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ABSTRACT
In any single agent system, exploration is a critical compo-
nent of learning. It ensures that all possible actions receive
some degree of attention, allowing an agent to converge to
good policies. The same concept has been adopted by mul-
tiagent learning systems. However, there is a fundamen-
tally different dynamic in multiagent learning: each agent
operates in a non-stationary environment, as a direct re-
sult of the evolving policies of other agents in the system.
As such, exploratory actions taken by agents bias the poli-
cies of other agents, forcing them to perform optimally in
the presence of agent exploration. CLEAN rewards address
this issue by privatizing exploration (agents take their best
action, but internally compute rewards for counterfactual
actions). However, CLEAN rewards require each agent to
know the mathematical form of the system evaluation func-
tion, which is typically unavailable to agents. In this paper,
we present an algorithm to approximate CLEAN rewards,
eliminating exploratory action noise without the need for
expert system knowledge. Results in both coordination and
congestion domains demonstrate the approximated CLEAN
rewards obtain up to 95% of the performance of directly
computed CLEAN rewards, without the need for expert do-
main knowledge while utilizing 99% less system information.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence —Multiagent systems

Keywords
Multiagent learning; CLEAN Rewards

1. INTRODUCTION
As agents in a multiagent system learn policies, they fre-

quently explore by taking random actions in order to de-
termine if these actions improve system performance. Such
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exploration is critical to finding optimal agent policies. How-
ever, learning agents cannot typically differentiate between
environmental dynamics and noise caused by the exploratory
actions of other agents. This leads to agents learning poli-
cies which account for other agents taking random actions,
rather than policies which perform well when all agents are
following their target, or greedy, policies. Often, system
performance can decrease once agents stop exploration, as
learned policies depend on the random exploration of other
agents [10]. CLEAN rewards address this problem by priva-
tizing agent exploration, removing exploratory action noise
from the feedback signals of learning agents.

CLEAN rewards effectively remove exploratory action noise,
resulting in superior system performance as compared to
more common reward shaping techniques such as difference
rewards. When implementing CLEAN rewards, each agent
in the system follows their target policy by greedily se-
lecting actions with no exploration. Then, each agent pri-
vately computed the system reward if they had taken an
exploratory action while all other agents in the system fol-
lowed their target policies. In this manner, exploratory ac-
tion noise caused by other agents is removed from an agent’s
feedback signal, because the exploration for each agent is
privatized. This allows for agents to effectively determine if
actions are good or not, without the noise caused by other
agents in the system taking exploratory actions. Further,
agents learn policies which do not depend on other agents
in the system exploring, resulting in superior system perfor-
mance when the learned policies are actually implemented.

Computing CLEAN rewards requires the mathematical
form of the system evaluation function which the agents are
optimizing, as well as information about the global joint
state and joint action of all agents. This information is rarely
known to agents in a multiagent system. Thus, although
CLEAN rewards address the problem of exploratory action
noise, they introduce a new problem of requiring the math-
ematical form of the system objective function. In order to
obtain the benefits of CLEAN rewards while in a realistic
setting, a technique to compute CLEAN rewards without
the mathematical form of the system evaluation function or
global state and action knowledge is needed.

In this paper, we present a generic method for approxi-
mating CLEAN rewards using only local state and action
knowledge as well as a broadcast value of the system eval-
uation function (rather than the mathematical form of the
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function itself). We demonstrate how this approximation
algorithm is implemented in a congestion and a coordina-
tion domain, both of which have extremely high coupling
between agents, resulting in high sensitivity to exploratory
action noise. Finally, we provide results demonstrating that
approximate CLEAN rewards results in better system per-
formance than difference evaluations, and attain up to 95%
of the performance of directly computing CLEAN rewards
while using 99% less system state and action information.

The specific contributions of this paper are to:

• present a novel algorithm for approximating CLEAN
rewards using information easily available to each agent.

• demonstrate empirically that these approximate CLEAN
rewards result in performance which is frequently com-
parable to, and in some cases outperforms, perfor-
mance attained using directly computed CLEAN re-
wards.

• demonstrate empirically that these approximate CLEAN
rewards provide better performance than rewards which
use much more information to compute.

• demonstrate empirically the scalability of these rewards,
in large multiagent systems containing up to 5000 agents.

