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ABSTRACT
Retail and wholesale broker’s decision problems have been
optimized separately, ignoring the probable existence of a
globally optimal trading strategy. To address this, we pro-
pose a novel formalization, based on a semi-Markov deci-
sion process (SMDP) and solved using hierarchical reinforce-
ment learning (HRL) in multi-agent environments. Fur-
thermore, to mitigate the curse of dimensionality, which
arises when applying SMDP and HRL to complex decision
problems, we propose an efficient knowledge transfer ap-
proach. An analysis of our controlled experiments in two
well-established multi-agent simulation environments within
the Trading Agent Competition (TAC) community shows
that this broker can outperform the top TAC-brokers and is
able to reuse the trading knowledge acquired in previously
experienced settings.

Categories and Subject Descriptors
I.2.6 [ARTIFICIAL INTELLIGENCE]: Learning
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1. INTRODUCTION
The Trading Agent Competition (TAC) community of-

fers a number of multi-agent simulation environments to
promote the development of autonomous trading agents.
Among the TAC environments provided, many support the
development of broker agents that make profit by minimiz-
ing the procurement cost in the wholesale market and by
maximizing market share and retail revenue in the retail
market. Many studies separately optimize the wholesale and
the retail strategies and consider the global optimization of
the broker strategy as intractable [4]. The brokers resulting
from these studies work well in individually optimizing each
strategy, but they never explore the possibility of using a
global strategy to maximize their overall profit.

Against this background, we propose an SMDP formal-
ization of the broker’s decision problem which enables the
simultaneous optimization of its main goal (to maximize the
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Figure 1: (S)MDP Hierarchy

profit) and sub-goals such as minimizing procurement costs
and maximizing retail returns. Furthermore, we put forward
a knowledge transfer approach which addresses the curse of
dimensionality resulting from the SMDP formalization, by
reducing the learning time required for the broker to act
appropriately in newly encountered markets.

2. SMDP AND HRL FORMALIZATION
Generally, the architectures of broker agents, which are

largely influenced by its activities in the environment, are
composed of two key components: one for retail strategy
and one for the wholesale strategy [1]. The retail strategy
consists of identifying the retail prices that could be accepted
by most of the customers and of forecasting the short- and
long-term retail demand, whereas the procurement strategy
aims to reduce the procurement cost by buying the appro-
priate products in time, at low prices.

In order to perform well, the broker needs to optimize all
its decision making problems both at a global and an indi-
vidual level. Each decision problem can be modeled as an
(S)MDP so that a hierarchy of (S)MDPs can be structured
as illustrated in Figure 1. Consider M j

i = 〈Sj
i , A

j
i , P

j
i , R

j
i 〉,

the MDP task for optimizing the decision problem j εN
of the hierarchy, in simulation environment i εN. Specif-
ically, the overall SMDP, Mover

i , decides the hierarchical,
concurrent option to follow: customer-enticing(ce) or profit-
oriented(po) option. Based on the selected option, the whole-
sale MDP, Mwhol

i , decides the quantity of product to buy,
given the projected wholesale price. Concurrently, based
on the same option information, the retail MDP Mret

i de-
cides the retail price that can simultaneously increase the
profit and the market share. Each of the standard MDPs
(Mwhol

i and Mret
i ) can stochastically select many primitive

actions before the option of Mover
i that is being executed

terminates. We applied the any-termination condition for
the Mover

i multi-options, as it is convenient to implement
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and preserves the Markov (or semi-Markov) property of the
model [3].

The additional transfer framework (a recent survey on
transfer learning is provided by [2]) enables the agent to
transfer previously acquired knowledge to a new market and
subsequently hone its trading skills to the characteristics of
that specific market. In this work, we denote the task do-
main, Dj

i = 〈Sj
i , A

j
i 〉 to be the state and action spaces of

M j
i . At the beginning of the learning T j

i = 〈P j
i , R

j
i 〉 is de-

fined as the task objectives of M j
i and at the end of the

learning it represents the task skills. To transfer knowledge,
we propose to use an invariant abstract task representation
M j

c = 〈Sj
c , A

j
c, P

j
k , R

j
k〉 that is common to all tasks M j

i and
is composed of an invariant domain Dj

c = 〈Sj
c , A

j
c〉 and a

portable skills T j
k = 〈P j

k , R
j
k〉 . When starting to solve the

task M j
i in a new environment i, a mapping hj

i is provided

by the designer and is used to map the task domain Dj
i to

the common domain Dj
c . Mapping hj

i is defined by the tuple

〈f j
i , g

j
i , z

j
i 〉 of surjective functions so that:

f j
i : Sj

i → Sj
c maps the state space (or state components)

of M j
i to that (or those) of M j

c .

