
Analysis Problems for Graphical Dynamical Systems:
A Unified Approach Through Graph Predicates

Daniel J. Rosenkrantz
Computer Science Dept.

University at Albany – SUNY
Albany, NY 12222, USA

drosenkrantz@gmail.com

Madhav V. Marathe
VA Bioinformatics Institute

Virginia Tech
Blacksburg, VA 24061, USA
mmarathe@vbi.vt.edu

Harry B. Hunt III
Computer Science Dept.

University at Albany – SUNY
Albany, NY 12222, USA
hunt@cs.albany.edu

S. S. Ravi
Computer Science Dept.

University at Albany – SUNY
Albany, NY 12222, USA
sravi@albany.edu

Richard E. Stearns
Computer Science Dept.

University at Albany – SUNY
Albany, NY 12222, USA

rstearns@albany.edu

ABSTRACT
We present a unified approach for studying the complexity of analy-
sis problems for Synchronous Dynamical Systems (SyDSs), a class
of graphical models for networked multiagent systems. Our ap-
proach uses predicates based on graph embeddings to capture many
phase space properties of SyDSs studied in the literature and addi-
tional properties which have not been considered previously. Using
this formalism, we develop general results to show that many anal-
ysis problems for SyDSs are computationally intractable. However,
when the underlying graph of the given SyDS is treewidth bounded
and the local functions are r-symmetric (for any fixed r), we show
that even counting versions of analysis problems can be solved ef-
ficiently.

Categories and Subject Descriptors
F.1 [Computation by abstract devices]:

General Terms
Theory; Algorithms

Keywords
Networked multiagent systems; Discrete Dynamical Systems; Phase
Space; Complexity; Treewidth; Algorithms

1. INTRODUCTION

1.1 Model and Motivation
We study analysis problems for networked multiagent systems

represented as graphical discrete dynamical systems. Our work fol-
lows similar efforts in machine learning and games where graphi-
cal models were introduced to capture natural structural restrictions
that often lead to tractable problems [23, 25]. Discrete dynami-
cal systems were initially proposed as an abstract model for com-
puter simulations [4]; however, they also serve as powerful abstract

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

models for networked multiagent systems [30,40]. Graphical mod-
els of multiagent systems have been studied by many researchers
(e.g. [21, 29, 36–38, 40]); see Section 1.3 for additional discussion.
Here, we focus on one such model, namely synchronous discrete
dynamical systems (SyDSs). We provide an informal description of
a SyDS here; a formal description is given later. A SyDS consists
of an undirected graph whose vertices represent entities (agents)
and edges represent local interactions among entities. Each vertex
has a state value chosen from a finite domain (e.g. {0,1}). In addi-
tion, each vertex v also has a local transition function whose inputs
are the current state of v and those of its neighbors; the output of
this function is the next state of v. The vector consisting of the state
values of all the nodes at each time instant is referred to as the con-
figuration of the system at that instant. In each time step, all nodes
of a SyDS compute and update their states synchronously. Starting
from a (given) initial configuration, the time evolution of a SyDS
consists of a sequence of successive configurations. Models similar
to SyDSs have been used in applications such as the propagation of
diseases and social phenomena (e.g. [15, 28]).

A central theme in complex systems is to categorize systems
based on the notion of predictability [8, 20, 39]. In a finite, dis-
crete setting, a certain behavioral pattern of a given complex sys-
tem is considered predictable if the existence of such a pattern can
be detected efficiently (i.e., in time which is a polynomial in the
size of the system). Although some progress has been made on this
topic (see [19,26,34–36] and references therein), the basic issue re-
mains largely open. Furthermore, most of the results deal with spe-
cific behavioral patterns. In this paper, we study the computational
complexity of a broad class of behavioral patterns for SyDSs. Such
patterns are subgraphs of the phase space1 of a SyDS. Our results
are summarized below.

1.2 Our contributions
We present a general framework for studying analysis problems

for networked multiagent systems modeled by discrete dynamical
systems. Our framework relies on a general formalism (graph pred-
icates) that can capture large classes of phase space properties. This
formalism allows us to study analysis problems as appropriate sub-
graph embedding problems on the phase space (which is a directed

1Informally, the phase space of a SyDS specifies a representation
of all valid sequences of transitions among the configurations of the
SyDS. A formal definition is given in Section 2.

1501

graph). The formalism includes many phase properties which have
been considered before (e.g. existence of fixed points and Garden-
of-Eden (GE) configurations2) and many additional complex prop-
erties (e.g. for a fixed k, does the phase space have two node-
disjoint directed paths, each with at least k nodes?) which have
not been addressed in the literature. Our results unify and general-
ize many known results from the literature on testing phase space
properties of SyDSs. Specifically, our contributions are as follows.

1. We develop (Section 2) a formalism (namely, strongly and
weakly dichotomizing graph predicates) to capture a large
class of phase space properties of SyDSs. This general for-
malism allows us to capture many properties studied in the
literature (and many additional properties which have not
been considered) as questions concerning graph embeddings.

2. For every weakly dichotomizing predicateP , we prove that it
is NP-hard to determine whether the phase space of a given
SyDS satisfies P when the local transition functions of the
SyDS are specified as Boolean expressions. Since the ex-
istence of a Garden–of–Eden (GE) configuration can be ex-
pressed as a weakly dichotomizing predicate, this result gen-
eralizes the NP-hardness result for GE existence shown in
[3]. The general result also implies the NP-hardness of test-
ing properties such as whether for any fixed k ≥ 2, the phase
space of a given SyDS contains a directed path consisting
of at least k distinct nodes. (A number of other properties
modeled by weakly dichotomizing predicates are given in a
complete version of this paper [32].)

3. For every strongly dichotomizing predicate P , we prove that
it is NP-hard to determine whether the phase space of a given
SyDS satisfies P when the local transition functions of the
SyDS are specified as r-symmetric functions (defined in Sec-
tion 2) for some fixed r. Since the existence of fixed points
can be expressed as a strongly dichotomizing predicate, this
result generalizes the NP-hardness result for the existence of
fixed points shown in [3]. The general result also implies
the NP-hardness of testing a property such as whether for
any fixed k ≥ 2, the phase space of a given SyDS contains a
transient (defined in Section 2) of length at least k. (Many ad-
ditional properties modeled by strongly dichotomizing pred-
icates are given in [32].)

4. In contrast to the general hardness results, we show that when
the treewidth of the underlying graph of a SyDS is bounded
and all the local functions are r-symmetric for a fixed integer
r, determining whether any fixed subgraph H is embedded
in the phase space of a given SyDS can solved in polyno-
mial time (Section 5). This result can also be extended to the
counting problem associated with the graph H . For exam-
ple, the problem of determining whether a given SyDS has a
fixed point can be expressed as the embedding problem for
the fixed subgraph corresponding to a self loop. Thus, this re-
sult generalizes the efficient algorithm in [3] for counting the
number of fixed points. Further, this result also points out
that many other analysis problems (such as the problem of
counting the number of transients with exactly k edges) can
be solved efficiently for treewidth bounded SyDSs with r-
symmetric local transition functions. (In obtaining efficient
algorithms for treewidth-bounded systems, the restriction to

2Formal definitions of fixed points and GE configurations appear
in Section 2.

r-symmetric functions is necessary; if local functions that
are not r-symmetric for some fixed r are permitted, decision
versions of embedding problems are in general NP-hard even
for treewidth-bounded systems [2].)

