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ABSTRACT
Bounded rationality aims to understand the effects of how limited
rationality affects decision-making. The traditional models in game
theory and multiagent system research, such as finite automata or
unrestricted Turing machine, fall short of capturing how intelli-
gent agents make decision in realistic applications. To address this
problem, we model bounded rational agents as restricted Turing
machines: restrictions on running time and on storage space. We
then study our model in two-person repeated games. In the case
where the running time of Turing machines is restricted, we show
that computing the best response of a given strategy is much harder
than the strategy itself. In the case where the storage space of the
Turing machines is restricted, we show the best response of a space
restricted strategy can not be implemented by machines within the
same size (up to a constant factor). Finally, we study how these
restrictions affect the set of Nash equilibria in infinitely repeated
games. We show restricting the agent’s computational resources
will give rise to new Nash equilibria.
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1. INTRODUCTION
In this paper, we studied a realistic model of bounded rationality,

where agents are confined to use time-restricted or space-restricted
Turing machines to implement their strategies. We first use com-
putational complexity models to rigorously define time and space
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restrictions. We then study the important game theoretical question
of how to compute and implement the best response of a restricted
Turing machine, and how such restrictions affect the set of Nash
equilibria.

2. PRELIMINARIES
For ease of exposition, we consider the simplest non-trivial case:

repeated game [2, 3] where the stage game is the well-known Pris-
oner’s Dilemma(described below). Our results and approach apply
to general 2 × 2 games. In the remainder of this paper, G denotes
only the Prisoner’s Dilemma.

1,1 0,5
5,0 3,3

We call the two actions of a player cooperate and defect. Map
cooperate to 1 and defect to 0, a strategy is then equivalent to a
function: {0, 1}∗ → {0, 1}.

And a deterministically strategy s can be viewed as a function
: {0, 1}∗ → {0, 1}. Define the language of s by {x | s(x) = 1}.
That is, the set of histories that plays cooperate. Then we can define
a strategy’s complexity by its language’s complexity class.

A strategy s is a C-strategy if its language is within complexity
class C.

3. TIME-RESTRICTED STRATEGIES
In this section, we study how many time resources are needed to

find or implement a best response of a time-restricted strategy.
Here we restrict the running time of a strategy explicitly. Let

f be a function and M be a TM, define Mf as a TM such that it
runs M on input x of size n for f(n) steps, if it halts, it returns
M ’s output; otherwise it rejects. Then for polynomial f , Mf will
always be a P-time strategy.

Then we define the decision problem BRf = {〈M, 1n, k〉} such
that there exists a strategy that can gain at least utility k against the
strategy Mf in the game Gn.

We can prove that with oracle accesses to the decision problem
BRf and M , we can construct the strategy itself in polynomial
time. So it suffices to study the complexity of BRf .

With a reduction from 3SAT, we can prove the following result:

THEOREM 1. There exists a polynomial f such that BRf is
NP-complete. And for every polynomial f , BRf is in NP.

Theorem 1 suggests that, in order to compute the best response
for a general P-strategy, one must be within the class of PNP!

Then it is natural to ask the same question for a PNP-strategy,
define Mf,O and BRf,O similarly as above for TM M with oracle
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access to an language O. Since 3SAT is NP-complete, it suffices
to study the complexity of BRf,3SAT .

With a similar reduction from
∑

2 SAT , we can prove an anal-
ogous result for PNP-strategy:

THEOREM 2. There exists a polynomial f such that BRf,SAT

is
∑P

2 -complete. And for every polynomial f , BRf,SAT is in∑P
2 .

Generalize the above theorem, we have the following corollary.

COROLLARY 1. There is a polynomial f such that BRf,
∑

i SAT

is
∑P

i+1-complete. For all polynomial f , BRf,
∑

i SAT is in
∑P

i+1.

Recall that PH =
⋃

i

∑P
i for i ∈ N and i ≥ 1.

Since BRf,
∑

i SAT is the decisional problem of computing best

response against strategy in P
∑P

i , which implies finding the best
response for strategy in PH is also in PH. In other words, PH is
closed up to best response.

4. SPACE RESTRICTED STRATEGY
In this section, we study the space restricted strategies.
However, the strategies defined in the previous section are able

to sweep through the history to make a decision, which should be
prohibited when the space resources are limited.