gji : Aj
i → Aj

c maps the action space of M j
i to the action

space of M j
c .

zji : yji → yjc maps the reward intervals defined by yji
of M j

i to common reward intervals defined by yjc of M j
c .

Function yji maps each reward rji in the range of the reward

function Rj
i to a unique interval [a, b] = {x εR|a ≤ x ≤ b}.

Mapping hj
i makes it possible for the different MDP do-

mains Dj
i to seem the same to the agent. When solving a

new MDP task M j
i , which has a task-specific domain and

task-specific objectives, Dj
i is mapped to the invariant do-

main Dj
c to enable transfer of the portable task skills, while

T j
i is still to be solved. This results in a new reduced task

model M j
i′ =〈Sj

c , A
j
c, P

j
i , R

j
i 〉 that has an invariant task do-

main Dj
c and task-specific objectives T j

i . Having defined M j
i′

for each task, transferred knowledge T j
k is provided to the

agent at the beginning of the training in a new environment
i. The aim of the learning is to improve the transferred skills
T j
k to solve M j

i′ . Let Lj be the learning algorithm used to

solve M j
i′ . Lj : T j

k → T j
i .

In each new environment, T j
k is initially used and sub-

sequently improved to approximate the skill required for
achieving the task objectives T j

i . We applied n-step TD
methods to learn Mover

c . To solve Mwhol
c , we use Monte

Carlo (MC) methods, which have been shown to be appro-
priate for learning this model of the wholesale market MDP,
whereas Mret

c is solved using SARSA(λ).

3. EVALUATION
For the purposes of evaluation we use two internation-

ally established multi-agent environments as test beds: the
Power Trading Agent Competition (Power TAC) environ-
ment, which is an energy market simulation environment,
and the TAC Supply Chain Management (SCM) environ-
ment - a PC market simulation setting. To evaluate our
SMDP approach, we compare the performance of our bro-
ker, termed AstonTACPlus with the performance of the top
TAC-brokers, AstonTAC and TacTex. Considering the av-
erage total cash received by each agent, the more the mar-
kets (retail and wholesale) are interdependent, the better is
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Figure 2: Learning Curves in Power TAC : this fig-
ure compares the performance of the trader with
and without transfer over 300 games.

the AstonTACPlus’s performance and the worse the perfor-
mance of AstonTAC and TacTex. In the wholesale market,
AstonTACPlus outperforms AstonTAC and TacTex in opti-
mizing the order price and the energy imbalance by having
the lowest average order price and lowest energy imbalance,
whereas in the retail market, it outperforms AstonTAC and
TacTex in optimizing the retail price by having the highest
retail average revenue. Our approach performs well irrespec-
tive of the level of interdependence between the two markets.

Figure 2 shows the average total cash gained by the broker
over 300 Power TAC games of 1080 time steps. The curve
annotated with transfer illustrates the performance in Power
TAC of a test broker agent when trained in TAC SCM with
100 games and placed in Power TAC for further training.
The curve termed without transfer shows the performance
of the same test broker when trained in Power TAC with-
out transfer. The performance of the broker with knowledge
transfer is better to its performance when no transfer is con-
sidered, throughout with the difference in performance being
more significant the less games the agent has experienced.

4. CONCLUSION
In this work, we address the broker’s decision-making prob-

lem by proposing a novel formalization of it as a semi-Markov
decision process (SMDP), which enables the broker to simul-
taneously optimize its retail and wholesale strategies with-
out compromising its global strategy. To reduce the train-
ing time that is needed to learn and solve the SMDP, we
also propose an efficient agent-centric knowledge transfer
approach, which enables knowledge transfer between MDP
tasks with different state and action spaces, as well as dif-
ferent reward functions and state transition models.
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