1.3 Graphical Dynamical Systems as Models
of Multi-agent Systems

SyDSs provide a framework for agent-based models (ABM) and
to capture interactions among agents in a network. Wellman [38]
discusses the relationships between ABM and MAS. SyDSs have
the same motivation as other graphical models studied in the lit-
erature (graphical games and graphical inference): to study how
network structure affects overall behavior. Our results show that
when the network is treewidth-bounded and local functions are
symmetric, large classes of analysis problems are efficiently solv-
able. These results provide design criteria for building MAS. Our
lower bound results show that further generalizations of network
structure and/or local functions lead to computationally intractable
analysis problems.

Graphical games are very closely related to SyDSs; this is espe-
cially true when the primary focus is on action profiles (states) and
not so much on eventual payoff. The notion of pure Nash equilib-
ria in such games [16, 23] corresponds to finding a fixed point in
the phase space of the corresponding SyDS. Progressive and non-
progressive threshold models discussed in [24] as models for coor-
dination games can be directly represented as SyDSs.

SyDSs can also capture numerous models of social interaction in
networks (e.g. Granovetter’s threshold model [18] and the complex
contagion model of Centola and Macy [11]). Many Ph.D.theses
have explored the use of SyDS and similar models to capture social
interactions in networked systems (e.g. [10, 22, 27]). Additional
discussion on this topic appears in [33].

1.4 Additional Discussion on our Results
Recently, dichotomy style results for constraint satisfaction prob-

lems have received a lot of attention in the literature (e.g. [7,12,14,
26]). However, with the exception of [26], few rigorous dichotomy
results are known in the context of models that represent networked
multiagent systems. Reference [26] presents a dichotomy result
for the counting problem associated with one specific phase space
property, namely fixed points. Our results can be viewed as a step
towards developing dichotomy style results for general classes of
phase space properties pertaining to such systems. Also, our re-
sults share a certain similarity with the dichotomy results for graph
homomorphism problems studied in the literature [9]. A significant
difference is that we are reasoning about certain kinds of subgraphs
in an exponentially sized graph (phase space) specified succinctly
by the underlying dynamical system.

Our hardness proofs as well as our efficient algorithm for treewidth
bounded graphs are somewhat intricate because of two reasons.
First, they must handle the full generality provided by the predi-
cates or subgraphs that capture a large class of phase space prop-
erties. Second, we must construct (while proving NP-hardness re-
sults) or work with (while developing an efficient algorithm) the
static description of a SyDS, whereas the predicate (or subgraph)
provides a property to be satisfied by the corresponding phase space,
whose size is exponential in the size of the SyDS.

Graphical models for inference problems have been studied ex-
tensively (e.g. [25]). The results presented here are an attempt to
develop a similar theory of graphical models for dynamical sys-
tems; they suggest that obtaining tractability results requires re-
strictions on the graphical structure as well as on the structure of
local functions.

1502

v1 v2

v5 v6

v4

v3
Initial Configuration: (1, 1, 0, 0, 0, 0)
Configuration at time 1: (1, 1, 1, 0, 0, 0)
Configuration at time 2: (1, 1, 1, 0, 0, 1)
Configuration at time 3: (1, 1, 1, 0, 1, 1)

Note: Each configuration has the form (s1, s2, s3, s4, s5, s6), where si
is the state of node vi, 1 ≤ i ≤ 6. The configuration at time 3 is a fixed
point.

Figure 1: An Example of a SyDS

1.5 Other Related work
Many papers have addressed the computational aspects of test-

ing phase space properties of discrete dynamical systems and mul-
tiagent systems. For example, Barrett et al. [3] studied existence
questions for fixed points and GE configurations under the sequen-
tial update model, where a permutation of the vertices is also given,
and state updates are carried out in the order specified by the permu-
tation. Bounds on the lengths of transients and cycles in restricted
versions of dynamical systems under the sequential update model
are established in [30]. Tosic [36] presented results for fixed point
counting problems for systems with restricted forms of local transi-
tion functions. Kosub and Homan [26] presented dichotomy results
that delineate computationally intractable and efficiently solvable
versions of counting fixed points, based on the class of allowable
local transition functions. Barrett et al. [2] considered the question
of determining whether a given configuration y has a predecessor
(i.e., a configuration x such that the phase space has the directed
edge (x, y)) in deterministic SyDSs. They present hardness re-
sults for various restricted graph structures (e.g. grid graphs) and
for various restricted families of local transition functions (e.g. k-
threshold functions for any k ≥ 2). They also present polynomial
time algorithms when the underlying graph is treewidth-bounded
and the local transition functions are r-symmetric for some fixed
integer r. Problems similar to predecessor existence have also been
considered in the context of cellular automata [13, 19]. The above
references considered each phase space property separately to es-
tablish complexity results.

Wooldridge [40] presents a good discussion of complexity re-
sults for multiagent systems. Montali et al. [29] discuss verifi-
cation of temporal properties in multiagent systems where inter-
actions among the agents vary over time. Tsang and Larson [37]
consider opinion dynamics in multiagent systems. In their model,
the state value of each node is a real value in the closed interval
[0, 1]; however, the interactions among agents are expressed in the
form of local transition functions which depend on the state val-
ues of neighbors. Rabinovich et al. [31] study the complexity of
analyzing the behavior of multiagent systems using a different rep-
resentation (namely, multi-prover interactive protocols) for the in-
teractions among agents.

2. DEFINITIONS AND PROBLEM
FORMULATION

2.1 Formal Definition of the SyDS Model
Let B denote the Boolean domain {0,1}. A Synchronous Dy-

namical System (SyDS) S over B is a pair S = (G,F), where

(a) G(V,E), an undirected graph with |V | = n, represents the
underlying graph of the SyDS, and

(b) F = {f1, f2, . . . , fn} is a collection of functions in the sys-
tem, with fi denoting the local transition function associ-
ated with node vi, 1 ≤ i ≤ n.

Each node of G has a state value from B. Each function fi spec-
ifies the local interaction between node vi and its neighbors in
G. The inputs to function fi are the state of vi and those of the
neighbors of vi in G; function fi maps each combination of in-
puts to a value in B. This value becomes the next state of node
vi. It is assumed that each local function can be computed effi-
ciently. In a SyDS, all nodes compute and update their next state
synchronously. Other update disciplines (e.g. sequential updates)
for discrete dynamical systems have also been considered in the lit-
erature (e.g. [1,30]). At any time t, the configuration C of a SyDS
is the n-vector (st1, s

t
2, . . . , s

t
n), where sti ∈ B is the state of node

vi at time t (1 ≤ i ≤ n).