The rest of the paper is organized as follows. Section 2
provides background material and related work. Section 3
details the proposed algorithm to approximate CLEAN re-
wards. Section 4 details the experimental domains used in
this work. Section 5 provides the experimental results. Fi-
nally, Section 6 discusses the results and concludes the pa-
per.

2. BACKGROUND
The following sections describe exploratory action noise,

CLEAN rewards, difference rewards, and various techniques
for approximating evaluation functions.

2.1 Exploratory Action Noise
In practice, agents learn by continuously taking actions

in an effort to learn the underlying rewards associated with
each action [17]. In order to allow for the expected val-
ues of different actions to be learned, exploration strate-
gies are implemented. Agents must balance taking the best
known action (exploitation) with taking actions which the
agent doesn’t know the value of (exploration). The way
these two concepts are balanced is known as the exploration-
exploitation dilemma [20]. A key problem associated with
exploration is that in multiagent systems, this exploration
may actually cause noise which leads to agents learning poli-
cies which are biased to expect some portion of agents taking
random actions.

We present an example to demonstrate the effects of ex-
ploratory action noise. Agents learn in the Gaussian Squeeze
Domain (Section 4) for 1000 episodes. During learning,
agents select actions using ε-greedy selection, where ε = 0.1.
In this case, agents select their best known actions with
probability 0.9, and take random exploratory actions with
probability 0.1. After 1000 episodes, the agents policies are
fixed. We then test performance for varying levels of ex-
ploration, by replacing some agents’ policies with random
exploratory actions. System performance as a function of
the exploration level in the system is shown in Figure 1.
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Figure 1: Demonstration of exploratory action
noise: agents learned for 1000 episodes with ε-greedy
action selection where ε = 0.1. After learning, the
policies are fixed, and we test performance of the
learned policies under different amounts of explo-
ration (some agents’ policies are replaced with ran-
dom exploratory policies). Agents perform better
in the presence of exploration than they do with
no exploration. The highest system performance is
when the exploration rate is near ε, because agents
have learned policies which are biased to include this
level of random exploration by other agents in the
system.

One of the fundamental difficulties in multiagent systems
is the learning process where an agent may not only need
to learn how to act in its environment, but may also need
to account for the actions of the other learning agents [18].
As seen in Figure 1, exploratory action noise (when agents
take random actions with probability 0.1) causes agents to
learn policies which perform best when 10% of the agents
in the system are taking random actions. This result is not
intuitive, but occurs because agents have learned to depend
on the exploratory actions of other agents in the system [9].
In particular, this phenomenon is caused by the fact that
while learning in a system with agents taking exploratory ac-
tions, learning agents are unable to differentiate what parts
of their feedback signal are caused by true environmental
dynamics, and what parts are caused by exploratory action
noise caused by other agents. CLEAN rewards were devel-
oped to remove exploratory action noise by privatizing agent
exploration.

2.2 CLEAN Rewards
CLEAN rewards are defined as in [10]:

Ci = G(zT − zT,i + ci)−G(zT − zT,i + c′i) (1)

where Ci is the CLEAN reward given to agent i, G(z) is
the system evaluation function, zT is the target state which
occurs if all agents act greedily, zT,i is the actual action of
agent i, and ci and c′i are counterfactual actions of agent i
(i.e. alternative actions the agent may have taken instead
of following its target policy). CLEAN rewards replace the
contribution of the agent’s target action with two different
counterfactual actions. The agent then is provided with a
reward for the action ci, rather than zT,i.
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CLEAN rewards remove exploratory action noise of other
agents in the system, as all agents are actually following
their target policies. Exploration is done offline, by comput-
ing the reward an agent would have received for exploring.
CLEAN rewards have provided excellent empirical results in
a variety of domains, including the Gaussian squeeze domain
and defect combination problem [9, 10].

In order to compute them, CLEAN rewards require an
accurate model of the underlying system objective G(z), as
all exploration is done privately by each agent. In practice,
agents never have such information. Thus, although CLEAN
rewards can improve learning by removing exploratory ac-
tion noise, the requirement for an accurate model of G(z)
renders them unusable in most real world problems. In this
paper, we demonstrate that CLEAN rewards may be ap-
proximated such that the performance gains from removing
exploratory action noise are retained.

