(y) + 1, where b(y) be the Bucklin
score of y in ((�i)i∈V\M, (�′i)i∈M ).

Proof: From Definition 3, y’s rank must be worse than x’s
rank in each �′i. We now exchange the position of y with
the candidate which immediately follows x in �′i. This pro-
cess does not decrease Bucklin score of any candidate except
possibly y’s, and x’s score does not increase. Hence y will
continue to win and thus �′i satisfies the first condition.

Now to begin with, we assume that �′i satisfies the first
condition. If the position of x in �′i is b(y) − 1 or b(y),
we do not change it. If x is above b(y) − 1 in �′i, then
move x and y at the first and second positions respectively.
Similarly if x is below b(y) + 1 in �′i, then move x and y at
the b(y)+1 and b(y)+2 positions respectively. This process
does not decrease score of any candidate except y because
the Bucklin score of x is at least b(y). The transformation
cannot increase the score y since its position has only been
improved. Hence y continues to win and thus �′i satisfies
the second condition. �

Lemma 4 leads us to the following theorem.

Theorem 6. The CPMW problem and the CPM prob-
lems for Bucklin voting rule are in P for any coalition of
size. Therefore, by Proposition 1, the CPMSW and the
CPMS problems are in P when the maximum coalition size
k = O(1).

Proof: Proposition 1 says that it is enough to prove that
the CPMW problem is in P. Let x be the current winner
and y be the given actual winner. For any final Bucklin
score b(y) of y, there are polynomially many possibilities for
the positions of x and y in the profile of �i, i ∈ M , since
Bucklin voting rule is anonymous. Once the positions of x
and y is fixed, we try to fill the top b(y) positions of each �′i
- place a candidate in an empty position above b(y) in any
�′i if doing so does not make y lose the election. If we are
able to successfully fill the top b(y) positions of all �′i for
all i ∈ M , then M is a coalition of possible manipulators.
If the above process fails for all possible above mentioned
positions of x and y and all possible guesses of b(y), then
M is not a coalition of possible manipulators. Clearly the
above algorithm runs in poly(m,n) time.

The proof of correctness is as follows. If the algorithm
outputs that M is a coalition of possible manipulators, then
it actually has constructed �′i for all i ∈ M with respect
to which they form a coalition of possible manipulators.
On the other hand, if they form a coalition of possible
manipulators, then Lemma 4 ensures that our algorithm
explores all the sufficient positions of x and y in �′i for all
i ∈ M . Now if M is a possible coalition of manipulators,
then the corresponding positions for x and y have also
been searched. Our greedy algorithm must find it since
permuting the candidates except x and z which are ranked
above b(y) in �′i cannot stop y to win the election since the
Bucklin score of other candidates except y is at least b(y). �

4.4 STV Voting Rule
Next, we prove that the CPMW and the CPM problems

for STV rule is in NPC. To this end, we reduce from the
Exact Cover by 3-Sets Problem (X3C), which is known to
be in NPC [18]. The X3C problem is as follows.

Definition 9. (X3C Problem)
Given a set S of cardinality n and m subsets
S1, S2, . . . , Sm ⊂ S with |Si| = 3,∀i = 1, . . . ,m, does

1447



there exist an index set I ⊆ {1, . . . ,m} with |I| = |S|
3

such
that ∪i∈ISi = S.

Theorem 7. The CPM problem for STV rule is in NPC,
for a coalition of size 1.

Proof sketch: Clearly the problem is in NP. To show NP
hardness, we show a many-one reduction from the X3C prob-
lem to it. The reduction is analogous to the reduction given
in [1]. Hence, we give a proof sketch only. Given an X3C in-
stance, we construct an election as follows. The unspecified
positions can be filled in any arbitrary way. The candidate
set is as follows.

C = {x, y} ∪ {a1, . . . , am} ∪ {a1, . . . , am}
∪ {b1, . . . , bm} ∪ {b1, . . . , bm}
∪ {d0, . . . , dn} ∪ {g1, . . . , gm}

The votes are as follows.

– 12m votes for y � x � . . .

– 12m− 1 votes for x � y � . . .

– 10m+ 2n
3

votes for d0 � x � y � . . .