Example: Consider the graph shown in Figure 1. Suppose the
local interaction function at each node is the 2-threshold function,
that is, the value of the function is 1 if and only if at least two of
the inputs are 1. Assume that initially, v1 and v2 are in state 1 and
all other nodes are in state 0. During the first time step, the state
of node v3 changes to 1 since two of its neighbors (namely v1 and
v2) are in state 1; the states of other nodes remain the same. The
configurations at subsequent time steps are shown in the figure. The
configuration (1, 1, 1, 0, 1, 1) reached at time step 3 is a fixed point
for this system.

If a SyDS has a one step transition from configuration C to con-
figuration C′, we say that C′ is the successor of C′ and that C is a
predecessor of C′. Since our SyDS model is deterministic, each
configuration has exactly one successor. However, a configuration
may have zero or more predecessors. A configuration C is called a
fixed point if the successor of C is C itself. A configuration C is a
Garden–of–Eden if it has no predecessors.

The phase space PS of a SyDS S is a directed graph defined as
follows. There is a node in PS for each configuration of S. There
is a directed edge from a node representing configuration C to that
representing configuration C′ if there is a one step transition of the
SyDS from C to C′. For a SyDS with n vertices, the number of
vertices in the phase space is 2n; thus, the size of phase space is
exponential in the size of the description of the SyDS. Each ver-
tex in the phase space has outdegree equal to 1 (since our SyDS
model is deterministic). Also, in the phase space, each fixed point
of a SyDS is a self-loop and each GE configuration is a vertex of
indegree zero.

2.2 Capturing Classes of Phase Space Proper-
ties Through Graph Predicates

We consider problems involving directed graphs that can have
self–loops, so that an edge is an ordered pair of nodes, not neces-
sarily distinct. Since our goal is to model phase space properties
of deterministic SyDSs, the corresponding directed graph has the
special property that the outdegree of each vertex is one. The fol-
lowing definition relies on this property and expresses some phase
space properties in terms of subgraphs.

DEFINITION 2.1. A nonbranching graph is a directed graph
where each node has at most one outgoing edge. We refer to a
nonbranching graph as an NDAG. A full nonbranching graph is
a nonbranching graph where each node has exactly one outgoing
edge.

1503

A Garden–of–Eden node in a directed graph is a node with no
entering edges. A transient in a directed graph is a path, beginning
at a Garden–of–Eden node, none of whose edges is part of a cycle.
The length of a transient is the number of edges in the path. The
length of a cycle is the number of edges in the cycle. A cycle is a
pure cycle if every node in the cycle has only one incoming edge
(so that there are no transients entering the cycle). A fringed cycle
is a graph consisting of a cycle and at least one length 1 transient
entering the cycle, and no transients of length greater than 1 enter-
ing the cycle. The predecessors of a given node in a directed graph
are the nodes that are the sources of incoming edges to the given
node, and the successors of a given node are the nodes that are the
destinations of exiting edges of the given node. A fixed point of a
nonbranching graph is a node that is its own successor.

Suppose all the cycles in the phase space of a given SyDS are of
the same length, say p. The number of nodes in the phase space
for any SyDS is a power of 2. Consequently, if all the cycles are
pure cycles, p must be a power of 2. If p is not a power of two, it is
possible for all the cycles to be of length p, provided the cycles can
be fringed cycles, rather than pure cycles.

DEFINITION 2.2. We say that a given predicate P on graphs is
strongly dichotomizing if

1. there is a full nonbranching graph G0 such that P is true
for every full nonbranching graph that contains a set of con-
nected components that are isomorphic to G0 and

2. there exists a p ≥ 1 such P is false for every full nonbranch-
ing graph for which every connected component is a fringed
cycle of length p.

Note that in the above definition, G0 can consist of more than one
connected component.
Examples: We now provide two examples of strongly dichotomiz-
ing graph predicates on NDAGs. Let P1 denote the predicate “for
any fixed k ≥ 3, the graph contains a path consisting of at least
k distinct nodes" and let P2 denote the predicate “for any fixed
k ≥ 2, the graph contains a transient of length at least k". Both of
these can be seen to be strongly dichotomizing by letting G0 be a
graph consisting of a length k path leading to a fixed point node,
and choosing p = 1. Many additional examples appear in [32].

DEFINITION 2.3. We say that a given predicate P on graphs is
weakly dichotomizing if

1. there is a full nonbranching graph G0 such that P is true
for every full nonbranching graph that contains a set of con-
nected components that are isomorphic to G0 and

(a) either there exists a p ≥ 1 such that P is false for ev-
ery full nonbranching graph for which every connected
component is a fringed cycle of length p

(b) or there exists a p ≥ 1 such that p is a power of 2 and
P is false for every full nonbranching graph for which
every connected component is a pure cycle of length p,

As before, G0 can consist of more than one connected component.
Examples: We now provide two examples of weakly dichotomiz-
ing predicates. Let P3 denote the predicate “for any fixed k ≥ 1,
the graph contains at least k Garden–of–Eden nodes". P3 can be
seen to be weakly dichotomizing by letting G0 be the graph con-
sisting of k Garden–of–Eden nodes, each having an outgoing edge
to a common fixed point node and choosing p = 1. Let P4 be

the predicate that is true iff the graph contains an edge that is not
a length 1 cycle. This predicate is weakly dichotomizing, since
G0 can be a pure length 2 cycle, and the predicate is false if ev-
ery connected component is a pure length 1 cycle. Many additional
examples appear in [32].

Note also that every predicate that is strongly dichotomizing is
also weakly dichotomizing. However, the converse is not true. As
an example, the predicate P4 defined above is weakly dichotomiz-
ing; however, it is not strongly dichotomizing.

DEFINITION 2.4. GraphG1 is strongly embedded in graphG2

if G1 is isomorphic to the subgraph of G2 induced by some subset
of nodes of G2. Graph G1 is weakly embedded in graph G2 if G1

is isomorphic to some subgraph of G2 obtained by deleting some
nodes and edges from G2.

For any fixed graphH , the SEH predicate (the WEH predicate)
is the predicate that is true for a given graph G iff H is strongly
(weakly) embedded in G.

Proofs of the following observations are straightforward and they
appear in [32].

OBSERVATION 2.5. For any nonbranching graph H that con-
tains at least one edge, the SEH predicate and the WEH predicate
are each weakly dichotomizing.

OBSERVATION 2.6. For any nonbranching graph H that con-
tains at least one cycle, or at least one path of length at least 2,
the SEH predicate and the WEH predicate are each strongly di-
chotomizing.

2.3 Other Definitions
The following definitions of tree decomposition and treewidth

are from [5].

DEFINITION 2.7. Given an undirected graph G(V,E), a tree-
decomposition of G is a pair ({Xi | i ∈ I}, T = (I, F)), where
{Xi | i ∈ I} is a family of subsets of V and T = (I, F) is an
undirected tree with the following properties:

(a)
⋃
i∈I Xi = V .

(b) For every edge e = {v, w} ∈ E, there is a subset Xi, i ∈ I ,
with v ∈ Xi and w ∈ Xi.

(c) For all i, j, k ∈ I , if j lies on the path from i to k in T , then
Xi

⋂
Xk ⊆ Xj .