So we propose the following alternative models. Our idea is to
model space-restricted strategy as a function that maps the last ac-
tion of the opponent and the current information bits, to the new
information bits and the action of this stage.

So a strategy on N information bits is a function f : {0, 1}N+1

→ {0, 1}N+1. We also define the size(space needed) of a strategy
to be the number of storage bits needed to evaluate the function f
plus the number of bits needed to specify the function f . Note that
as we need bits to store the input to f in order to evaluate it, the
information bits are already counted. In the first stage, we assume
the information bits and the opponent’s action to be 0N and 0.

Now we move to the implementation details of the function f .
We consider two cases.

In the first case, we require f to be efficiently computable. This
leads to the circuit strategy model. A circuit strategy of N bits is a
circuit which has N + 1 input and output gates.

In the second case, we drop the computation requirement and
consider the inplace strategy model. An inplace strategy of N bits
is a TM which runs on input of N + 1 bits, always halts, and uses
only N + 1 space, returns the content of tape as output when it
halts. For an arbitrary TM M , we define MI as a TM such that it
runs M on input x of size n restricted to n spaces. If M tries to
access more than n spaces or doesn’t halt after Qn2n steps, it is
forced to halt. MI returns the content on the tape when it halts. Q
is the number of the states in M .

In order to study the complexity of finding the best response
against them, we define the corresponding decision problem BRCT
= {〈C, n, k〉} and BRIP = {〈M, 1N , n, k〉} such that there ex-
ists a strategy can yield at least utility k against circuit strategy
C(inplace strategy MI with N information bits) in the game Gn.

We have the following result:

THEOREM 3. BRCT and BRIP are PSPACE-complete.

Then, we study the space complexity for implementing a best
response of a particular space-restricted strategy. It is equivalent
to ask what is the smallest possible size(recall the size of a space-
restricted strategy is the space resources it needs.) of its best re-
sponses. From the previous result it is clear that it can be done in

polynomial size, then a natural question is whether it can be done
in linear space?

We have the following (surprising) theorem which shows it is
impossible at least for inplace strategy under reasonable complexity
conjecture.

THEOREM 4. Unless DSPACE(n) = NSPACE(n), there does
not exist a constant T such that any inplace strategy of size S in su-
per game Gn have a best response inplace strategy whose size is
smaller than T · (S + log n).

5. NASH EQUILIBRIA VIA RESTRICTED
TURING MACHINE

In this section, we study the case when both players are restricted
TMs and this is a common knowledge. In this setting, it will defi-
nitely affect how the game plays, and thus changes the set of possi-
ble Nash equilibria.

Our focus of this section is on infinitely repeated game. For sim-
plicity of analysis, the utility notion is the standard limit of mean.

We have the following natural definition for the potential new
NEs for a complexity class C:

DEFINITION 1. A C-NE of an infinitely super game G∗ is a
pair of strategy (s1, s2) such that s1 and s2 are C-strategies, and
none of them can profitably deviate to another C-strategy.

Our goal is now to investigate how such restriction affects the
set of NE? It is quite obvious this restriction will disqualify some
old NEs, but it is surprising that it will also produce some new
interesting NEs. Indeed, we have the following two lemmas, one
for TM-NE and the other for Polynomial Time-NE (P-NE). This
generalize the results from Knoblauch [1].

LEMMA 1. There exists a TM-NE that is not a NE, and a NE
which is not a TM-NE.

LEMMA 2. There exists a P-NE that is not a TM-NE, and a
TM-NE which is not a P-NE.

Moreover, we have some stronger results summarized in the fol-
lowing two theorems:

We say a f : N → N is an increasing unbounded positive func-
tion, if f is an increasing function such that limn→∞ f(n) = ∞
and f(0) > 0. Let f, g be such two functions in the following two
theorems.

THEOREM 5. If f(n) log f(n) is o(g(n)) and f(n) is Ω(n logn).
There exists a DTIME(f(n))-NE which is not a DTIME(g(n))-
NE, and a DTIME(g(n))-NE which is not a DTIME(f(n))-NE.

THEOREM 6. If f(n) is o(g(n)) and f(n) is Ω(logn). There
exists a DSPACE(f(n))-NE which is not a DSPACE(g(n))-NE,
and a DSPACE(g(n))-NE which is not a DSPACE(f(n))-NE.
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