2.3 Difference Rewards
The agent specific Difference Reward Di(z) is defined as

[2]:

Di(z) = G(z)−G(z−i + ci) (2)

where G(z) is the global reward, and G(z−i + ci) is the
global reward when agent i is removed from the system and
replaced with some counterfactual agent ci. Intuitively, the
difference reward gives agent i’s specific impact on the over-
all system performance. Note that:

∂Di(z)

∂a(i)
=
∂G(z)

∂ai
(3)

where a(i) is agent i. Thus, an agent acting to increase the
value of the difference reward will also increase the global
reward. This property is termed alignment [2]. Further, be-
cause the second term in the difference reward removes all
portions of the system reward not related to agent i, noise
in the learning signal caused by the actions of other agents
is significantly reduced. This property is termed sensitiv-
ity. By being aligned with the global reward and sensitive
to an individual agent’s actions, difference rewards provide
extremely effective feedback to each agent, allowing them to
learn better policies than when using global rewards. Differ-
ence rewards have provided excellent empirical results in a
variety of domains, including sensor coordination and mobile
robot coordination [2, 19].

2.4 Approximation of Evaluation Functions
In cases where the system evaluation function is unknown,

it may be approximated in order to provide better feed-
back to learning agents [3, 4]. In the case of reinforcement
learning, reward functions are modeled; in the case of evolu-
tionary algorithms, fitness functions are modeled. In either
case, approximation of system evaluation functions allows
for agent-specific evaluation functions to be easily shaped
based on the overall system evaluation function. The follow-
ing sections describe different approaches for approximating
system evaluation functions, as well as previous work involv-
ing approximating difference evaluations.

Function approximation is commonly seen in reinforce-
ment learning applications, where the value function or sys-
tem state is approximated due to limited state information
[8, 11, 14]. Value functions are often approximated when

only partial state information is available, often using neu-
ral networks, maps, or some other type of function approx-
imator [1, 5, 16]. The conclusion that only partial state in-
formation is necessary to accurately model value functions
suggests these types of approaches can be successfully ex-
tended to multiagent learning problems, where only partial
state information is available to each agent.

Fitness functions have also been approximated for use in
evolutionary algorithms [6, 13]. This fitness approximation
is typically used because the number of fitness function eval-
uations dominates the optimization cost in evolutionary al-
gorithms, and fitness approximation typically decreases time
to convergence [12, 15]. However, these approaches can eas-
ily be extended to cases in which the mathematical form of
the fitness function is unknown, as in cases where the differ-
ence evaluation must be approximated. All of the methods
described above are single agent cases, but there has also
been research investigating approximating system evalua-
tion functions in multiagent learning settings.

As seen above, there is a wide range of research involv-
ing approximation in reinforcement learning and evolution-
ary algorithms. However, to date, there has been no re-
search involving approximating CLEAN rewards. This pa-
per presents the first approximation of CLEAN rewards,
demonstrating how they may be implemented in systems
when agents do not have global knowledge about the sys-
tem state or the system evaluation function.

3. CLEAN APPROXIMATION ALGORITHM
In this section, we introduce a general algorithm for ap-

proximating CLEAN rewards, and then demonstrate how
this algorithm is implemented in a stateless discrete action
domain. For the purpose of this analysis, we assume a co-
operative multiagent system aims to coordinate in order to
optimize some system level objective functionG(z), and that
the true value of G(zT ) is broadcast to each agent after a tar-
get joint action zT is selected based on each agent’s greedy
policy. Recall that the CLEAN reward is defined as:

Ci = G(zT − zT,i + ci)−G(zT − zT,i + c′i) (4)

As we assume that the value of G(zT ) is broadcast to each
agent, approximating the CLEAN reward requires approxi-
mating G(z) based on an agent’s local information. Given
the particular domain, a suitable function approximator is
chosen. For a stateless domain with discrete actions, this ap-
proximator may simply be a tabular function approximator.
For a stateful domain with continuous actions, this approxi-
mator may be a neural network. Note that these are not the
only possible options for these function approximators, but
are potential choices which match the domains they will be
used in.