The treewidth of a tree-decomposition ({Xi | i ∈ I}, T) is
maxi∈I{|Xi| − 1}. The treewidth of a graph is the minimum over
the treewidths of all its tree decompositions. A class of graphs is
treewidth bounded if there is a constant k such that the treewidth
of every graph in the class is at most k.

A number of problems that are NP-hard on general graphs can be
solved efficiently when restricted to the class of treewidth-bounded
graphs (e.g. [5, 6]).

The following definitions (from [2]) allow us to consider restric-
tions on the local transition functions of SyDSs.

DEFINITION 2.8. A symmetric Boolean function is one whose
value does not depend on the order in which the input bits are spec-
ified; that is, the function value depends only on how many of its
inputs are 1.

A Boolean function f is r-symmetric if the inputs to f can be
partitioned into at most r classes such that the value of f depends
only on how many of the inputs in each of the r classes are 1.

A SyDS is r-symmetric if each of its local transition functions is
r′-symmetric for some r′ ≤ r.

1504

It can be seen that a symmetric Boolean function is 1-symmetric
and an r-symmetric Boolean function with t inputs can be specified
using a table of size O(tr).

3. FORMULA–SPECIFIED SYDSS
DEFINITION 3.1. A formula–specified SyDS is a SyDS where

the node transition functions are specified by Boolean formulas,
where the formulas are permitted to use the Boolean operators and,
or, and not.

THEOREM 3.2. For every weakly dichotomizing predicate P,
the problem of given a formula–specified SyDS, determining whether
its phase space graph satisfies P is NP–hard.

Proof sketch: The proof is by a reduction from 3SAT which is
known to be NP-hard [17]. Let f be a given 3SAT formula.

Let G0 be a full nonbranching graph such that P is true for ev-
ery complete nonbranching graph that contains a set of connected
component that are isomorphic toG0. Let p ≥ 1 be such that either
P is false for every full nonbranching graph for which every con-
nected component is a fringed cycle of length p, or p is a power of
2 and P is false for every full nonbranching graph for which every
connected component is a pure cycle of length p. Let G′0 be G0

augmented with a minimum number of fixed point nodes so that
the number of nodes in G′0 is even, is a power of 2, and is greater
than p. Note that P is true for every full nonbranching graph that
contains a set of connected component that are isomorphic to G′0.

Let the variables in f be x1, x2, . . . , xn. Let the number of
nodes in G′0 be 2m. If P is false for every full nonbranching graph
for which every connected component is a fringed cycle of length
p, then let q be the smallest integer such that 2q > p. Otherwise, in
which case p is a power of 2 and P is false for every full nonbranch-
ing graph for which every connected component is a pure cycle of
length p, let q be log2 p, so that 2q = p .

Note thatm ≥ q ≥ 0. The constructed SyDS S has n+m nodes.
We refer to these nodes as X = x1, x2, . . . , xn, and Y = y1, y2,
. . . , ym. Let Y ′ denote the subset of Y consisting of nodes y1, y2,
. . . , yq . Note that if q is zero, then Y ′ is empty.

The undirected graph for S has an edge between each node in its
graph and each node in Y .

Node xi of S corresponds to variable xi of f . We encode each of
the nodes ofG′0 as anm bit number, with y1 as the lowest order bit.
Let the nodes of G′0 be denoted as v0, v1, . . . , v2m−1, where the
subscript of each node corresponds to the encoding of that node.
We envision the values of the nodes Y as representing a node from
G′0.

For a given j, where 0 ≤ j ≤ 2m− 1, let gj denote the Boolean
formula consisting of the conjunction of m literals, one for each
node in Y . In this conjunction, a given variable is unnegated or
negated, depending on whether its value is 1 or 0 in the Boolean
representation of number j. Thus, formula gj evaluates to 1 iff the
values of the nodes in Y encode the value j.

Suppose that for a given yi in Y , graph G′0 contains r edges en-
tering a node whose encoding has value 1 for bit yi. Let hi denote
the Boolean formula consisting of the disjunction of r disjuncts, as
follows. For each edge (vj , vk) of G′0 such that the encoding of k
has value 1 for bit yi, hi contains the conjunct gj .

For a given assignment of values to the nodes in Y ′, let j(Y ′)
denote the number encoded by this assignment. For each yi in Y ′,
let ĥi denote the Boolean formula of input variables y1, y2, . . . , yq ,
such that ĥi evaluates to 1 iff j(Y ′) < p and number (j(Y ′) + 1)

mod p has bit i equal to 1. Note that if j(Y ′) ≥ p, then ĥi evaluates
to 0.

For each yi in Y − Y ′, let ĥi denote the Boolean formula yi.
For each node xi in X , the transition function formula is simply

xi. These transition functions ensure that in every transition of S ,
the values of the nodes in X never change.

Let f ′ be a formula for the complement of f . (Note that since
f is expressed using and, or, and not, formula f ′ can be efficiently
constructed from f .)

Now consider a node yi in Y . The transition function formula
for yi is (f ∧ hi) ∨ (f ′ ∧ ĥi), with parentheses added as needed.

Suppose that in a given configuration c of S , the values of nodes
X in c make formula f true. Suppose that the values of nodes Y
encode node vj of G′0. Let vk denote the unique node in G′0, such
thatG′0 contains the edge (vj , vk). Then the transition functions for
nodes Y ensure that the value of the nodes in Y in the successor
configuration to c encode vk.

Suppose the values of nodes X in c make formula f false and
the number j(Y ′) encoded by nodes Y ′ in c is such that j < p.
Then the transition functions for nodes Y ensure that the value of
the nodes in Y ′ in the successor configuration to c encode the first q
bits of the number (j(Y ′) + 1) mod p, and that the values of nodes
Y − Y ′ will remain unchanged.

Now suppose the values of nodes X in c make formula f false
and the number j(Y ′) encoded by nodes Y ′ in c is such that j ≥
p. Then the transition functions for nodes Y ensure that in the
successor configuration to c, nodes Y ′ will encode the number 0,
and that the values of nodes Y − Y ′ remain unchanged.

This completes the construction. It can be shown that the predi-
cate P is true for S if and only if f is satisfiable; see [32] for details.

4. TABLE–SPECIFIED SYDSS
DEFINITION 4.1. For a fixed r ≥ 1, an r–table–specified SyDS

is a SyDS whose node transition functions are r–symmetric, and
are specified via tables.

First we observe that there is a weakly dichotomizing graph pred-
icate on phase space that is polynomially solvable for r–table–
specified SyDSs. Thus, in general, Theorem 3.2 does not hold for
table-specified SyDSs.

THEOREM 4.2. For every fixed r ≥ 1, the problem of deter-
mining whether the phase space for a given r–table–specified SyDS
contains an edge that is not a length 1 cycle can be solved in poly-
nomial time.

Proof: The problem can be solved by inspecting the table for each
node to determine for each of the two possible values for the node,
if there are values for the neighboring nodes which would cause
the given node to change value. If such a node is found, let c be
any configuration where the given node has the given value, and
the neighbors have values that would cause a change in the value of
the given node. Then, in phase space, the outgoing edge for node
c goes to a different node. If such a node is not found, then every
edge in phase space is a length 1 cycle.

