
Estimating the Progress of Maintenance Goals

(Extended Abstract)
John Thangarajah

Computer Science & IT
RMIT University, Australia

johnt@rmit.edu.au

James Harland
Computer Science & IT

RMIT University, Australia
james.harland@rmit.edu.au

Neil Yorke-Smith
Olayan School of Business

American University of Beirut
nysmith@aub.edu.lb

ABSTRACT
We extend our earlier work on quantifying the level of com-
pleteness of achievement goals in BDI agents [8], to encom-
pass maintenance goals. We both characterize what it means
for a maintenance goal to be partially complete in terms of
its relevancy, and sketch an efficient computational mech-
anism for an agent to compute dynamic estimates of the
progress of its maintenance goals. We also discuss the rela-
tionship between our computation of progress estimate with
an earlier theoretical perspective on BDI goal completeness.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents.

General Terms
Design, Theory

Keywords
Reasoning in agent-based systems; Maintenance Goals; Belief-
Desire-Intention theories and models; Goal completeness

1. INTRODUCTION
Maintenance goals [1, 3, 2, 4] are recognized as an impor-

tant concept in agent systems based on the Belief-Desire-
Intention (BDI) model [5]. A maintenance goal has a par-
ticular state of the world that the agent seeks to maintain,
i.e., the state must be true, and kept this way indefinitely.
For example, an autonomous Mars rover should ensure that
wherever it travels, it always maintains sufficient battery
change for the journey back to its base. It can treat a main-
tenance goal reactively (by reattaining the maintain condi-
tion if it becomes false) or proactively (by taking actions
to prevent the condition from becoming false). Since main-
tenance goals are not dropped once any violation has been
restored, they must be treated differently to achievement
goals, which are usually dropped once the stated condition
has been achieved [6].

The importance of reasoning about partially-complete goals
was recognized by van Riemsdijk and Yorke-Smith (‘vRYS’)

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

[9], who developed a theoretical framework in the case of
achievement goals. Subsequently, in a separate line of work,
Thangarajah et al. (‘Tetal’) [8] looked at the practical issue
of computing partial completeness estimates for an achieve-
ment goal. Neither considered maintenance goals.

By its nature, a maintenance goal is intended to persist
in order to uphold its maintain condition—until the goal
is no longer relevant. In this sense, a maintenance goal is
never ‘complete’ in the way an achievement goal can be.
We introduce two notions of ‘completeness’ for maintenance
goals in BDI-style agents. First, permanently complete (PC)
refers to a goal no longer being relevant, and hence the agent
no longer needing to uphold the goal’s maintain condition.
By contrast, recovery complete (RC) refers to the agent’s
progress in restoring the maintain condition after it has been
violated. To our knowledge, this work is the first study of
the concept of progress of maintenance goals in BDI agents.

2. SCENARIO AND MECHANISM
We illustrate the role of maintenance goals by extend-

ing the Mars rover scenario as given by Thangarajah et al.
[8] to include maintenance goals. This autonomous vehi-
cle has been given the task of exploring a particular region
(red1), which involves investigating a particular rock rock1
and moving to a canyon, which it will survey.

The rover’s goals include the maintenance goal M1, which
must maintain the battery charge at 30% or more. To
do this, the rover may adopt either the the recovery goal
PauseAndRecharge—the rover stops movement and science
and waits until solar cells have recharged battery sufficiently—
or the preventative goal ConserveEnergy—for which the rover
might move more slowly, or deprioritize some science targets
in order to save power. M1 also contains the success condi-
tion S(M1) that explored(rock1) ∧ explored(canyon), which
means that M1 will be considered irrelevant (and hence com-
plete) if both of these conditions are true.

At the start of mission execution, M1 is 100% relevant, i.e.,
0% PC. Part-way through execution of exploration of rock1,
the maintain condition is violated, and so the rover therefore
adopts the achievement goal PauseAndRecharge to restore
it. M1 is 0% RC at this point. Once PauseAndRecharge
succeeds, M1 is 100% RC again.

Later, once rock1 has been explored, the first part of M1’s
success condition is true, and the rover computes that M1 is
now 50% relevant, i.e., 50% PC. This is clearly an estimate,
since there could be more science targets in explored(canyon)
than in explored(rock1), or it could take more effort to study
one target in the latter than in the former. Given that M1 is

1645



still 50% relevant, the rover estimates there are 50% of tar-
gets in red1 remaining, and it notes that it already has had
to recharge once. Hence, the rover may decide to choose to
travel at lower speed than normal, because it predicts that
will soon have to pause and charge again.

During exploration of the canyon, the rover finds four pri-
ority science targets, and so the success condition for M1

is expanded to explored(rock1) ∧ explored(target1) ∧ . . . ∧
explored(target4). Note that such refinement of terms in the
success condition means that the relevance (PC) estimates
of M1 are non-monotonic. Before any of the canyon targets
are investigated, the relevance of M1 has fallen from 50% to
20% (i.e., rock1 done but four canyon targets remain). As
the rover proceeds, M1’s progress estimate updates further.