The CLEAN approximation algorithm is presented in Al-
gorithm 1. At each time step, each agent takes a greedy
action, and G(zT ) is computed and broadcast to each agent,
where zT is the system state when each agent follows its tar-
get policy (greedily selects actions). Each agent i maintains

a private approximation for G(z), denoted as Ĝi(zi). This
is not a full approximation of the system evaluation func-
tion; rather, it is an approximation of G(z) as a function of
only one agent’s state and action. The states and actions of
other agents in the system are embedded into the function
approximation. Note that the only information available to
the agent includes the agent’s state, action choice, and the
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Initialize N agents
foreach Agent do

Initialize private function approximator Ĝi(zi)
end
foreach Learning Step do

foreach Agent do
collect local state information si
greedily select action ai using agent’s policy
zT,i = {si, ai}
zT = {zT,1, zT,2, ..., zT,n}

end
Calculate G(zT ) based on joint action
Broadcast G(zT ) to each agent
foreach Agent do

Update Ĝi(zi) using si, ai, and G(zT )

Ĉi = Ĝ(ci)− Ĝ(c′i)

Update policy/value table based on Ĉi

end

end

Algorithm 1: Approximation of CLEAN rewards. The
functional form of Ĝ depends on the specific domain. For
example, a stateless discrete action domain may use a
tabular function approximator, while a continuous state
and action domain may use a neural network.

broadcast value of G(zT ). Each agent’s approximation of
G(z) is therefore a mapping from that agent’s state and ac-
tion to the value of the system objective function. It is of
note that this approximation is initially very noisy, because
the state and action information used to approximate G(z)
is limited only to one agent’s state and action. However,
as learning progresses, the policies of each agent begin to
converge; as the policies of other agents converge, approx-
imating G(z) using only one agent’s state and action be-
comes less noisy, because the variance in the joint action for
a particular system-level state is reduced. Given an agent’s
approximation Ĝi(zi), the CLEAN reward can be estimated
as:

Ĉi(zi) = Ĝi(ci)− Ĉi(c
′
i) (5)

where Ĉi(zi) is agent i’s approximation of the CLEAN re-

ward. In order to evaluate Ĉi(ci), a default action c′i is
chosen for each agent at the beginning of each episode for
evaluation, and a random action ci is chosen to be evalu-
ated at each time step. In other words, the approximation
of the CLEAN reward determines the difference between the
system objective function for a random action ci and a de-
fault action c′i, assuming all other agents in the system are
following their target policies.

The implementation of this approximation approach in a
stateless discrete action domain is detailed in the following
sections. We demonstrate how a multiagent reinforcement
learning algorithm with an approximation of CLEAN re-
wards may be implemented in the stateless discrete action
domain. The general algorithm presented in Algorithm 1 can
be implemented in any domain where a broadcast value of
G(z) is available, whether the states or actions are continu-
ous or discrete. For simplicity in demonstrating the CLEAN
approximation algorithm, we choose to demonstrate this ap-
proximation approach in a stateless discrete action setting.

3.1 Stateless Discrete Action Domains

Initialize N agents
foreach Agent do

Initialize private value table Vi(a)

Initialize private function approximator Ĝi(ai)

end
foreach Learning Step do

foreach Agent do
greedily select action ai using agent’s policy

end
Calculate G(a) based on joint action
Broadcast G(a) to each agent
foreach Agent do

Ĝi(ai)← α1 · Ĝi(ai) + (1− α1) ·G(a)

Ĉi = Ĝi(ci)− Ĝi(c
′
i)

Vi(ci)← α2 · Vi(ci) + (1− α2) · Ĉi

end

end

Algorithm 2: Stateless Discrete-Action Multiagent Re-
inforcement Learning using Di(s, a) Approximation

We now demonstrate how Algorithm 1 may be imple-
mented for a multiagent reinforcement learning algorithm
in a stateless discrete action domain. The implementation
of Algorithm 1 in a multiagent reinforcement learning prob-
lem with a stateless discrete action domain is given in Algo-
rithm 2. Note that such problems may also be solved with
coevolutionary algorithms. In a stateless discrete action do-
main, each agent maintains a value vector Vi(a) containing
the expected value of each possible action. Each agent also
maintains an approximation of G(a), which is simply a vec-
tor containing the estimated value of the system evaluation
function corresponding to each action the agent may take.
At each learning step, each agent i selects an action ai. The
system evaluation function G(a) is then calculated based on
the joint action a = {a1, a2, ..., an}, and this value is broad-
cast to each agent in the system. Each agent then updates
its approximation Ĝi(ai) according to:

Ĝi(ai)← (1− α1) · Ĝi(ai) + α1 ·G(a) (6)

Once each agent has updated its approximation of G(a), the
CLEAN for each agent is estimated as:

Ĉi = Ĝi(ci)− Ĉi(c
′
i) (7)

where c′i is a randomly chosen action for evaluation, and c′i is
some default action. The value table is then updated using
the estimate of the CLEAN reward:

Qi(ci)← (1− α2) ·Qi(ci) + α2 · Ĉi (8)

4. EXPERIMENTAL DOMAINS
In the following sections, we detail the two experimental

domains used in this work: the Defect Combination Prob-
lem (DCP) and the Gaussian Squeeze Domain (GSD). These
domains were chosen for two reasons. First, the DCP is a
coordination domain, while the GSD is a congestion domain.
The inclusion of both of these types of domains illustrates
how approximate CLEAN rewards perform in varying types
of problems. Second, both of these domains are extremely
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sensitive to exploratory action noise; even in very large sys-
tems (e.g. 1000 agents), a single agent changing its policy
can dramatically affect the overall system performance. As
both of these domains are sensitive to exploratory action
noise, they provide insight on how CLEAN rewards can im-
prove system performance by privatizing agent exploration.

4.1 Defect Combination Problem
The Defect Combination Problem (DCP) assumes that

there exists a set of imperfect sensors X which have con-
stant measurement errors due to manufacturing defects or
imperfections [7, 19]. Each sensor xi ∈ X has an attenuation
ai in its measurement. Thus, if sensor xi is measuring some
value A, its measurement is A + ai. The individual sensor
attenuation values are drawn from a Gaussian distribution
with a mean of zero and some variance σ. Solving the DCP
involves choosing a subset of the sensors such that the ag-
gregate attenuation of the combined readings is minimized,
which is equivalent to minimizing:

G(z) =

∣∣∣∑N
i=1 niai

∣∣∣∑N
i=1 ni

(9)

whereN is the number of sensors in the system, ni ∈ {0, 1} is
an indicator function based on whether the sensor is “on” or
“off,” and G(z) is based on the aggregated attenuation of the
combined sensor readings. The DCP is a large distributed
agent coordination problem where each agent (device) needs
to determine whether or not to be part of the aggregate
device (determine whether to turn “on” or “off”).

4.2 Gaussian Squeeze Domain
The Gaussian Squeeze Domain (GSD) is a problem in-

volving agents which must coordinate their actions in order
to optimize for a “capacity” in a Gaussian objective function
[10]. The objective function to be maximized is:

G = xe
−(x−µ)2

σ2 (10)

where x =
∑

i xi is the cumulative sum of the actions of
agents (where xi is the contribution of agent i), µ is the mean
of the system objective’s Gaussian (the target x the agents
must coordinate to achieve), and σ is the standard deviation
of the system objective’s Gaussian. The goal of the agents
is to choose their individual actions xi such that the sum of
their individual actions optimizes Equation 10. Each agent
has n actions, ranging in value from zero to (n − 1). The
Gaussian squeeze domain is a congestion domain, where each
agent determines their allocation of resources, with the goal
being that a set number of resources (defined by µ) is not
over- or under-utilized. Adjusting the standard deviation σ
affects the coordination complexity of the problem. For low
values of σ, coordination complexity is high as the gradient
around the optimal point is large. For high values of σ,
coordination complexity is lower as the gradient around the
optimal point is more gradual.

5. EMPIRICAL RESULTS
The following sections provide the results detailing the

performance of the CLEAN approximation algorithm in both
a coordination domain (Defect Combination Problem) and
a congestion domain (Gaussian Squeeze Domain).

5.1 Defect Combination Problem
Approximate CLEAN rewards are tested in the DCP and

compared to global rewards, difference rewards, and directly
computed CLEAN rewards. For each experiment analyzed,
400 independent runs are conducted and we report the aver-
age performance over all runs. The first experiment involves
analyzing the performance of 1000 agents, when the explo-
ration rate ε is 0.01, the standard deviation for the sensor
noise distribution σ is 1, the learning rate α1 is 0.005, and
the update rate for the agents’ function approximators α2 is
0.001. The results for this experiment are shown in Figure
2, where lower values (corresponding to lower sensor error)
are preferable.
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Figure 2: DCP results with 1000 agents, where
ε = 0.01, σ = 1, α1 = 0.005, and α2 = 0.001. Ap-
proximated CLEAN rewards outperform difference
rewards and global rewards, and achieve 98% of
the improvement over difference evaluations that
the analytically computed CLEAN rewards attain.