In contrast, for strongly dichotomizing predicates, the problem
remains NP-hard even for table-specified SyDSs as shown by the
following result.

THEOREM 4.3. For every strongly dichotomizing predicate P,
the problem of given a 5–table–specified SyDS, determining whether
its phase space graph satisfies P is NP–hard.

Proof idea: Our proof of the above theorem is also by a reduction
from 3SAT. The details, which are omitted here for space reasons,
are available in [32].

1505

5. EFFICIENT ALGORITHMS FOR
TREEWIDTH BOUNDED SYDSS

5.1 Additional Terminology for Treewidth-
Bounded Graphs

When a graph G has bounded treewidth, it is well known that
a tree decomposition ({Xi | i ∈ I}, T = (I, F)) of G can be
constructed in time that is a polynomial in the size ofG. Moreover,
this can be done so that all of the following conditions hold (where
some node of T is selected to be a root node) [2, 5]: (a) each node
of T has at most two children, (b) the number of nodes of T with
fewer than two children is at most n, the number of nodes in G and
(c) the number of nodes of T with two children is at most n. Our
algorithm relies on this special form of tree decomposition.

The following terminology regarding nodes in tree decomposi-
tions is from [2]. Let T be the given tree decomposition of a graph
G. For a given node i of T , the nodes ofG inXi are called explicit
nodes of i. If a given explicit node v of i is also an explicit node
of the parent of i, then v is referred to as an inherited node of i;
and if v does not occur in the parent of i, then v is called an origi-
nating node of i. We refer to the set of all explicit nodes occurring
in the subtree of T rooted at i that are not explicit nodes of i as
hidden nodes of i. (Thus, the hidden nodes of i are the union of
the originating and hidden nodes of the children of i.)

The main result of this section is our dynamic programming al-
gorithm (presented in Section 5.4) for counting the number of em-
beddings of a fixed graph H into the phase space of a SyDS S.
The definitions needed to specify this algorithm are discussed in
the next two subsections.

5.2 Homomorphisms and Embeddings

DEFINITION 5.1. A homomorphism of graph H into graph K
is a function h that maps each node ofH into a node ofK such that
for every edge (u, v) ofH , graphK contains the edge (h(u), h(v)).

Given a graph H , a uniqueness requirement is an unordered pair
of distinct nodes fromH . A given homomorphism h from graphH
to graph K satisfies a given uniqueness requirement {u, v} if h(u)
is a different node than h(v). For a nonbranching graph H , a set
of uniqueness requirements R is uniqueness–sufficient if for every
homomorphism h from H to any nonbranching graph K, satisfac-
tion of all the requirements in R ensures that for every pair {u, v}
of distinct nodes from H , the nodes h(u) and h(v) are distinct.

Note that for a given nonbranching graph H , the set of all pairs
of distinct nodes is uniqueness–sufficient. However, smaller sets
of uniqueness requirements may also be uniqueness–sufficient. For
instance, it is unnecessary to include a uniqueness requirement for a
pair of nodes that occur in connected components ofH that contain
cycles of different lengths. Also, it is unnecessary to include a
uniqueness requirement for a pair of nodes that that have different
distances from a cycle.

Given a graph H , an inducement requirement is an ordered pair
of nodes (u, v), not necessarily distinct, from H , such that node u
has no exiting edge in H . A given homomorphism h from graph
H to graphK satisfies a given inducement requirement (u, v) ifK
does not contain the edge (h(u), h(v)). For a nonbranching graph
H , the complete set of inducement requirements for H is the set
of all inducement requirements for H . The following is a direct
consequence of the above definitions.

OBSERVATION 5.2. A homomorphism of nonbranching graph
H into nonbranching graph K is a weak embedding iff it satisfies

all the uniqueness requirements in a set of uniqueness-sufficient re-
quirements for H .

A homomorphism of nonbranching graph H into nonbranching
graph K is a strong embedding iff it satisfies all the uniqueness
requirements in a set of uniqueness-sufficient requirements for H ,
and satisfies the complete set of inducement requirements for H .

5.3 Configuration and Signature Ensembles
Given a graph G(V,E), a configuration c is an assignment of

a Boolean value to each node in V . Given a set of nodes Y ⊆
V , a Y –configuration cY assigns a Boolean value to each node in
Y . Given a configuration c, we use c(y) to denote the value of
node y in that configuration. Similarly, given a Y –configuration
cY and a node y in Y , we use cY (y) to denote the value of node
y in cY . We extend this notation to subsets of variables as follows.
Given a configuration c and a set of nodes W ⊆ V , c(W) denotes
the combination of values assigned to the nodes in W . Similarly,
given a Y –configuration cY and a subset of nodesW ⊆ Y , cY (W)
denotes the combination of values assigned to the nodes in W .

Let H be a fixed graph. Given a set of nodes Y ⊆ V , a Y –
configuration ensemble is a function hY that maps each node u
of H into a Y –configuration. We let HY denote the set of all Y –
configuration ensembles. Note that the cardinality of HY is 2ms,
where m is the number of nodes in H , and s is the number of
nodes in Y . If H is fixed, and s is bounded by a constant, then the
cardinality ofHY is also bounded by a constant.

Consider a given Y –configuration cY and a givenZ–configuration
cZ . We say that cY and cZ are consistent if for every node x of
Y ∩ Z, it is the case that cY (x) = cZ(x). We say that a given Y –
configuration ensemble hY and a given Z–configuration ensemble
hZ are consistent if for every node u of H , configurations hY (u)
and hZ(u) are consistent.

For disjoint subsets Y and Z of V , suppose that hY is a Y –
configuration ensemble and hZ is a Z–configuration ensemble. We
use the notation hY ∪ hZ to denote the (Y ∪Z)–configuration en-
semble that maps each node u ofH into the (Y ∪Z)–configuration
hY (u) ∪ hZ(u).

DEFINITION 5.3. A generalized neighbor of a node v of a graph
is either a neighbor of node v, or node v itself.

Let G be the underlying graph of an r–symmetric SyDS S. For
a given node w of G, let cl(w) denote the set of at most r classes
of inputs to the r-symmetric transition function for w. Note that
each class in cl(w) is a set of generalized neighbors of node w. For
a given set of nodes W of G, let cl(W) denote a set containing
an element for each class of each node w in W . Note that each
element of cl(W) is a distinct set of nodes of G.

For not necessarily disjoint sets of nodes Y and W of G, a
(Y,W)–signature is a function g : cl(W) −→ N , such that
for each class ν in cl(W), the value of g(ν) does not exceed the
number of members of ν that are in Y .

Given subsets Y and W of V , a (Y,W)–signature ensemble is
a function that maps each node u of H into a (Y,W)–signature.
We let ΓY,W denote the set of all possible (Y,W)–signatures, and
let ΓHY,W denote the set of all possible (Y,W)–signature ensem-
bles.

Let m denote the number of nodes in H . Note that ΓHY,W is
isomorphic to ΓmY,W . Also note that if H is a fixed graph, the car-
dinality of W is bounded, and the maximum number of classes for
any node inW is bounded, then the cardinality of ΓHY,W is bounded
by a polynomial function of the the number of nodes in G.

