
A Model for Collaborative Runtime Verification

(Extended Abstract)
Bas Testerink

Utrecht University
Utrecht, The Netherlands

B.J.G.Testerink@uu.nl

Nils Bulling
Delft University of Technology

Delft, The Netherlands
N.Bulling@tudelft.nl

Mehdi Dastani
Utrecht University

Utrecht, The Netherlands
M.M.Dastani@uu.nl

ABSTRACT
Runtime verification concerns checking whether a system ex-
ecution satisfies a given property. In this paper we propose a
model for collaborative runtime verification where a network
of local monitors collaborates in order to verify properties
of the system. A local monitor has only a local view on
the execution of the system; thus, it can verify a specific
system property with respect to its local view. However,
the local monitor can also receive inputs from other local
monitors about the evaluation of the properties that they
are trying to verify. This information can be combined to
allow the verification of more complex properties. A net-
work built from such collaborating local monitors is called
a collaborative monitor.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Meth-
ods

General Terms
Runtime Verification, Security

Keywords
Collaborative Monitoring, Runtime Verification

1. INTRODUCTION
Verifying a given property of a system means checking

whether the system’s behavior satisfies that property. The
verification of multi-agent systems such as traffic and eco-
nomic markets is challenging and it is not always possible
to use offline verification techniques due to their complex-
ity or, in case of model checking techniques, the lack of a
sufficient model of the system. In some cases we can ver-
ify systems at runtime by verifying properties of a running
system by observing the execution trace. However, runtime
verification also has limitations as noted and analyzed in [2].
E.g. the evaluation of a property is always based on a finite
execution trace. A decision must be taken without knowing
the future evolution of the system. Moreover, monitoring
a running system is often a decentralized process. There is

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

not always a central point for data collection which further
complicates the detection of erroneous behavior. A decen-
tralized framework for runtime monitoring systems has been
proposed in [1].

In this paper we propose a model for collaborative run-
time verification where a network of local monitors veri-
fies properties of a system in a collaborative way. We call
such a network a collaborative monitor. For the structure of
collaborative monitors we draw inspiration from decentral-
ized monitoring techniques such as wireless sensor networks
(WSNs)[3]. Like sensor nodes in WSNs, local monitors in
our model have a local view. This view allows a monitor to
evaluate a local property. Additionally, local monitors share
the evaluations of properties with each other. Based on ag-
gregation methods known from WSNs, a local monitor can
then combine the evaluation of its local property with the
ones received from its peers. This allows local monitors to
verify more complex properties without revealing too much
information as only the evaluations of the properties (true,
false, unknown) but not all the local information of local
monitors, e.g. the property themselves, are communicated.

Collaborative runtime monitors can be applied to various
scenarios such as the surveillance of traffic and computer
networks. However, in such environments adversaries may
try to attack the monitor, e.g. by eavesdropping the com-
munication. WSNs are well analyzed in terms of robustness,
security risks and appropriate countermeasures (cf. [4]). We
aim at developing safe and robust collaborative runtime ver-
ification systems by drawing inspiration from the safety and
robustness analyses of WSNs.

2. COLLABORATIVE VERIFICATION
We use linear-time temporal logic (LTL) [5] with the three-

valued Boolean finite LTL semantics of [2] to specify and
verify system properties. LTL is well-known for being suit-
able for the specification of properties in the context of (run-
time) verification [6]. For illustration, consider the formula
ϕ = Gψ which specifies the property: ψ is always true.
The decentralized runtime monitoring framework of [1] is
constructed from local monitors which can only observe the
truth value of a predefined subset of propositional variables.
Clearly, this restricts the set of LTL properties which can
be verified by local monitors. To some extent this limita-
tion is overcome by allowing local monitors to communicate
their observations in the form of a (rewritten) LTL formula
towards their peers. A disadvantage of this approach is that
the rewritten formulae carry structured information which
can be exploited by attacks on the network. The decen-

1781



tralized LTL monitoring framework of [7] is similar to the
framework above, but truth values of propositional variables
rather than rewritten formulae are shared. The key differ-
ence to [1] is that the local monitors have a predefined, in
general not fully connected, communication topology. As a
consequence, a local monitor can in general not know the
truth of all propositional variables.

In this abstract, we present a model that is related to [7]
and [1]. The observation capabilities of a local monitor are
captured by an LTL formula, instead of a set of observable
propositional variables. The intuition is that the monitor
can observe the truth of the formula for each finite execution
trace of the system. Local monitors also receive the truth
values of LTL formulae from neighboring local monitors. An
important difference to the frameworks of [7] and [1] is the
kind of information that is communicated. In our model
communicated information has less structure. A local moni-
tor combines the received inputs, using an aggregation func-
tion, with the evaluation of the property it tries to verify.
As a consequence, it is able to verify a more complex prop-
erty by only receiving structureless inputs, without know-
ing how these inputs were computed. Then, the evaluation
of the complex property of a local monitor is shared with
other local monitors. We define the aggregation function
as a Boolean function. Hence, the aggregated evaluation
shared by a local monitor corresponds to a (fixed) Boolean
combination of LTL formulae as is detailed below.