As seen in Figure 2, approximate CLEAN rewards out-
perform global and difference rewards, and attain 98% of
the performance of directly computed CLEAN rewards. It
is of note that this 2% performance drop is accompanied by
a 99.9% drop in system information used to compute the
reward, as CLEAN rewards utilize the entire system joint
action, while approximate CLEAN rewards only utilize an
individual agent’s action. This experiment demonstrates not
only the ability of CLEAN rewards to effectively filter out
exploration noise to improve performance, but that the ben-
efits of CLEAN rewards can be attained with a small fraction
of the overall information available within the system.

For the next experiment, the learning rate α1 is changed
to 0.01 rather than 0.005. This results in agents placing a
higher emphasis on recently received rewards. The results
for this experiment are shown in Figure 3.

As seen in Figure 3, approximate CLEAN rewards out-
perform not only global and difference rewards, but they ac-
tually outperform directly computed CLEAN rewards. This
counter-intuitive result requires closer analysis. As agent ex-
ploration is privatized with CLEAN rewards, multiple agents
may simultaneously change their policies while assuming
that all other agents in the system will retain their cur-
rent policies. For example, consider a system with one hun-
dred agents. Suppose that during their private exploration,
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Figure 3: DCP results with 1000 agents, where ε =
0.01, σ = 1, α1 = 0.01, and α2 = 0.001. Approximated
CLEAN rewards outperform difference rewards and
global rewards, as well as directly computed CLEAN
rewards.

twenty of these agents determine that they should change
their policies based on information derived from CLEAN
rewards. When using CLEAN rewards, each agent in the
system determines if an action they did not take would re-
sult in higher system performance, assuming that every other
agent in the system retains their current policy. When all
twenty of these agents change their actions simultaneously,
the result may ultimately be a drop in system performance,
as the assumption that other agents in the system remains
static does not hold. Agents which approximate CLEAN
rewards each have different local approximations of the sys-
tem evaluation function, all of which focus on that particu-
lar agent’s impact on the system evaluation function. This
results in the number of agents altering their policies in
any given time step to be lower than when directly com-
puting CLEAN rewards. Intuitively, approximated CLEAN
rewards slow down the process of agent’s altering their poli-
cies, resulting in a less dynamic learning environment. This
allows for individual agents to change their policies asyn-
chronously, resulting in a lower frequency of decreased sys-
tem performance as a result of widespread changes in the
target policies of each agent. This counter-intuitive result
only holds for cases where the approximation of the system
evaluation function is sufficiently accurate, such that the
benefit of breaking the symmetry of CLEAN actions over-
comes the inaccuracies caused by the approximation.

The final experiment in the DCP involves analyzing the
scalability of the system. For system sizes varying from 100
to 5000 agents, agents learn for 10000 episodes, using ei-
ther difference, global, CLEAN, or approximate CLEAN re-
wards. Figure 4 shows converged system performance as a
function of the number of agents in the system.

As seen in Figure 4, regardless of system size, approxi-
mate CLEAN rewards outperform both global and differ-
ence rewards. For some system sizes, approximate CLEAN
rewards perform similarly to directly computed system re-
wards. For other system sizes (1000-1500 agents and 4000-
5000 agents), approximate CLEAN rewards actually out-
perform directly computed CLEAN rewards. This result
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Figure 4: DCP results: Scaling. Regardless of sys-
tem size, approximate CLEAN rewards outperform
global and difference rewards, and outperform di-
rectly computed CLEAN rewards in some cases.

demonstrates that approximating CLEAN rewards provides
the performance advantages of CLEAN rewards, without
the restrictive requirement for global system information. In
particular, global knowledge about the joint action becomes
increasingly difficult to collect as the number of agents in
the system grows. By approximating CLEAN rewards with-
out requiring the global joint action, we have provided a
technique to implement CLEAN rewards in large multiagent
systems.

5.2 Gaussian Squeeze Domain
Approximate CLEAN rewards are tested in the GSD, and

are compared to global rewards, difference rewards, and di-
rectly computed CLEAN rewards. All results are the av-
erage performance over 50 statistical runs. For all experi-
ments, the standard deviation of the objective function σ is
400, the mean of the objective function µ is 200, the learning
rate α1 is 0.1, the update rate for agents’ function approx-
imators is 0.1, and the exploration rate ε is 0.1. The first
experiment involves training 1000 agents, where each agent
can select from 15 available actions. The results of this ex-
periment are shown in Figure 5, where higher values are
preferable.