For a given a Y –configuration η, and a given set of nodes W
of G, we define an associated (Y,W)–signature, which we denote

1506

as sigW (η), and which is defined as follows. For ν ∈ cl(W),
(sigW (η))(ν) is the number of nodes y in Y such that y is in class
ν, and η(y) = 1.

For a given Y –configuration ensemble h , and a given set of
nodes W of G, we define an associated (Y,W)–signature ensem-
ble, which we denote as sigenW (h), and which is defined as fol-
lows. For node u ofH , (sigenW (h))(u) is the signature sigW (h(u)).

DEFINITION 5.4. Consider sets of nodes W ⊆ Y ⊆ V , such
that every generalized neighbor of every node w in W is in Y .
Given a Y –configuration ensemble h, we say that h isW–viable iff
for every node w in W , and every edge (u, v) of H , the evaluation
of the local transition function fw gives the value (h(v))(w), using
the value of (h(u))(x) for every generalized neighbor x of w.

DEFINITION 5.5. For disjoint sets of nodes Y and Z ofG, sup-
pose σ1 is a (Y,W)–signature ensemble and σ2 is a (Z,W)–
signature ensemble. We define σ1 ⊕ σ2 to be the (Y ∪ Z,W)–
signature ensemble such that for each ν in cl(W), (σ1⊕σ2)(ν) =
σ1(ν) + σ2(ν).

Suppose that σ is a (Y,W)–signature ensemble. Suppose that
Z is a set of nodes of G such that W ⊆ Z and no member of Y
is a generalized neighbor of any member of Z − W . Then, the
Z–extension of σ is the (Y,Z)–signature ensemble σ′, defined as
follows. Consider each ν in cl(Z). If ν is in cl(W), then for each
node u of H , (σ′(u))(ν) = (σ(u))(ν). If ν is in cl(Z) − cl(W),
then for each node u of H , (σ′(u))(ν) = 0.

5.4 Counting Embeddings for Treewidth-
Bounded SyDSs

DEFINITION 5.6. For any fixed graphH , the SEH (WEH) count-
ing problem is the problem of determining for a given SyDS S
how many strong (weak) embeddings there are of H into the phase
space of S.

THEOREM 5.7. For any fixed graph H , fixed r, and fixed t,
there is a polynomial time algorithm for solving the SEH count-
ing problem and the WEH counting problem for an r–symmetric
SyDS whose underlying graph has a treewidth of at most t.

Proof: Let graph G(V,E) be the underlying graph for the given
SyDS S. Let T be the given tree decomposition for G. For any
node i in T , we use Y iinh, Y iorg and Y ihid to denote respectively the
set of inherited nodes, the set of originating nodes and the set of
hidden nodes of i.

If the problem to be solved is a WEH counting problem, let R be
a set of uniqueness-sufficient requirements for H . If the problem
to be solved is a SEH counting problem, let R be the union of a set
of uniqueness-sufficient requirements for H , and the complete set
of inducement requirements forH . LetR denote 2R, the power set
of R. Note that since H is fixed, setR is also fixed.

To count the number of strong embeddings or weak embeddings
of H into the phase space of S, we use bottom-up dynamic pro-
gramming on the decomposition tree. For each node i of T , we
compute a table, which we denote as J i. This table contains an en-
try for each triple inHY i

inh
×ΓH

(Y i
org ∪Y i

hid
),Y i

inh
×R. The value of

each entry is a non–negative integer. Since H is a fixed graph and
the treewidth t is a constant, the number of entries in each table J i

is a polynomial in n, the number of nodes of the underlying graph
G(V,E).

Consider a given element of table J i, say J i[hinh, σ, R′], where
hinh is a Y iinh–configuration ensemble, σ is a (Y iorg ∪ Y ihid, Y iinh)–
signature ensemble, and R′ is a subset of R. Table J i will be

computed so that the value of this element will equal the num-
ber of pairs (horg, hhid) consisting of a Y iorg–configuration en-
semble horg and a Y ihid–configuration ensemble hhid, such that
hinh ∪ horg ∪ hhid is (Y ihid ∪ Y iorg)–viable, σ is the signature
ensemble sigenY i

inh
(horg ∪ hhid) and R′ is the set of require-

ments that are satisfied by horg ∪ hhid. Note that the definition of
a tree decomposition ensures that every generalized neighbor of a
hidden or originating node of i is either an explicit node or a hid-
den node of i. Also note that Y ihid can contain up to n nodes, so the
values of the table entries can be exponential in n. However, the
number of bits needed to represent the table entries is proportional
to n.

To facilitate the computation of table J i, we also compute for
each node i of T , a table which we denote as Ki. This table con-
tains a non–negative integer for each four-tuple inHY i

inh
×HY i

org
×

ΓH
Y i
hid

,(Y i
inh
∪Y i

org)
×R. SinceH is a fixed graph and the treewidth

t is a constant, the number of entries in this table is a polynomial in
n, the number of nodes of the underlying graph G(V,E).

Let Ki[hinh, horg, σhid, Rhid] denote a given element of table
Ki, where hinh is a Y iinh–configuration ensemble, horg is a Y iorg–
configuration ensemble, σhid is a (Y ihid, Y

i
inh ∪ Y iorg)–signature

ensemble, and Rhid is a subset of R. Table Ki will be computed
so that this element will equal the number of Y ihid–configuration
ensemble hhid such that hinh ∪ horg ∪ hhid is Y ihid–viable, σhid is
the signature ensemble sigenY i

inh
∪Y i

org
(hhid), andRhid is the set

of requirements that are satisfied by hhid. Note that the definition
of a tree decomposition ensures that every generalized neighbor of
a hidden node of i is either an explicit node or a hidden node of i.

We now describe the bottom-up construction of the J and K
tables defined above. The description is presented in four parts in
the following order.

(1) Computation of table Ki for a leaf node i of the decomposi-
tion tree.

(2) Computation of table J i for an arbitrary node i of the de-
composition tree, given the table Ki.

(3) Computation of table Ki for a nonleaf node i of the decom-
position tree, given the J tables for the children of node i in
the decomposition tree.

(4) Determining the solution to the SEH counting problem or the
WEH counting problem, given the J i table for the root node
of the decomposition tree.

Part 1: Consider a leaf node i of the decomposition tree. Since
a leaf node has no hidden nodes, set ΓY i

hid
,(Y i

inh
∪Y i

org)
contains

only one member: a function that maps each member of cl(Yinh ∪
Yorg) to zero. Thus ΓH

Y i
hid

,(Y i
inh
∪Y i

org)
has only one member. An

element of Ki, say Ki[hinh, horg, σ, R
′], is set to 1 if R′ is the

empty set, and is set to 0 otherwise.

Part 2: Consider an arbitrary node i of the decomposition tree.
Suppose that table Ki has already been computed, and table J i is
to be computed next.

Initially, all the elements of table J i are set to zero. Then, table
Ki is scanned, and each element of table Ki that is nonzero and
that represents a Y iorg–viable configuration ensemble, will result
in having its value added to some element of table J i. (A given
element of table J i might be incremented multiple times because
of multiple elements of Ki.)