Collaborative monitors. More formally, we define a
local monitor by m = (f, ϕ), where f is a Boolean function
over k Boolean variables (k ≥ 1) called aggregation function,
and ϕ is an LTL formula, called observation formula. A
collaborative monitor is specified by C = (M, com), where
M is a non-empty set of local monitors and com : M → 2M

is a function that returns, given a local monitor m, the local
monitors from which m receives evaluations of properties.

Given a collaborative monitor C = (M, com) and a lo-
cal monitor m = (f, ϕ) ∈ M , the observation formula ϕ
is evaluated by m at runtime on the finite execution trace
of a system. All monitors from com(m) send their aggre-
gated evaluations to m. Then, m aggregates these inputs
obtained from its peers in com(m) together with the cur-
rent evaluation of its observation formula ϕ by means of the
aggregation function f . Thus, the output of f corresponds
to the evaluation of a complex LTL formula of which the
specific structure is not known to m. We refer to this com-
plex, implicitly given formula by Qm. The evaluation of Qm

proceeds recursively. We require that com does not contain
cycles between local monitors to ensure that the computa-
tion stops.

Given this restriction, the evaluation is computed as fol-
lows. All local monitors m ∈ M in a collaborative monitor
C = (M, com) evaluate their complex property Qm every
time the system makes a transition. Firstly, the local moni-
tors m without neighbors, i.e. those with com(m) = ∅, com-
pute Qm and communicate the evaluation to their neighbors.
Next, each monitor m′ ∈ M that has received evaluations
from all monitors in com(m′) uses its aggregation function to
compute an aggregated evaluation which is, in turn, shared
with all monitors m′′ ∈ M with m′ ∈ com(m′′) that are
expecting an input from m′. This procedure is repeated for
all local monitors.

As an example, consider a collaborative monitor C =
({m1,m2}, com) at a parking lot where m1 = (f1, ϕ1), m2 =

(f2, ϕ2), com(m1) = {m2} and com(m2) = ∅. C’s purpose is
to verify whether an agent a does not need to pay (because
a has a disabled placard or has a parking permit), or pays
before leaving. m1 is located at the parking lot’s exit, its ob-
servation formula is ϕ1 = (¬leavea)Upaya (reading: agent
a does not leave until it has payed). m2 is located at the
parking spaces and can scan front windows. Its observation
formula is ϕ2 = placarda ∨ permita (reading: agent a has a
disabled placard, or a parking permit). f2 returns given the
evaluation of ϕ2 the same evaluation, hence Qm2 = ϕ2. f1
returns given the evaluation of ϕ1 and Qm2 the evaluation
of their disjunction, hence Qm1 = Qm2 ∨ ϕ1. Thus, given a
finite trace σ, Qm1 is true if at the initial state of σ agent
a has a disabled placard, or a parking permit, or does not
leave before paying. Note that m1 can verify Qm1 without
being aware, e.g., whether agent a is disable or not. Hence if
communication between m1 and m2 is intercepted, then this
information cannot be obtained—privacy of a is ensured.

3. FUTURE WORK AND CONCLUSIONS
Arguably, formal analyses of collaborative monitors and

aspects related to robustness and security is important in
order to design many real world multi-agent systems. We
aim to investigate these issues by taking inspiration from
a related field on decentralized monitoring: wireless sensor
networks. As a first step, we proposed in this abstract a
collaborative runtime verification model using LTL as the
specification language. A local monitor verifies properties by
observing the system and by communicating with its peers.
A collaborative monitor consists of such collaborating lo-
cal monitors and allows to verify more complex properties.
At the same time it takes into account security issues by
aggregating information, which hides structured data from
possible attackers.

REFERENCES
[1] A. Bauer and Y. Falcone. Decentralised LTL

monitoring. In D. Giannakopoulou and D. Méry,
editors, Formal Methods 2012, volume 7436 of LNCS,
pages 85–100. Springer Berlin Heidelberg, 2012.

[2] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for LTL and TLTL. ACM Trans. Softw.
Eng. Methodol., 20(4):14:1–14:64, Sept. 2011.

[3] B. Krishnamachari, D. Estrin, and S. Wicker. The
impact of data aggregation in wireless sensor networks.
In Proc. of the 22nd Int.Conf. on Distr. Comp. Systems
Workshops, pages 575–578, 2002.

[4] A. Pathan, H.-W. Lee, and C. S. Hong. Security in
wireless sensor networks: issues and challenges. In The
8th Int. Conf. of Advanced Communication Technology,
volume 2, pages 1043–1048, Feb 2006.

[5] A. Pnueli. The temporal logic of programs. In Proc. of
the 18th Annual Symposium on Foundations of Comp.
Sci., pages 46–57, Oct 1977.

[6] K. Y. Rozier. Survey: Linear temporal logic symbolic
model checking. Comput. Sci. Rev., 5(2):163–203, May
2011.

[7] B. Testerink, M. Dastani, and J.-J. Meyer. Norm
monitoring through observation sharing. In A. Herzig
and E. Lorini, editors, Proceedings of the European
Conference on Social Intelligence, pages 291–304, 2014.

1782