As seen in Figure 5, approximate CLEAN rewards sig-
nificantly outperform both global and difference rewards,
and result in 94% of the performance of directly computed
CLEAN rewards. In this case, the approximation of CLEAN
rewards results in a 6% decrease in system performance
while using 99.9% less information about the global joint
action to compute. Further, approximate CLEAN rewards
converge to their final policy faster than directly computed
CLEAN rewards, due to the fact that the learning environ-
ment is less dynamic while approximating CLEAN rewards
(see Section 5.1. The next experiment involves 1000 agents
with 10 actions to choose from, with all other experimental
parameters being held constant. These results are shown in
Figure 6.

As seen in Figure 6, approximate CLEAN rewards sig-
nificantly outperform global rewards, but only attain 75%
of the performance of directly computed CLEAN rewards,
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Figure 5: GSD results with 1000 agents, where
agents can select from 15 available actions, the stan-
dard deviation of the objective function σ is 400, the
mean of the objective function µ is 200, the learn-
ing rate α1 is 0.1, the update rate for agents’ func-
tion approximators is 0.1, and the exploration rate
ε is 0.1. Approximate CLEAN rewards significantly
outperform both global and difference rewards, and
provide 94% of the performance of directly com-
puted CLEAN rewards.
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Figure 6: GSD results with 1000 agents, where
agents can select from 10 available actions, the stan-
dard deviation of the objective function σ is 400, the
mean of the objective function µ is 200, the learning
rate α1 is 0.1, the update rate for agents’ function
approximators is 0.1, and the exploration rate ε is
0.1. Approximate CLEAN rewards significantly out-
perform global rewards, but only achieve 75% of the
performance of directly computed CLEAN rewards,
and 78% of the performance of difference rewards.

and 78% of the performance of difference rewards. It is
important to note that both CLEAN rewards and difference
rewards require the global joint action of the system to com-
pute, while approximated CLEAN rewards only depend on
a single agent’s action. As the size of this system is large

(2000 agents), each agent would have difficulty learning the
global joint action of the system. Thus, although approx-
imate CLEAN rewards do not provide the performance of
directly computed CLEAN rewards or difference rewards,
they do not rely on information that is difficult or impossi-
ble for a single agent to obtain.

We now analyze the differences in results between Fig-
ures 5 and 6. The only difference in experimental setups
is the number of actions which each agent may take, which
determines how drastically exploratory action noise can af-
fect system performance. In the case of the GSD, increas-
ing from 10 to 15 actions per agents dramatically increases
the effects of exploratory action noise. As seen in Figures
5 and 6, when exploratory action noise is not expected to
have a large impact on the system (agents only pick from
10 actions), then difference rewards outperform approximate
CLEAN rewards. When exploratory action noise does have
a large impact on the system, then approximate CLEAN re-
wards outperform difference rewards. This result illustrates
the tradeoff between exploratory action noise and the noise
caused by the approximation of the system evaluation func-
tion in approximate CLEAN rewards. To further investigate
this tradeoff, we analyzed converged system performance for
each reward structure as a function of the number of actions
each agent in the GSD could take for a 1000 agent system.
These results are shown in Figure 7.
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Figure 7: GSD results: scaling the number of ac-
tions.

As seen in Figure 7, as the level of potential exploratory
action noise rises with the number of actions in the system,
approximate CLEAN rewards overtake difference rewards
and provide better performance. As the system complexity
is increased further to 25 actions for each agent, approxi-
mate CLEAN rewards overtake CLEAN rewards. This is
due to the less dynamic learning environment created by
approximate CLEAN rewards; with CLEAN rewards, too
many agents change their target policies on the assumption
that the other agents in the system are remaining static.
Approximate CLEAN rewards overcome this difficulty be-
cause the nature of their approximations results in a more
asynchronous process of agents modifying their policies. To
demonstrate the scalability of approximate CLEAN rewards,
we conduct the final experiment in the GSD with 2000 agents
and 15 actions. These results are shown in Figure 8.
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Figure 8: GSD results with 2000 agents, where
agents can select from 15 available actions, the stan-
dard deviation of the objective function σ is 400, the
mean of the objective function µ is 200, the learn-
ing rate α1 is 0.1, the update rate for agents’ func-
tion approximators is 0.1, and the exploration rate
ε is 0.1. Approximate CLEAN rewards significantly
outperform both global and difference rewards, and
provide 96% of the performance of directly com-
puted CLEAN rewards.