– 12m− 2 votes for di � x � y � . . . ,∀i ∈ [n]

– 12m votes for gi � x � y � . . . ,∀i ∈ [m]

– 6m+ 4i− 5 votes for bi � bi � x � y � . . . ,∀i ∈ [m]

– 2 votes for bi � dj � x � y � . . . ,∀i ∈ [m], ∀j ∈ Si

– 6m+ 4i− 1 votes for bi � bi � x � y � . . . ,∀i ∈ [m]

– 2 votes for bi � d0 � x � y � . . . ,∀i ∈ [m]

– 6m+ 4i− 3 votes for ai � gi � x � y � . . . ,∀i ∈ [m]

– 1 vote for ai � bi � gi � x � y � . . . ,∀i ∈ [m]

– 2 votes for ai � ai � gi � x � y � . . . ,∀i ∈ [m]

– 6m+ 4i− 3 votes for ai � gi � x � y � . . . ,∀i ∈ [m]

– 1 vote for ai � bi � gi � x � y � . . . ,∀i ∈ [m]

– 2 votes for ai � ai � gi � x � y � . . . ,∀i ∈ [m]

The tie breaking rule is �t= · · · � x. The vote of v is x �
· · · . We claim that v is a possible manipulator iff the X3C is
a yes instance. Notice that, of the first 3m candidates to be
eliminated, 2m of them are a1, . . . , am and a1, . . . , am. Also
exactly one of bi and bi will be eliminated among the first
3m candidates to be eliminated because if one of bi, bi then
the other’s score exceeds 12m. We show that the winner is
either x or y irrespective of the vote of one more candidate.
Let J := {j : bj is eliminated before bj}. If J is an index of
set cover then the winner is y. This can be seen as follows.
Consider the situation after the first 3m eliminations. Let
i ∈ Sj for some j ∈ J . Then bj has been eliminated and
thus the score of di is at least 12m. Since J is an index of a
set cover, every di’s score is at least 12m. Notice that bj has
been eliminated for all j /∈ J . Thus the revised score of d0 is
at least 12m. After the first 3m eliminations, the remaining
candidates are x, y, {di : i ∈ [n]}, {gi : i ∈ [m]}, {bj : j /∈
J}, {bj : j ∈ J}. All the remaining candidates except x has
score at least 12m and x’s score is 12m − 1. Hence x will
be eliminated next which makes y’s score at least 24m− 1.

Next di’s will get eliminated which will in turn make y’s
score (12n + 36)m − 1. At this point gi’s score is at most

32m. Also all the remaining bi and bi’s score is at most
32m. Since each of the remaining candidate’s scores gets
transferred to y once they are eliminated, y is the winner.

Now we show that, if J is not an index of set cover then
the winner is x. This can be seen as follows. If |J | > n

3
,

then the number of bj that gets eliminated in the first 3m
iterations is less than m− n

3
. This makes the score of d0 at

most 12m− 2. Hence d0 gets eliminated before x and all its
scores gets transferred to x. This makes the elimination of x
impossible before y and makes x the winner of the election.

If |J | ≤ n
3

and there exists an i ∈ S that is not covered by
the corresponding set cover, then di gets eliminated before
x with a score of 12m − 2 and its score gets transferred to
x. This makes x win the election.

Hence y can win iff X3C is a yes instance. Also notice
that if y can win the election, then it can do so with the
voter v voting a preference like · · · � x � y � · · · . �

From the proof of the above theorem, we have the follow-
ing corollary by specifying y as the actual winner for the
CPMW problem.

Corollary 2. The CPMW problem for STV rule is in
NPC, for a coalition of size 1.

5. CONCLUSION
In this work, we have initiated a promising research di-

rection for detecting manipulation in elections. We have
proposed the notion of possible manipulation and explored
several concrete computational problems, which we believe
to be important in the context of voting theory. These prob-
lems involve identifying if a given set of voters are possible
manipulators (with or without a specified candidate winner).
We have also studied the search versions of these problems,
where the goal is to simply detect the presence of possible
manipulation with the maximum coalition size. We believe
there is theoretical as well as practical interest in studying
the proposed problems. We have provided algorithms and
hardness results for many common voting rules.

In this work, we considered elections with unweighted vot-
ers only. An immediate future research direction is to study
the complexity of these problems in weighted elections. Fur-
ther, verifying the number of false manipulators that this
model catches in a real or synthetic data set, where, we al-
ready have some knowledge about the manipulators, would
be interesting. It is our conviction that both the problems
that we have studied here have initiated an interesting re-
search direction with significant promise and potential for
future work.
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