
Trajectory Sampling Value Iteration: Improved Dyna
Search for MDPs

(Extended Abstract)
Yicheng Zhou

Soochow University
zyc9012@163.com

Quan Liu
Soochow University

quanliu@suda.edu.cn
Qiming Fu

Suzhou University of Science
and Technology

fqm_1@126.com

Zongzhang Zhang
Soochow University

zzzhang@suda.edu.cn

ABSTRACT
Traditional online learning algorithms often suffer from the
lack of convergence rate and accuracy. The Dyna-2 frame-
work, combining learning with searching methods, provides
a way of alleviating the problem. The main idea behind it is
to execute a simulation-based search that helps the learning
process to select better actions. The search process relies on
a simulated model of the environment that is built during
learning. However, the model is not fully used in Dyna-2. To
provide better solution quality, our paper improves the algo-
rithm by applying value iteration, a model-based dynamic
programming algorithm, to the search process with a trajec-
tory sampling approach (DynaTSVI). Trajectory sampling
is used to reduce high time complexity caused by dynam-
ic programming. Experimentally, we use the Dyna Maze
and the Windy Grid World tasks to analyze the proposed
method in several aspects. Our results show that DynaTSVI
outperforms Dyna-2 in both deterministic and stochastic en-
vironments in terms of convergence rate and accuracy.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory, Dynamic program-
ming

General Terms
Algorithms, Experimentation

Keywords
Reinforcement learning, Dynamic programming, Trajectory
sampling, Model building

1. INTRODUCTION
The Dyna structure [3] is a reinforcement learning tech-

nique that combines learning with planning. It builds a

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

model by memorizing history samples during learning and
uses Q-learning to update the value function. Then in plan-
ning, the value function is updated again using randomly
chosen samples from history. The planning process reuses
the samples in order to speed up the convergence.

Recently, a newly proposed Dyna structure, Dyna-2 [2],
has achieved success in the game Go. The algorithm sepa-
rates the learning and planning into individual procedures.
For learning, it uses the TD(λ) algorithm to get samples
from the real environment and improve the policy. For plan-
ning, it uses the proposed TD search algorithm to exploit
the experiences from the learning process.

To separately represent policies produced from the two
processes, Dyna-2 maintains a long-term value function Q
and a short-term value function Q̄. Here, Q represents the
approximated policy of the learning problem, and Q̄, act-
ing as an action selector for the learning process, represents
the local knowledge of the sub-MDP problem staring from
the current state. Compared with Monte Carlo tree search
(MCTS) [1] algorithms, TD search provides better general-
ization and leads to better search quality.

The search process is based on a simulated model built
during learning. However, a drawback of Dyna-2 is that,
given the simulated model, the search process simply inter-
acts with the model rather than use the actual state tran-
sition probabilities and reward distributions inside it. As a
result, the search process may not be so efficient as it can
be. Potential improvements still exist. Therefore, we pro-
pose the DynaTSVI algorithm that improves Dyna-2 on the
search process.

2. NEW DYNA SEARCH
We introduce value iteration, a dynamic programming al-

gorithm, to the search process. Value iteration is model-
based, and its major advantage is the ability to produce
precise solutions. In this way, the model built in Dyna-2 can
be better used. However, directly using standard dynamic
programming confronts the following two issues: Firstly, dy-
namic programming works on complete model, but during
searching, the simulated model is refined gradually. Thus,
the early models do not satisfy the requirement. Secondly,
even though the model is complete, dynamic programming
requires full backups on the entire state-action space, which

1685



Algorithm 1 Trajectory sampling value iteration

1: Initialize Q arbitrarily, e.g., Q← 0
2: repeat for each episode
3: x← x0

4: u← ε-greedy(x;Q)
5: repeat for each step of episode
6: Execute u, obtain r and x′

7: Q(x, u)←
∑
x̄∈X

fu
xx̄

[
ρuxx̄ + γmax

ū∈U
Q(x̄, ū)

]
8: u′ ← ε-greedy(x′;Q)
9: x← x′, u← u′

10: until x′ is terminal state
11: until Q is satisfactory

leads to much higher time complexity compared with TD
methods. When the state-action space is large, dynamic
programming with full backups is not feasible.