As seen in Figure 8, approximate CLEAN rewards now
significantly outperform difference rewards, and result in
96% of the performance of directly computed CLEAN re-
wards. This result in addition to the results from Figure 6
demonstrate a tradeoff in approximating CLEAN rewards.
While approximating CLEAN rewards, exploratory action
noise is removed, but noise due to the approximation of the
system evaluation function is added. In the case of 10 ac-
tions, a single agent has a smaller ability to drastically im-
pact system performance, meaning that exploratory action
noise has a smaller effect on system performance than in the
case of 15 actions. As approximate CLEAN rewards result in
superior system performance compared to difference rewards
in the 15 action system, but perform worse in the 10 action
system, we see that in the case where agents can only se-
lect 10 actions, exploratory action noise is less detrimental to
system performance than noise caused by the approximation
of the system evaluation function. However, in the 15 action
case, exploratory action noise is more detrimental to system
performance than noise caused by the approximation. This
demonstrates that approximate CLEAN rewards should be
used in cases where exploratory action noise can significantly
impact system performance; these cases are characterized by
the ability of a single agent to drastically impact the value
of the system evaluation function.

6. DISCUSSION AND CONCLUSION
Agents in multiagent learning systems must often take ex-

ploratory actions in order to discover the mapping between
actions and the expected value associated with those ac-
tions. However, agents are often unable to determine what
portions of their feedback signal are caused by environmen-
tal dynamics, and what portions are caused by exploratory

action noise from other agents. As a result, agents are bi-
ased to learn policies which depend on other agents taking
exploratory actions, rather than policies which perform op-
timally when all agents are following their target policies.

CLEAN rewards address the problem of exploratory ac-
tion noise by privatizing exploration, removing all noise from
agent feedback signals caused by the exploratory actions of
other agents. In systems where agent exploration can have a
large impact on system performance, it is difficult for agents
to evaluate the effectiveness of their selected actions. By
privatizing exploration, CLEAN rewards allow agents to de-
termine the value associated with the actions they select
without being biased by noise caused by agent exploration.
This results in policies which can outperform traditional re-
ward signals such as difference rewards or global rewards.

However, CLEAN rewards require global state informa-
tion, as well as the mathematical form of the system evalua-
tion function in order to compute them. This information is
typically unavailable to agents; thus, even though CLEAN
rewards solve the problem of exploratory action noise, they
introduce a problem of reward computability.

In this work, we demonstrate how CLEAN rewards may be
approximated by learning agents using only local state and
action information, as well as a broadcast value of the sys-
tem evaluation function. This approximation approach does
not require any global state or action knowledge, nor does it
require expert knowledge about the system evaluation func-
tion. By approximating the global evaluation function in
order to evaluate CLEAN rewards, the benefits of removing
exploratory action noise are retained, while the restrictions
of requiring expert system knowledge is removed.

Our results demonstrate that CLEAN rewards can be suc-
cessfully approximated, and that these approximations typi-
cally outperform both global and difference rewards in both
a congestion domain and coordination domain, with large
systems containing up to 5000 agents. These results demon-
strate that approximated CLEAN rewards can attain similar
levels of performance as directly computed CLEAN rewards,
and in some cases may attain even better performance. Re-
sults also demonstrate that approximate CLEAN rewards
do not always result in superior system performance com-
pared to difference rewards. In particular, in cases where ex-
ploratory action noise is relatively small compared to noise
in the approximation of the system evaluation function, then
approximate CLEAN rewards actually result in worse per-
formance than difference rewards. This demonstrates that
approximate CLEAN rewards should only be used in sys-
tems where exploratory action noise has a strong detrimen-
tal effect on system performance. In particular, approximate
CLEAN rewards are most beneficial in systems where a sin-
gle agent can dramatically impact system performance.

Future work on this research has multiple avenues. First,
we will investigate the tradeoff between exploratory action
noise and noise caused by the approximation, to determine
if we can characterize systems to predict when approximate
CLEAN rewards will be beneficial. Second, we will investi-
gate CLEAN approximations when both terms (rather than
one) are approximated, which could potentially improve sen-
sitivity, but decrease alignment.
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