A further extension to this scenario is to consider the re-
sources required to perform the battery recharging process.
Suppose that a certain amount of memory is required by
the recharge process, and so it is necessary that a certain
amount of memory be available whenever M1 is violated.
One possibility would be to ensure that the first step of the
recovery goal PauseAndRecharge includes pausing all other
goals, in order to ensure that the memory is available. An-
other possibility, which enables more rational and proactive
resource management, is to introduce a second maintenance
goal M2, whose task is to ensure that sufficient memory
is available. We hence observe that the methods used for
resource-based estimation of the completeness of achieve-
ment goals can also be used to predict potential violations
of resource-related maintenance goals.

To compute these dynamic progress estimates for a main-
tenance goal M , we leverage the mechanisms of Tetal [8].
First, the percentage PC of M at time t is estimated based
on estimating the percentage of effects in S(M) that are true
at time t. Second, when M is not (100%) PC, then it is not
(100%) RC, and hence there is a recovery goal R or preven-
tative goal P . Since R and P are necessarily achievement
goals [6], we can leverage the computation mechanism for
completeness for R or P , either estimating bounds on the
percentage RC of M based on lower- and upper-bound esti-
mates of resource consumption of R/P , or based on lower-
and upper-bound estimates of the effects of R/P .

We have implemented these mechanisms and the above
scenario in the abstract agent language CAN [7], and have
used it to experiment with the interaction between resource
estimates and maintenance goals. The implementation con-
sists of around 2,000 lines of Prolog, and is available from
goanna.cs.rmit.edu.au/~jah/orpheus.

3. THEORETICAL PERSPECTIVE
We now reconcile the computational approach of Tetal

with the theoretical framework of vRYS. Our motivation is
to ask whether the former can provide the computational
mechanism missing in the latter. The key question is what
defines (full) completeness of a goal g. vRYS suppose each
goal has a progress metric, denoted as a set A with a par-
tial order ≤ (usually total w.r.t. amin), and further a min-
imum value, amin ∈ A, the completion value, that should
be reached in order to consider the goal to have been com-
pletely satisfied. By contrast, Tetal hold the classical view
that completeness of g is defined by its success condition.

Since vRYS do not use the logical conjunction of effects in
S(g) to define completeness, they require each goal to have
a progress appraisal function ψ from S, the set of states, to

A. In addition, they posit an accompanying upper bound
function, which we denote ψU , that takes into account the
meansm that“will be used for pursuing the goal”: ψU “yields
(an estimation of) the maximum value in A reachable” from
a state s ∈ S” with means m. They also mention but do not
develop a lower bound function which we denote ψL. vRYS
recognize that all three functions may be estimates, which
concurs with the principles of Tetal’s mechanism.

Tetal explicitly compute lower- and upper-bounds, an ap-
proach we have followed in this work. These bounds can
be seen as equivalent to vRYS’s ψ (or ψL) and ψU for the
progress metric. While vRYS consider only a single such
“metric”, Tetal compute multiple metrics—multiple resources
and multiple effects. However, vRYS note “Besides the met-
ric chosen as the progress metric, the agent (or designer)
might have interest in others: e.g., progress may be defined
in terms of tracks searched, but time taken could be an ad-
ditional relevant factor in the team’s decisions” [9].

We conclude that the general philosophy of the two lines
of work seem compatible. The computation mechanisms of
Tetal of lower- and upper-bounds can be seen as computing
the ψL and ψU bounds of the progress metric of vRYS. That
is, if one metric of those computed by Tetal is designated as
the progress metrics for a goal in vRYS’s framework, then
Tetal provide the computational mechanism that is lacking
in vRYS’s framework.

Acknowledgements. We thank the reviewers for their
comments. JT acknowledges the ARC Discovery grant num-
ber DP1094627. NYS thanks the Operations group at the
Cambridge Judge Business School and the fellowship at St
Edmund’s College, Cambridge.

REFERENCES
[1] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf.

Goal representation for BDI agent systems. In Proc.
ProMAS’04, pages 44–65, 2004.

[2] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Goal types in agent programming. In Proc. ECAI’06,
pages 220–224, 2006.

[3] S. Duff, J. Harland, and J. Thangarajah. On
proactivity and maintenance goals. In Proc.
AAMAS’06, pages 1033–1040, 2006.

[4] S. Duff, J. Thangarajah, and J. Harland. Maintenance
goals in intelligent agents. Computational Intelligence,
30(1):71–114, 2014.

[5] M. Georgeff and A. Rao. Rational software agents:
From theory to practice. In Agent Technology, pages
139–160. Springer, New York, 1998.

[6] J. Harland, D. N. Morley, J. Thangarajah, and
N. Yorke-Smith. An operational semantics for the goal
life-cycle in BDI agents. JAAMAS, 28(4):682–719, 2014.

[7] S. Sardiña and L. Padgham. A BDI agent programming
language with failure handling, declarative goals, and
planning. JAAMAS, 23(1):18–70, 2011.

[8] J. Thangarajah, J. Harland, D. N. Morley, and
N. Yorke-Smith. Quantifying the completeness of goals
in BDI agents. In Proc. ECAI’14, pages 879–884, 2014.

[9] M. B. van Riemsdijk and N. Yorke-Smith. Towards
reasoning with partial goal satisfaction in intelligent
agents. In Proc. ProMAS’10, pages 41–59, 2010.

1646

goanna.cs.rmit.edu.au/~jah/orpheus

	Introduction
	Scenario and Mechanism
	Theoretical Perspective



