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ABSTRACT
In this work, we investigate the problem of mobile crowd-
sourcing, where workers are financially motivated to perfor-
m location-based tasks physically. Unlike current industry
practice that relies on workers to manually browse and fil-
ter tasks to perform, we intend to automatically make task
recommendations based on workers’ historical trajectories
and desired time budgets. However, predicting workers’ tra-
jectories is inevitably faced with uncertainties, as no one
will take exactly the same route every day; yet such uncer-
tainties are oftentimes abstracted away in the known litera-
ture. In this work, we depart from the deterministic model-
ing and study the stochastic task recommendation problem
where each worker is associated with several predicted rou-
tine routes with probabilities. We formulate this problem as
a stochastic integer linear program whose goal is to maximize
the expected total utility achieved by all workers. We fur-
ther exploit the separable structure of the formulation and
apply the Lagrangian relaxation technique to scale up the
solution approach. Experiments have been performed over
the instances generated using the real Singapore transporta-
tion network. The results show that we can find significantly
better solutions than the deterministic formulation.
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1. INTRODUCTION
Mobile crowdsourcing is a rapidly growing extension to

the traditional crowdsourcing paradigm, characterized by
mobile workers financially motivated to perform location-
based tasks physically. Examples of mobile crowdsourcing
tasks include citizen sensing (ask participants to contribute
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sensor readings such as pollution, congestion, noise level),
store audits (e.g., checking shelfs, store displays), logistics
(package pickup and delivery), to name a few.

Most research and deployments of mobile crowdsourcing
presently employ a pull-based model in which individual
crowdworker independently select from the list of available
tasks. As pointed out by Musthag and Ganesan [2], such
pull-based embodiments of mobile crowdsourcing, suffer from
the phenomenon of super agents; i.e., a small percentage
of crowdworkers who perform the majority of tasks. Such
phenomenon is undesirable, as many ordinary crowdworkers
might drop out as a result of not having enough tasks. By
examining empirical data, they conclude that the major d-
ifference between ordinary worker agents and super agents
is the latter’s ability in planning better routes and choosing
tasks that fit their routes best. Build upon this insight, Chen
et al. [1] investigate an alternative push-based model, where
the crowdsourcing platform centrally plan for task assign-
ment (it’s called assignment in their paper, but it’s really a
recommendation, as agents still make decisions independent-
ly), by assuming that each mobile crowdworker has only one
deterministic routine route. Our work addresses more real-
istic scenarios where an individual worker’s trajectory has
inherent uncertainty, assuming that each agent’s list of pos-
sible routine trajectories is finite, and governed by a known
probabilistic distribution.

2. THE MODEL
This problem can be viewed as a special routing problem

with time budget and stochastic routine route constraints.
We denote N as the set containing both the routine and
task nodes (denoted as Nt), and for all pairs (i, j), where
i, j ∈ N , let tij be the travel time from i to j. Let K be
the set of agents, and let Mk be the set of agent k’s routine
routes. For each route m ∈ Mk, let βm

k be the probability
that agent k would use route m, Rm

k be the collection of all
nodes in route m, omk be the origin, dmk be the destination,
and pmik be the visit order for node i ∈ Rm

k . For each task
i ∈ Nt, let si be its reward, and ei be its required execution
time. The total time budget for agent k’s route m is bmk .

We define the following decision variables. yik ∈ {0, 1} is
set to 1 when task i is assigned to agent k. xmijk ∈ {0, 1}
is set to 1 when agent k moves from nodes i to j when the
realized routine route is m. um

ik ∈ {0, . . . , N} indicates the
visit order of node i for agent k, when the realized routine
route is m. δmik is set to 1 if task i is assigned to agent k, yet
cannot be completed when the realized routine route is m.
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We formulate the problem as an integer linear program-
ming (ILP) model, whose objective is to maximize the ex-
pected total rewards earned by all agents, considering un-
certainties over their routine routes.

max
∑
i∈Nt

si
∑
k∈K

(yik −
∑

m∈Mk

βm
k · δmik). (1)

∑
k∈K

yik 6 1, ∀i ∈ Nt. (2)

δmik > yik −
∑
j∈N

xmijk, ∀i ∈ Nt. (3)

Constraint (2) ensures that each task is assigned to at
most one agent. Constraint (3) extracts whether a task i
node is bypassed (δmik = 1) from the flow decision (xmijk)
when it’s assigned to this agent k’s route m.

