
The Cost of Interference in Evolving Multiagent Systems
(Extended Abstract)

The Anh Han
Tesside University

t.han@tees.ac.uk

Long Tran-Thanh
University of Southampton

l.tran-thanh@soton.ac.uk

Nicholas R. Jennings
University of Southampton
nrj@ecs.soton.ac.uk

ABSTRACT
We study the situation of a decision-maker who aims to encourage
the players of an evolutionary game theoretic system to follow cer-
tain desired behaviours. To do so, she can interfere in the system
to reward her preferred behavioural patterns. However, this action
requires certain cost (e.g., resource consumption). Given this, her
main goal is to maintain an efficient trade-off between achieving
the desired system status and minimising the total cost spent. Our
results reveal interesting observations, which suggest that further
investigations in the future are required.

1. INTRODUCTION
In this paper we consider the following problem. Given a system
with a finite number of players, who interact with each other ei-
ther repeatedly or in a one-shot manner. A decision-maker, who is
not part of the system, aims to force the players to maintain cer-
tain strategy profiles. However, the decision-maker does not fully
control all the behaviours and actions of the players, due to some
(physical) limitations. Instead, she can interfere in the system at
any particular time step, (partially) modifying the system dynam-
ics. By doing so, she has to consume a certain amount of her (typi-
cally limited) resources, which is an increasing function of the de-
gree of interference. Given this, the research challenge is to identify
a sequence of actions that balances between achieving the decision-
maker’s objective (i.e., to maintain a desired state) and minimising
the resource consumption. This model is motivated by many real-
world applications, such as the peace-keeping process of the United
Nations, or population control in habitat management. Although
the (sequential) decision-making literature provides a number of
techniques to tackle similar resource constraint optimisation prob-
lems [4], these approaches typically ignore the fact that the players,
with whom the decision-maker has to interact, also have their own
strategic behaviours that together drive the dynamics of the system.
Given this, we argue that such solutions will not be able to exploit
the system characteristics, and thus, will fail in providing efficient
performance in achieving the desired goals. On the other hand,
game theoretic literature typically focusses on the extremes. In
particular, researchers either assume that the system is fully closed
(i.e., there is no outsider decision-makers), or the decision-maker
has a full control on the behaviour of the players. Typical models
for the former are classical (both non-cooperative and coalitional)

Appears in: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Bor-
dini, Elkind, Weiss, Yolum (eds.), May, 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

game theoretical models. The latter includes models from mecha-
nism design, where the decision-maker is the system designer, and
can define some set of norms and penalties such that the players are
not incentivised to deviate from the norms.

Against this background, this paper aims at filling the gap by ad-
dressing the problem as follows. We combine the decision-making
process design with an evolutionary game theoretic perspective (de-
scribed in Section 2). While the former aims at capturing the be-
haviour of the decision-maker, the latter can be used to formalise
the dynamics of the system of players. In particular, we consider a
population where the players interact through the Prisoner’s Dilemma.
Suppose that as an outsider decision-maker, we aim to promote a
certain strategy profile. We also have a budget that can be used to
interfere by rewarding particular strategists/individuals in the pop-
ulation at concrete moments (e.g. depending on the current com-
position of the population). In particular, at each time step, we can
reward the players who follow the desired strategy. Hence, the re-
search question here is to identify when and how much we want to
pay the players, in order to achieve our goals.

2. MODEL AND METHODS
We focus here on a two-player game model, where the one-shot
Prisoner’s Dilemma (PD) [3] is used as the interaction model of
agents in a population. The PD game is a well-known framework to
study the problem of the evolution of cooperation [3], where with-
out any supporting mechanisms such as kin selection, reciproci-
ties, structured population, punishment and reward [2] and commit-
ments [1], cooperation is rare and cannot evolve. Here, differently
from previous work, we study what are the appropriate interference
strategies (by rewarding cooperation) leading to high levels of co-
operation while minimising the investment budget.

In a PD, a player can choose either to cooperate (C) or defect
(D). A player who chooses to cooperate with someone who defects
receives the sucker’s payoff S, whereas the defecting player gains
the temptation to defect, T . Mutual cooperation (resp., defection)
yields the reward R (resp., punishment P) for both players. The
PD is characterized by the ordering, T > R > P > S, where in
each interaction defection is the rational choice but cooperation is
the desired outcome.

In addition, we consider a well-mixed population of N individu-
als. The individuals adopt one of the two pure strategies: C (always
cooperates) or D (always defects). In a population with k C-players
and (N −k) D-players, the average payoff a C- and a D-player can
be written as follows, respectively: ΠC(k) = 1

N−1

Pm
j=1[(k −

1)R+ (N − k)S]; ΠD(k) = 1
N−1

Pm
j=1[(N − k − 1)T + kP ].