To overcome the problems, we apply a trajectory sampling
approach to the value iteration algorithm, as shown in Algo-
rithm 1, where fu

xx′ is the state transition function and ρuxx′

is the reward function. Rather than updating the values of
all states, the idea of our approach is to update the values
only on the states that have been visited during the episode
(i.e. trajectory). In this way, the high time complexity of
dynamic programming can be reduced. Compared with TD
algorithms, given a model, this approach may provide bet-
ter approximations to the true results without the loss of
efficiency.

We construct the simulated model by maintaining a sam-
ple list L(x, u) for each state-action pair. When a sample
(x, u, r, x′) is obtained from the learning process, the expe-
rience is added to the corresponding state-action pair, i.e.,
L(x, u) ← r, x′. When the search process samples from the
model, a randomly chosen experience (r, x′) from L(x, u) is
given, r, x′ ← random(L(x, u)). The distributions of the
samples in the lists implicitly represent the state transition
probabilities. The model functions are computed by:

fu
xx′ =

N [L(x, u)|L(x, u) = x′]

N [L(x, u)]
, ρuxx′ = r,

where N is a function that gets the number of elements in
the list under given conditions.

We apply the trajectory sampling approach of value it-
eration to the search process and propose the DynaTSVI
algorithm. Before selecting an action, the agent executes
several searches (n times) on the current state. When search
is done, the short-term value function Q̄ is able to evaluate
the current state relatively accurately. Then, the agent uses
the short-term value function to select an action ut follow-
ing an ε-greedy policy. After obtaining a sample from the
environment, the TD(λ) algorithm is applied to update the
long-term value function Q. At the same time, the agent
updates the model using the new experience.

Note that, with the employment of dynamic program-
ming, both value functions are represented in tabular form.
Therefore, DynaTSVI works on environments with discrete
state spaces.

3. EXPERIMENTS
We evaluate DynaTSVI with two classic reinforcement

learning problems: the Dyna Maze and the Windy Grid

0 10 20 30 40 50
0

100

200

300

400

500

Training episodes

S
te

ps

 

 

DynaTSVI
Dyna−2

(a) DynaMaze

0 10 20 30 40 50
0

100

200

300

400

500

Training episodes

S
te

ps

 

 

DynaTSVI
Dyna−2

(b) Windy Grid World

Figure 1: Comparisons of convergence rate.

World. Specifically, the former experiment is in a deter-
ministic environment and the latter is in a stochastic one.
Our goal is to compare the convergence rate of the two al-
gorithms.

In both experiments, the maximal episode step is set as
2000. An episode ends when the agent reaches the goal or
the number of steps taken has exceeded 2000. The search
count n is set as 10 by default. Other parameter settings
are: α = 0.1, γ = 0.95 and ε = 0.1.

The convergence curves of both experiments are shown in
Figure 1. It can be observed that on Dyna Maze, DynaTSVI
converges faster than Dyna-2. The former converges around
25 episodes of training, while the latter takes around 35, re-
vealing the efficiency on execution of DynaTSVI. On Windy
Grid World, DynaTSVI converges 5 steps earlier than that
of Dyna-2 in average. In addition, after several runs on both
algorithms, there is a 98% chance that DynaTSVI can con-
verge to the optimal policy, while on Dyna-2, the percentage
drops to 83%. This tells that DynaTSVI has higher conver-
gence accuracy.

4. CONCLUSION
In this paper we show that the search process of Dyna-2

can be improved by value iteration, using a trajectory sam-
pling approach. It is adapted to both deterministic and s-
tochastic environments. Experiments on the Dyna Maze and
the Windy Grid Word tasks have indicated that DynaTSVI
has higher convergence rate and accuracy than Dyna-2.

Future works on this topic may include modeling environ-
ments with continuous state space. Thus, it is possible to
apply our approach to more complex and realistic problems.

Acknowledgments
This paper is supported by National Natural Science Foun-
dation of China (61272005, 61472262) and Natural Science
Foundation of Jiangsu (BK2012616).

5. REFERENCES
[1] R. Coulom. Efficient selectivity and backup operators

in monte-carlo tree search. In Computers and Games,
pages 72–83. Springer, 2007.

[2] D. Silver, R. S. Sutton, and M. Müller.
Temporal-difference search in computer go. Machine
Learning, 87(2):183–219, 2012.

[3] R. S. Sutton. Dyna, an integrated architecture for
learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163, 1991.

1686




