
An Overview of a Mapping from Processes to Agents

(Extended Abstract)
Tobias Küster

Technische Universität Berlin, DAI-Labor
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

tobias.kuester@dai-labor.de

Marco Lützenberger
Technische Universität Berlin, DAI-Labor

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
marco.luetzenberger@dai-labor.de

ABSTRACT
Business processes are well suited for modelling agents and
their interrelations, but vague semantics and structural dif-
ferences make a mapping from business processes to multi-
agent systems difficult. In this paper, we outline such a
mapping that can be applied to different agent frameworks
and languages. Using this mapping, we created three imple-
mentations suiting different areas of application.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Multiagent systems

General Terms
Algorithms, Design, Languages

Keywords
Agent engineering; Process modelling; Model-driven engi-
neering; BPMN; JIAC

1. INTRODUCTION
Business process modelling has many notions in common

with agents-oriented programming, and has been adopted
for the modelling of multi-agent systems in a number of ap-
proaches (see [1] for an overview of some related work). One
common problem with translating processes to programs is
the mapping of free-form process graphs to more restricted
block-structured programming languages. Also, often the
mapping is informal and ambiguous, or it covers just a part
of the language, particularly for more expressive (and thus
interesting) notations like BPMN [5].

In this paper, we outline a mapping from BPMN processes
to multi-agent systems, covering diverse notions common to
both, such as actors/roles, reaction rules, events, behaviours,
services and message-based communication, and particularly
the different process structures. The mapping has been im-
plemented in three different fashions for the JIAC V agent
framework [3], being suited for different areas of application.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2. MAPPING PROCESSES TO AGENTS
For our mapping, a multi-agent system is assumed to con-

sist of agents implementing different roles, defined by plans,
describing individual behaviours and capabilities, and rules
and goals for when to perform those behaviours. For the
plans, we assume common operations such as sending and
receiving messages, and invoking other plans, as well as basic
structural constructs, like sequential and parallel execution,
conditions, and loops. For the processes, we are assum-
ing BPMN [5], including elements such as participants and
pools, activities, subprocesses, events, and messages.

The mapping works as follows: For each participant, one
agent role is created, with one plan for each process (i.e.
each pool) that participant is involved in. Those pools’ start
events are mapped to rules, triggering the respective plans,
e.g., on the receipt of a particular message, or at a certain
time. The start and end events also influence the plan’s in-
put and output, if any. The content of the plan is determined
by the workflow within that particular pool [2].

The mapping of the workflow to equivalent program code
is not trivial, as it involves the identification and transfor-
mation of structures in the process graph [4], corresponding
to, e.g., loops and conditions, but also more complex struc-
tures involving event handling. The different process struc-
tures covered by this mapping are shown in Figure 1. Here,
the nodes in white colour are actual BPMN nodes, such
as activities and events, while the shaded regions, labelled
zi, correspond to self-contained regions of the process graph
(complex or atomic) that have previously been mapped to
agent script elements, which are then incorporated ‘bottom-
up’ into the encompassing structures.

At the lowest level, there are individual activities and
events, which are mapped to different script elements de-
pending on their respective type. Most of those are straight-
forward, e.g., a send activity is mapped to sending a mes-
sage, and a message event to receiving one. The script task
can be used to inject arbitrary code into the agent’s plan.

3. IMPLEMENTATION
The mapping has been implemented in three different

ways for the JIAC V multi-agent framework: By generating
either JADL++ services [2] or JIAC agent beans [1], or by
direct interpretation. As JIAC combines agents with ideas
from service-oriented architectures [3], the business process
metaphor lends itself well to it.

Each implementation has its strengths and weaknesses,
and they also differ in their exact coverage of the map-
ping (see Table 1, including the mapping from BPMN to

1783



Figure 1: Mapping of Structures. a) Sequence,
b) Condition, c) Parallel, d) Parallel-Conditional,
e) Event-based Condition, f) While-Loop, g) Sub-
process with Event-Handler. Shaded regions corre-
spond to previously matched structures.