1507

Suppose a given element, say Ki[hinh, horg, σhid, Rhid], of ta-
ble Ki has a nonzero value. Let σorg be the (Y iinh ∪ Y iorg, Y iorg)–
signature ensemble sigenY i

org
(hinh ∪ horg). Let σ′hid be the

(Y ihid, Y
i
org)–signature ensemble obtained by restricting σhid to

cl(Y iorg). Let σ′org be σorg ⊕ σ′hid. Note that σ′org is a (Y ihid ∪
Y iinh ∪ Y iorg, Y

i
org)–signature ensemble. We can test for Y iorg–

viability by checking that for every node w in Y iorg , and every edge
(u, v) of H , the evaluation of the local transition function fw gives
the value (horg(v))(w), using the value of (σ′org(u))(ν) for every
class ν in cl(w). If the given element of Ki does not represent a
Y iorg–viable configuration ensemble, then processing of the given
element is finished. Otherwise, an element of table J i is found as
follows.

Let σinh be sigenY i
inh

(horg). Note that σinh is a (Y iorg, Y
i
inh)–

signature ensemble. Let σ′inh be the (Y ihid, Y
i
inh)–signature en-

semble obtained by restricting σhid to cl(Y iinh). Let σ′′inh be σinh⊕
σ′inh. Note that σ′′inh is a (Y iorg ∪ Y ihid, Y iinh)–signature ensemble.

LetRorg is the set of requirements that are satisfied by horg . Let
R′ be Rhid ∪ Rorg . Table element J i[hinh, σ′′inh, R

′] is incre-
mented by the value of Ki[hinh, horg, σhid, Rhid].

Part 3, Case 1: Consider an arbitrary nonleaf node i that has only
one child. Let i1 denote the child of i in the tree decomposition.
Suppose that table J i1 has already been computed, and table Ki is
to be computed next.

Initially, all the elements of table Ki are set to zero. Then, table
J i1 is scanned, and each element of table J i1 that is nonzero will
result in having its value added to some elements of table Ki.

Suppose a given element of table J i1 , say J i1 [hi1inh, σ
i1 , Ri1],

has a nonzero value. Note that σi1 is a (Y i1org ∪ Y i1hid, Y
i1
inh)–

signature ensemble. Since i has only one child, Y ihid = Y i1org ∪
Y i1hid. Let σi be the (Y iinh ∪ Y iorg)–extension of σi1 . Let Ri equal
Ri1 .

For every Y iinh–configuration ensemble hiinh and Y iorg–configuration
ensemble hiorg such that hiinh is consistent with hi1inh, and hiorg is
consistent with hi1inh, table element Ki[hiinh, h

i
org, σ

i, Ri] is in-
cremented by the value of J i1 [hi1inh, σ

i1 , Ri1].

Part 3, Case 2: Consider an arbitrary nonleaf node i that has two
children.. Let i1 and i2 denote the children of i in the tree de-
composition. Suppose that tables J i1 and J i2 have already been
computed, and table Ki is to be computed next.

Initially, all the elements of tableKi are set to zero. Then, tables
J i1 and J i2 are jointly scanned. Each pair consisting of an ele-
ment of table J i1 that is nonzero and an element of table J i2 that
is nonzero, such that the first components of these two elements
are consistent, will result in having the product of their two values
added to some of the elements of table Ki.

Suppose a given element of table J i1 , say J i1 [hi1inh, σ
i1 , Ri1],

has a nonzero value. Further, suppose a given element of table J i2 ,
say J i1 [hi1inh, σ

i1 , Ri1], has a nonzero value, and configuration en-
sembles hi1inh and hi2inh are consistent. Note that Y ihid is the disjoint
union Y i1org ∪ Y i1hid ∪ Y

i2
org ∪ Y i2hid. Let σi

′
1 be the (Y iinh ∪ Y iorg)–

extension of σi1 . Let σi
′
2 be the (Y iinh ∪ Y iorg)–extension of σi2 .

Let σi be (σi
′
1 ⊕ σi

′
2). Let Ri be (Ri1 ∪ Ri2).

For every Y iinh–configuration ensemble hiinh and Y iorg–configuration
ensemble hiorg , such that hiinh is consistent with both hi1inh and
hi2inh, and hiorg is consistent with both hi1inh and hi2inh, table ele-
ment Ki[hiinh, h

i
org, σ

i, Ri] is incremented by the product of the
values of J i1 [hi1inh, σ

i1 , Ri1] and J i1 [hi1inh, σ
i1 , Ri1].

Part 4: Let r be the root node of the tree decomposition. The
root node has no inherited nodes, so Y rinh is empty, and (Y rhid ∪
Y rorg) is V , the set of all nodes of G. Thus, there is only one
Y rinh–configuration, an empty configuration. Also, there is only
one Y iinh–configuration ensemble, in which each node u of H is
mapped to the empty configuration. We denote this configuration
ensemble as hφ. Since Y rinh is empty, cl(Y rinh) is also empty. Thus,
there is only one (Y iorg ∪ Y ihid, Y

i
inh)–signature, an empty signa-

ture. Also, there is only one (Y iorg ∪ Y ihid, Y iinh)–signature ensem-
ble, in which each node u of H is mapped to the empty signature.
We denote this configuration signature as σφ.

Table Jr contains an element Jr[hφ, σφ, R′], for each subset
R′ ⊆ R. The value of such an element of table Jr is the number of
V –configuration ensembles hV such that hV is V –viable, and R′

is the set of requirements that are satisfied by hV .
The solution to the counting problem is the value of Jr[hφ, σφ, R].

As consequences of the above theorem, we also obtain efficient
algorithms for the corresponding decision problems. A statement
of these results is provided below.

COROLLARY 5.8. For any fixed graph H , fixed r, and fixed
t, there is a polynomial time algorithm for determining for a r–
symmetric SyDS whose underlying graph has a treewidth of at most
t, whether the phase space satisfies the SEH predicate or whether
the phase space satisfies the WEH predicate.

6. SUMMARY AND FUTURE RESEARCH
We established a general result showing that for large classes

of phase space properties of SyDSs, the problem of testing those
properties is computationally intractable. We also showed that for
SyDSs whose underlying graph are treewidth-bounded, the testing
problem is efficiently solvable for large classes of properties when
the local functions are r-symmetric, for some fixed integer r.

We conclude by mentioning some directions for future research.
One direction is to identify other structural restrictions on SyDSs
for which phase space properties expressed as graph predicates can
be efficiently tested. Researchers (e.g. [1]) have studied various
configuration reachability problems in discrete dynamical systems.
A typical reachability problem is the following: given a dynamical
system S and two configurations C and C′, determine whether the
system starting from C will reach C′. In general, such problems are
PSPACE-complete even when the underlying graph has bounded
treewidth and the local transition functions are symmetric; polyno-
mial time algorithms are known for some restricted classes of local
transition functions (see e.g. [1]). Although reachability is a phase
space property, our graph predicate formalism cannot capture such
properties since the length of the corresponding directed path in the
phase space may be exponential in the input size. Thus, develop-
ing a general framework for analyzing reachability-like properties
is an interesting topic for future work. Probabilistic versions of
SyDS (where the local transition functions are stochastic) are use-
ful in studying diffusion phenomena in social networks [15]. Thus,
another research direction is to develop a framework for studying
phase space properties of probabilistic discrete dynamical systems.