In our model, we adopt a standard approach to implementing
social learning or imitation [3]. Namely, at each time-step, one
individual i with a fitness fi is randomly chosen for behavioural
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Figure 1: Level of cooperation (a), expected number of investments (b), and expected total investment (c), as functions of the
investment threshold t and for different per-generation investment values θ. In panel (b) and (c), the plot is on a log(10)-scale.
Parameters: R = 1, T = 2, P = 0, S = −1; population size N = 100; imitation strength β = 0.1.

revision. i will adopt the strategy of a randomly chosen individ-
ual j with fitness fj with a probability given by the Fermi function“

1 + e−β(fj−fi)
”−1

, where the quantity β controls the intensity
of selection. Furthermore, we adopt the small mutation approach,
i.e. a single mutant in a monomorphic population will fixate or
will become extinct long before the occurrence of another muta-
tion. This allows one to describe the evolutionary dynamics of our
population in terms of a reduced Markov Chain of a size equal to
the number of different strategies. The stationary distribution of the
Markov Chain characterises the average time the population spends
in each of these monomorphic states and can be computed analyt-
ically. Due to lack of space, we refer to the Method session in [1]
for a full description of the stationary distribution computation.

We now define the optimization problem. We consider that the
investment strategy solely depends on the current state of the pop-
ulation. Namely, whenever there are i C-players (i.e. N − i D-
players) in the population, an (per-generation) investment, θi, is
made. That is, each C-player gets an increase of θi/i in the av-
erage payoff. In order to compute the expected total amount of
investment we need to compute the expected number of times the
population contains i C-players, 1 ≤ i ≤ N − 1. For that, we con-
sider an absorbing Markov chain of (N + 1) states, {S0, ..., SN},
where Si represents a population with i C-players. S0 and SN are
absorbing states. Let U = {uij}N−1

i,j=1 denote the transition matrix
between the N − 1 transient states, {S1, ..., SN−1}. The transition
probabilities can be defined as follows. For 1 ≤ i ≤ N − 1,

ui,i±j = 0 for all j ≥ 2

ui,i±1 =
N − i
N

i

N

“
1 + e∓β[ΠC(i)−ΠD(i)+θi/i]

”−1

ui,i = 1− ui,i+1 − ui,i−1

The entries nij of the so-called fundamental matrix N = (I −
U)−1 of the absorbing Markov chain gives the expected number of
times the population is in the state Sj if it is stated in the transient
state Si. As a mutant can randomly occur either at S0 or SN , the
expected number of visits at state Si is: 1

2
(n1i + nN−1,i). Hence,

the expected total investment is: Q = 1
2

PN−1
i=1 (n1i + nN−1,i)θi.

In short, the goal is to find an investment strategy that maximizes
the cooperation level (or guarantees a certain level of cooperation)
while minimising the expected total investment Q.

3. NUMERICAL EVALUATION
We analyze a concrete investment strategy, supported by real world
scenarios, in which we have a fixed amount of resource, θ, for re-
warding cooperative acts in each generation, i.e. θi = θ ∀i. We
ask, should one focus the effort to reward only a few C players
rather than spreading the effort to reward all C players but that may

not be sufficient for them to survive? For that, we consider invest-
ment strategies that invest only when the number of C-players does
not exceed a given threshold t, 1 ≤ t ≤ N − 1.

In Figure 1a, we plot the frequency (level) of cooperation varying
the investment threshold t, and for different per-generation invest-
ment θ. It is not surprising that the larger threshold t, i.e. the more
spreading the investment, and the larger the per-generation invest-
ment (θ), the higher level of cooperation is obtained. For a too
small θ, defection is prevalent even when the investment is always
made (see θ = 10). For a sufficiently large θ, a rather spread-
ing investment strategy can lead to a high level of cooperation. But
does a more spreading investment scheme necessarily mean a larger
amount of total investment, let alone the higher level of coopera-
tion it leads to? If the stochastic and dynamic aspects of the system
are not taken into account, the answer is clearly the positive one.
However, as one can see from Figure 1c where the expected total
investment is shown for varying t, above a certain threshold of t,
a more spreading investment strategy mostly leads to a lower total
investment expected to be made (for θ ≥ 30). Moreover, the larger
θ is, the lower that threshold and the more significant the decreas-
ing are. But it is important to note that this decreasing tendency
stops when t reaches a certain threshold (then it slowly increases)
(e.g. for θ = 100, the optimal is t = 91, and for θ = 50, the op-
timal is t = 97). The explanation for this observation can be seen
from Figure 1b, where the expected number of times of investment
is depicted for varying t. We can see that it is still important to
make investments when there is a rather large fraction of C-players
(i.e. high enough value of t) in the population, because otherwise
defection can still fight back and becomes more frequent, leading
to further investments latter (hence, wasting the earlier investment
efforts). The investment can be ceased only when the fraction of
C-players in the population is sufficiently large (around 90%) to
be able to maintain their abundance themselves. That is, once we
decide to interfere (to help with sustaining high cooperation), we
should interfere until the cooperators can survive and fight defec-
tion on their own.

Additional analysis shows that our results are robust for varying
different parameters, including θ and the payoff matrix entries.
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