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ABSTRACT

Difference evaluations can effectively shape agent feedback
in multiagent learning systems, and have provided excel-
lent results in a variety of domains, including air traffic
control and distributed sensor network control. In addition
to empirical evidence, there is theoretical evidence demon-
strating how difference evaluations help shape agent utili-
ties/objectives in order to promote system-wide coordina-
tion. However, analytically calculating difference evaluation
functions requires knowledge of the states of all agents in
the system, as well as the mathematical form of the system
evaluation function. In practice, neither of these elements
are typically available. In this work, we demonstrate that
each agent can locally approximate difference evaluations
using only local state and action information, as well as a
broadcast value (rather than the mathematical form) of the
system evaluation function, allowing for difference evalua-
tions to be implemented in multiagent systems where global
state information is unavailable. This approximation tech-
nique is tested in a multiagent congestion problem, and the
results demonstrate that approximate difference evaluations
perform similarly to analytically computed difference evalu-
ations, while using far less system information.
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1. INTRODUCTION

Difference evaluation functions have been shown to sig-
nificantly improve learning in multiagent systems, and have
produced excellent results in many multiagent domains [1].
Difference evaluations are defined as [1]:
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Di(2) = G(2) - G(emi + 1) (1)

where G(z) is the system evaluation function, z is the system
state vector, z_; is the system state vector without the con-
tributions of agent i, and ¢; is a counterfactual term which
replaces agent i. Intuitively, the difference evaluation func-
tion determines the impact of agent 7 on the overall system
evaluation function, by removing all elements of the system
evaluation function not related to agent i. Difference eval-
uations have two key theoretical properties which lead to
their effectiveness. First, they are aligned with the system
objective function, meaning that any agent ¢ which acts to
increase the value of D;(z) also increases the value of G(z).
Second, as the last term in D;(z) removes all elements of
G(z) not related to agent 4, difference evaluations are sen-
sitive to the actions of a particular agent, resulting in a
favorable signal to noise ratio allowing for agents to easily
discern the effects of their actions on system performance.

Although difference evaluations provide excellent learned
performance, they are often difficult to compute in practice.
Computing the second term in Equation 1 requires the global
state of the system as well as the mathematical form of G(z).
In practice, this information is typically unavailable in mul-
tiagent systems. In order to allow for the implementation
of difference evaluations, they must be approximated when
global knowledge is unavailable. Difference evaluations have
been approximated in past work [?], but this approach re-
lied on expert domain knowledge and global knowledge of
the system state, and thus did not address the key motivat-
ing factors for approximating difference evaluations.

2. DOMAIN AND APPROACH

In order to approximate difference evaluations, we assume
that each agent has access to its local state and action,
as well as a broadcast value of G(z). This information is
typically available in a multiagent system, as some type
of system performance metric is generally used to provide
feedback to learning agents. At each time step, each agent
records its local state s; and action a; (combined in vector
2;), as well as the broadcast value of the system evaluation
function G(z). Each agent maintains a local approxima-
tion G’i(zi), which is updated with the {s;,a;, G(z)} tuple
according to:

Gi(z) «+ (1 — aA)C;’i(zi) + aaG(z) (2)
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Figure 1: Bar problem results. When approximat-
ing D;(a), the learning rate is slower than when using
D;(a), but the converged performance is nearly iden-
tical. D;(a) performs almost 10 times better than the
overall system evaluation function G(a).

where a4 is the update rate of the approximator. The ap-
proximate difference evaluation function is defined as:

Di(2) = G(z) - Gi(ci) ®3)
where ¢; is the counterfactual state and action used to re-
place agent ¢. This approximation requires only local state
and action information, as well as a broadcast value of G(z).
This approximation approach is tested in the multi-night
modification of the El Farol bar problem [2]. A set of agents
must each choose a night of the week to go to a bar, where
there is an optimal capacity for each night. Agents are
trained using multiagent reinforcement learning, and agent
rewards are assigned with either G(z), D;(z), or D;(z).

3. RESULTS

The bar problem was initialized as follows. There are
1000 agents and 10 nights, where each night has a capacity
of 10. The update rate aa for the approximation of the
system evaluation function is set to 0.1. The learning rate «
for the @Q-table is set to 0.1. Each experimental run lasted
for 500,000 timesteps, and there were 100 statistical runs
conducted. The experimental results are shown in Figure 1,
and the reported error bars are error in the mean o/N2.

As seen in Figure 1, approximating the difference evalua-
tion function results in almost 10 times better performance
than using the system evaluation function G(a). When ap-
proximating D;(a), the solution takes much longer to con-
verge than when analytically computing D;(a). However,
converged performance of actual and estimated difference
evaluation functions is nearly identical.

It is of note that although the analytical calculation of
D;(a) results in faster learning, it is often impossible to an-
alytically compute the system evaluation function in mul-
tiagent learning systems. Often, the mathematical form of
G(a) is unknown, meaning D;(a) cannot be directly com-
puted. However, agents can still use local knowledge to
approximate G(a) and thus estimate difference evaluation
functions, which drastically improve system performance.

So, even though the analytical computation of D;(a) pro-
vides faster learning than when approximating D;(a), it is
not always possible to perform this analytical computation.
The key result is that agents with only local knowledge
converge to the same performance (although in more com-
putational time) as agents with global knowledge about the
system. In cases where global knowledge is available, it is
often beneficial to use this knowledge while shaping agent
feedback signals. However, in many cases, agents’ knowledge
is often limited to what they can observe, and constructing
meaningful agent feedback based on this limited information
is critical for ensuring high system performance. These re-
sults demonstrate that in some cases, approximate difference
evaluations result in no significant loss in converged system
performance when only local knowledge is available.

4. DISCUSSION

Difference evaluations have been empirically shown to im-
prove coordination in multiagent systems in a many do-
mains, including air traffic control, rover control, sensor
network control, and congestion games. Further, difference
evaluations are aligned with the system evaluation function,
and are typically low in noise. However, a key limitation of
difference evaluations is the requirement for global knowl-
edge about the state of the system as well as the system
evaluation function. Thus, directly implementing difference
rewards in generic multiagent domains is often a difficult
task.

In this work, we demonstrate that difference evaluations
may be approximated by each agent using only local state
and action information. The only assumption is that the
value of the system evaluation function G(s, a) can be broad-
cast to each agent, which in most cases is a reasonable as-
sumption. We present an approach for approximating differ-
ence evaluation functions in order to provide agent-specific
feedback to improve coordination, and demonstrate in two
domains the effectiveness and scalability of our approach.

The key contribution of this work is presenting a novel
method to implement difference evaluation functions in any
generic multiagent system, without requiring global knowl-
edge about the state of the system or the mathematical form
of the system evaluation function. Further, this approxi-
mation approach significantly outperforms methods which
use the overall system evaluation function. As each agent
maintains a local approximation of the system evaluation
function, increases in computational cost are insignificant,
because the computation is parallelized across each agent in
the system.
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