Acknowledgments: We thank the reviewers for carefully reading
the manuscript and providing valuable suggestions. This work has
been partially supported by DTRA Grant HDTRA1-11-1-0016 and
DTRA CNIMS Contract HDTRA1-11-D-0016-0010, NSF NetSE
Grant CNS-1011769, NSF SDCI Grant OCI-1032677 and NIH MI-
DAS Grant 5U01GM070694-11.

1508

REFERENCES
[1] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.

Rosenkrantz, and R. E. Stearns. Complexity of reachability
problems for finite discrete dynamical systems. J. Comput.
Syst. Sci., 72(8):1317–1345, 2006.

[2] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and Mayur Thakur. Predecessor
Existence Problems for Finite Discrete Dynamical Systems.
Theoretical Computer Science, 386(1–2):3–37, 2007.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and P. T. Tosic. Gardens of eden
and fixed points in sequential dynamical systems. In
DM-CCG, pages 95–110, 2001.

[4] C. L. Barrett and C. M. Reidys. Elements of a theory of
simulation i: Sequential CA over random graphs. Applied
Mathematics and Computation, 98(3):241–259, 1999.

[5] H. Bodlaender. Treewidth: Algorithmic techniques and
results. Proc. 22nd Symposium on Mathematical
Foundations of Computer Science, pages 29–36, 1997.

[6] H. L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11(1-2):1–22, 1993.

[7] A. Bulatov, M. Dyer, L. Goldberg, M. Jerrum, and
C. McQuillan. The expressibility of functions on the boolean
domain, with applications to counting CSPs.
arXiv:1108.5288v4, 2012.

[8] S. Buss, Christos H. Papadimitriou, and J.N. Tsitsiklis. On
the predictability of coupled automata: an allegory about
chaos. In Foundations of Computer Science, 1990.
Proceedings., 31st Annual Symposium on, pages 788–793
vol.2, Oct 1990.

[9] J. Cai, X. Chen, and P. Lu. Graph homomorphisms with
complex values: A dichotomy theorem. SIAM J. Computing,
42(3):924–1029, 2013.

[10] D. Centola. Simple Models of Collective Behavior. PhD
thesis, Cornell University, Ithaca, NY, 2006.

[11] D. Centola and M. Macy. Complex Contagions and the
Weakness of Long Ties. The American Journal of Sociology,
113(3):702–734, 2007.

[12] H. Chen. A rendezvous of logic, complexity and algebra.
ACM Computing Surveys, 42(1):2:1–2:32, 2009.

[13] B. Durand. A random NP-complete problem for inversion of
2d cellular automata. Theor. Comput. Sci., 148(1):19–32,
1995.

[14] M. Dyer and D. Richerby. An effective dichotomy for the
counting constraint satisfaction problem. Technical Report,
School of Computing, University of Leeds, UK, 2013.

[15] D. Easley and J. Kleinberg. Networks, Crowds and Markets:
Reasoning About a Highly Connected World. Cambridge
University Press, New York, NY, 2010.

[16] A. Galeotti, S. Goyal, M. Jackson, and F. Vega-Redondo.
Network games. Review of Economic Studies, 77:218–244,
2010.

[17] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman and Co., San Francisco, CA, 1979.

[18] M. Granovetter. Threshold Models of Collective Behavior.
The American Journal of Sociology, 83(6):1420–1443, 1978.

[19] F. Green. NP-complete problems in cellular automata.
Complex Systems, 1(3):453–474, 1987.

[20] H. Gutowitz. Cellular Automata: Theory and Experiment.
North Holland, 1989.

[21] D. Helbing and S. Balietti. Agent-based modeling. In
D. Helbing, editor, Social Self-Organization: Understanding
Complex Systems, pages 25–71. Springer-Verlag, Berlin,
Germany, 2012.

[22] Z. Jin. Coordinated Control for Networked Multiagent
Systems. PhD thesis, California Institute of Technology,
Pasadena, CA, 2007.

[23] M. Kearns. Graphical games. In N. Nissan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Graph
Theory, chapter 7. Cambridge University Press, New York,
NY, 2008.

[24] J. Kleinberg. Cascading Behavior in Networks: Algorithmic
and Economic Issues. In N. Nissan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, chapter 24, pages 613–632. Cambridge University
Press, New York, NY, 2007.

[25] D. Kohler and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, Cambridge, MA,
2009.

[26] S. Kosub and C. M. Homan. Dichotomy Results for Fixed
Point Counting in Boolean Dynamical Systems. In Proc.
ICTCS, pages 163–174, 2007.

[27] C. Kuhlman. High Performance Computational Social
Science modeling of Networked Populations. PhD thesis,
Computer Science Department, Virginia Tech, 2013.

[28] M. Macy and R. Willer. From factors to actors:
Computational sociology and agent-based modeling. Annual
Reviews in Sociology, 28:143–166, 2002.

[29] M. Montali, D. Calvenese, and G. De Giacomo. Verification
of data-aware commitment-based multiagent system. In
Proc. AAMAS 2014, pages 157–164, 2014.

[30] H. S. Mortveit and C. M. Reidys. An Introduction to
Sequential Dynamical Systems. Springer, Berlin, 2007.

[31] Z. Rabinovich, C. Goldman, and J. Rosenschein. The
complexity of multiagent systems: The price of silence. In
Proc. AAMAS 2003, pages 1102–1103, 2003.

[32] D. Rosenkrantz, M. V. Marathe, H. B. Hunt III, S. S. Ravi,
and R. E. Stearns. Analysis problems for synchronous
discrete dynamical systems: A unified approach. Technical
Report 14-094, NDSSL, Virginia Bioinformatics Institute,
Blacksburg, VA, 2014.

[33] M. Rovatsos. Multiagent Systems for Social Computation. In
Proc. 13th AAMAS, pages 1165–1168, 2014.

[34] Klaus Sutner. On the computational complexity of finite
cellular automata. J. Comput. Syst. Sci., 50(1):87, 1995.

[35] Klaus Sutner. Computational classification of cellular
automata. Int. J. General Systems, 41(6):595–607, 2012.

[36] P. T. Tosic. On the complexity of enumerating possible
dynamics of sparsely connected boolean network automata
with simple update rules. In Automata 2010 - 16th Intl.
Workshop on CA and DCS, pages 125–144, 2010.

[37] A. Tsang and K. Larson. Opinion dynamics of skeptical
agents. In Proc. AAMAS 2014, pages 277–284, 2014.

[38] M. P. Wellman. Putting the Agent in agent-based modeling.
Invited talk at AAMAS 2014, 2014.

[39] S. Wolfram. Theory and Applications of Cellular Automata.
World Scientific, 1987.

[40] M. Wooldridge. An Introduction to Multi-Agent Systems.
John Wiley & Sons, West Sussex, UK, 2002.

1509