BPEL [5] for comparison): i) JADL code is very ‘high-level’
and compact, and it can be deployed at runtime, but its
expressiveness is limited; ii) being pure Java, agent beans
can support any process feature and are highly extensible,
but the created Java classes are also more complex; iii) with
direct interpretation, the processes do not have to follow a
block-structure, but without generated code, there is no way
to extend or adapt the process prior to execution. At the
same time, they are all compatible with each other, e.g., a
message sent by a generated agent bean can be received by
the interpreter or a JADL service, and vice versa. Thus,
it is possible to export one business process diagram to a
heterogeneous system, mapping one pool to, e.g., a JADL
service and another to an agent bean.

Business process modelling can best be applied either at
an early system design stage, to visually model the inter-
action protocols in the core system [2], or at a later stage,
for modelling individual high-level services. Both stages are
supported by the mapping and its implementations.

4. CONCLUDING REMARKS
The presented mapping covers most important aspects of

processes and agents, such as roles and rules, activities and
events, messages and services. It also supports many dif-
ferent process control-flow structures, translating them to
equivalent block-structures, like loops and conditions.

The mapping has been implemented in three different
ways for the JIAC V multi-agent framework, having indi-
vidual strengths and weaknesses: Agent beans are fast and
versatile, making them the best choice for the core processes
of the multi-agent application, while JADL scripts and in-
terpreted processes are more flexible and thus best suited
for dynamic and adaptable behaviours.

For future work, we plan to extend the mapping to also
cover the creation of agent goals. The BPMN ad-hoc sub-
process appears to be a good candidate for this. Also, this

Table 1: Comparing mappings from BPMN to X.
-/o/x means no/partial/full support.

Element BPE
L
JA

DL
Ag.B

ean
s

Int
erp

r.

W
o
rk

fl
ow

XOR, AND, OR Gtw. x x x x
Event-based XOR Gtw. x x x x
Complex Gateway - - - -
Event Handler, Error x x x x
Event Handler, Other x - x x

A
ct

iv
it

ie
s

Send, Receive Task o x x x
Service Task x x x x
User Task o - o o
Manual Task - - - -
Script Task - x x o
Subprocess o o x x
Transaction - - - -
Call Activity o o o o

E
v
en

ts

Message o x x x
Timer x x x x
Rule - o x o
Signal - - - o
Escalate - - - -
Error x - x x
Compensate x - - -
Cancel - - - -
Terminate x - x x

M
is

c.
Properties, Assignments x x x x
Lanes, Artefacts - - - -
Participants / Roles - x x x
Service Starter o x x x

will require the extension of BPMN with service semantics,
both of which are goals of our ongoing research projects.

REFERENCES
[1] T. Küster, A. Heßler, and S. Albayrak. Towards

process-oriented modelling and creation of multi-agent
systems. In F. Dalpaiz, J. Dix, and B. van Riemsdijk,
editors, LNAI post-proceedings of 2nd Int. Workshop on
Engineering Multi-Agent Systems, volume 8758 of
LNAI, pages 163–180. Springer, 2014.

[2] T. Küster, M. Lützenberger, A. Heßler, and B. Hirsch.
Integrating process modelling into multi-agent system
engineering. Multiagent and Grid Systems,
8(1):105–124, January 2012.

[3] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele,
N. Masuch, A. Heßler, J. Keiser, M. Burkhardt,
S. Kaiser, J. Tonn, M. Kaisers, and S. Albayrak. A
multi-agent approach to professional software
engineering. In M. Cossentino, A. E. F. Seghrouchni,
and M. Winikoff, editors, Engineering Multi-Agent
Systems – 1st Int. Workshop, EMAS 2013, Revised
Selected Papers, volume 8245 of LNAI, pages 158–177.
Springer, St. Paul, MN, USA, May 6–7 2013.

[4] J. Mendling, K. B. Lassen, and U. Zdun.
Transformation strategies between blockoriented and
graph-oriented process modelling languages, 2005.

[5] OMG. Business process model and notation (BPMN)
version 2.0. Specification formal/2011-01-03, Object
Management Group, August 2011.

1784