The rest constraints are at agent-route level, i.e., for each
pair of (k,m) ∈ (K,Mk), same set of constraints applies.∑

i∈N

xmidk =
∑
j∈N

xmdjk, ∀d ∈ N\{omk , dmk }, (4)


∑

j∈N xmdjk 6 1,∑
j∈N xmdjk = 1,∑
i∈N xmidk = 1,

∀d ∈ N\Rm
k ,

∀d ∈ Rm
k \{dmk },
d = dmk ,

(5)

∑
i∈N

∑
j∈N

(tij + ei) · xmijk 6 bmk , (6)

um
ik = 1, i = omk , (7)

(um
ik + 1)− um

jk 6 N(1− xmijk), ∀i, j ∈ N, (8)

um
ik − um

jk > pmik − pmjk, ∀i, j ∈ Rm
k : pmik > pmjk. (9)

Constraints (4)–(5) ensure that flows are consistent at all
nodes. The time budget constraint for each routine route
is enforced in (6). Constraints (7)–(9) produce visit orders
(um

ik) from flows (xmijk), and ensure that all nodes in the rou-
tine route m are visited in correct partial order (it’s partial
since additional nodes can be in-between two routine nodes).
This ILP model can be solved using standard solver such as
CPLEX. But given the complexity of the model, this is only
feasible for very small problem instances.

To scale up the solution approach, we adopt Lagrangian
relaxation by moving the complicating constraint (3) into
the objective function. We define λ = {. . . , λm

ik, . . .} as
the vector of Lagrangian multipliers associated with all con-
straints in (3), and convert the maximization problem to
be a minimization problem L(λ). Observing the problem
structure, we further decompose L(λ) into the following two
classes of subproblems. Firstly, the assignment subproblem
decides how tasks should be assigned to individual agents:

min
∑
i∈Nt

si
∑
k∈K

(−yik +
∑

m∈Mk

βm
k · δmik)

+
∑
i∈Nt

∑
k∈K

∑
m∈Mk

λm
ik · (yik − δmik) , (10)

δmik 6 yik, ∀i ∈ Nt,m ∈M,k ∈ K, (11)

with constraint (2). Secondly, the agent-route level rout-
ing subproblems decide the exact node visit sequence for each
agent k and each realized routine route m. For each k ∈ K
and m ∈Mk, we have:

min−
∑
i∈Nt

(λm
ik ·

∑
j∈N

xij), (12)

with constraints (4)–(9). The dual solution can be calcu-
lated by summing up the objective values of all subproblem-
s. The primal solution can be extracted by projecting the
routing policy, {xmijk}, into the original optimization prob-
lem and optimize the same objective function (1), subject to
constraints (2)–(3). We iteratively update λ and solve the
problem by using standard subgradient descent algorithm.

3. EXPERIMENT RESULTS
The performance of our LR heuristic is evaluated using

40 different synthetic and real-world inspired task scenarios
by two metrics: 1) solution quality, and 2) stochastic im-
provement against baselines. For each task scenario, both
tasks and agent’s routine route distributions are generated
randomly, either on a synthetic or realistic network topology.

We first present the results on solution quality in Table 1.
All reported task scenarios are characterized by (k,Nt, N),
and due to the scalability issue of the ILP formulation, the
largest scenario we can solve is just (8, 16, 80).

(k,Nt, N)
ILP LR

Optimum Runtime] Gap Runtime
(2,4,40) 400 0.8s 0% 0.09s
(4,8,80) 630.2 22.9s 0% 0.2s
(8,16,80) 1560.7* 6558.6s 0.06% 14.8s

Table 1: Solution quality and runtime for ILP and LR.
(*) Terminates early at the optimality gap of 0.06%.

The stochastic improvement over deterministic baseline is
shown in Table 2. Task scenarios are generated similarly,
but for the deterministic baseline, route with highest prob-
ability is selected for each agent as the routine route. For
each instance evaluated, 1000 agent route realizations are
sampled, and task completion rate is calculated the average
of these 1000 samples. The upper bound (UB) percentages
reported in Table 2 are the task completion rates achieved
with perfect information. The gap values reported for LR
and Det are compared against reported UB.

Detour Upper Bound LR (Gap) Det (Gap)
10% 22.5% 0.4% 13.8%
20% 40.2% 0.3% 10.9%

Table 2: Stochastic improvement.
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