
Collective Imperatives and Deadlines

(Extended Abstract)
Luca Gasparini

Timothy J. Norman
Martin J. Kollingbaum

Liang Chen
Dept. of Computing Science

John-Jules Ch. Meyer
Information and Computing Sciences

Utrecht University
The Netherlands.

ABSTRACT
Our focus is on the specification and verification of norma-
tive systems that include contrary-to-duty, collective and
event-driven imperatives with deadlines. We propose an op-
erational syntax and semantics for the specification of such
systems. Using Maude and its model checker, we show how
Linear Temporal Logic properties can be verified, and pro-
vide some experimental results.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing

Keywords
Model Checking, Normative Systems, Collective Imperatives

1. INTRODUCTION
Existing approaches for the verification of normative sys-

tems consider limited representations of norms, often ne-
glecting event-governed norms, collective imperatives, dead-
lines and contrary-to-duty (CTD) obligations. In order to
capture the requirements of real-world scenarios, these struc-
tures are important. In this paper we propose methods
for the specification and formal verification of such com-
plex normative systems. We illustrate, through a intelli-
gence, surveillance and reconnaissance (ISR) scenario, an
operational syntax for còir, a normative specification lan-
guage that supports all the features of interest. We illustrate
the operational semantics for a monitoring component that,
given a set of còir norms and a model of the environment
and the agents acting within it, keeps track of activation,
expiration, fulfilment and violations of norm instances. We
use Maude [1] to implement this model and, use its Lin-
ear Temporal Logic (LTL) model checker to show how live-
ness and safety properties can be verified. We then provide
some experimental results of model checking performance
with varying numbers of agents in the ISR scenario.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2. ISR SCENARIO
Consider a coalition of agents of the sea-guard, consisting

of a set of UAVs, helicopters, and boats. The goal is to mon-
itor and intercept unauthorized boats in a restricted area.
The norms that guide the behaviour of the coalition are: (1)
At any moment at least one member of the coalition must
monitor the area. Moreover, we prefer UAVs to monitor the
area than helicopters. We assume that only helicopters and
UAVs are capable of monitoring. (2) Whenever an unautho-
rized boat is detected in the area, an agent must intercept
it before the deadline (3 time steps) expires. (3) If no agent
intercepts the boat, then at least one member of the coali-
tion must send a report to head-quarters before the deadline
(3 time steps) expires.

These are all examples of collective imperatives: they re-
quire at least one member of the coalition to act [3]. Norm
3 is also a CTD obligation that is activated in the event of
a violation of obligation 2. Moreover, norms 2 and 3 require
agents to perform an action before a certain deadline (a live-
ness property), norm 1 requires that at any given moment
someone is monitoring the area (a safety property).

3. CÒIR
We now give a precis of the syntax and semantics of còir.

Compliance with norms is evaluated against a knowledge
base KB that models the environment and the agents acting
within it. A norm ndi is defined as a tuple:

〈idi,modi, acti, expi, goali, ddli〉

where: idi is an identifier; modi specifies the modality; obli-
gation with deadline (O) or prohibition (F); acti describes a
pattern that, when matched in KB , causes a norm instance
to be detached; goali represents the situation that needs to
be brought about (in the case of an obligation) or avoided
(in the case of a prohibition); expi is a condition that, when
met, causes the expiration of the norm instance; and the
deadline for the fulfilment of the norm requirements (ddli)
can be either temporal or symbolic and is defined only for
obligations. A prohibition specifies that goali must be false
for the whole duration of the instance activation, whereas
an obligation is fulfilled if the goal becomes true at a certain
point before the deadline expires.

In order to enable the specification of CTD norms, we in-
clude the description of previous violations in KB . These

1821

University of Aberdeen, UK

Verifying Normative System Specifications Containing

Table 1: Unbounded model checking results
cA uB nd1 nd2 nd3 nd4 States Time

Part a: ddl2 = ddl3 = TEMPORAL (3)

2 2 X X X 20012 2m
3 2 X X 19032 2m
2 2 X X X 61884 10m
3 2 X X X 72327 15m
2 2 X X X X 243994 1h,16m
3 2 X X X X 870165 25h

Part b: ddl2 = ddl3 = TEMPORAL (1)

3 2 X X X X 75245 16m

can then be referred to in the activation condition. We al-
low goali, expi, and ddli to include variables that are not
bound at activation time. The combination of negation and
existential quantification over these variables enables us to
express some common patterns of collective norms; e.g. each
member of a group g must perform a task t.

The semantics of the còir monitoring component is given
by means of structural operational semantics (SOS) [4]. A
configuration contains the knowledge base KB , the set of
norm descriptions, the set of active instances and the set of
current violations. We organize the SOS in different stages:
(A) Deactivate instances for which the expiration condition
holds or the obligation has been fulfilled. (B) Check for vi-
olations of active obligations and prohibitions. (C) Check
for the activation of new instances. It might be necessary to
loop multiple times through A, B and C, for example to ver-
ify whether a newly activated instance is instantly violated.

Following Lamport [2], we model temporal deadlines by
introducing a timer for each active obligation instance, avoid-
ing to explicitly represent the current time which would lead
to an infinite state space.

We chose Maude to implement the model because its rewrit-
ing rules syntax and semantics are very close to SOS, and
in so doing we obtain an executable specification on which
we can perform LTL model checking.

4. MODEL CHECKING CÒIR
Norm 2 from our ISR scenario can be specified in còir as:

nd2 = 〈2, O, act2, exp2, goal2, TEMPORAL(3) 〉
act2 = IN{ type(?add,coalition) /\ type(?ar,rArea)

/\ inArea(?ag1,?ar) } FILTER NOT EXISTS{

type(?ag1,?type) /\ subType(?type,authAgent) }

exp2 = VIOLATED \/ NOT EXISTS { inArea(?ag1,?ar) }

goal2 = EXISTS{ intercepting(?ag2,?ag1)

/\ memberOf(?ag2,?add) }

Variables are identified by strings starting with a “?” char-
acter. The obligation is addressed to a coalition ?add, and it
is activated when an unauthorized agent ?ag1 is detected in
a restricted area ?ar. It is fulfilled if a member ?ag2 of ?add
intercepts ?ag1 before the deadline expires. An instance ex-
pires if it is violated or ?ag1 exits from ?ar. Norm 1 can
be specified as two norms: it is prohibited that no UAV is
monitoring the area; and it is prohibited that neither a UAV
nor a helicopter is monitoring the area.

The Maude model checker, given an initial state and a
set of transition rules generates a Kripke structure that is
used to verify a given LTL property. We now discuss how
LTL model checking can be used to verify correctness-related

properties. Consider a variation of nd2 stating that we re-
quire one and only one agent to intercept an unauthorized
boat. We may attempt to express the norm with the goal:

goal2 = COUNT (?ag2 IN { memberOf(?ag2,?add)

/\ intercepting(?ag2,?ag1) }) = 1

This goal is satisfied when exactly one member of the coali-
tion (?ag2) is intercepting ?ag1. To verify if this is cor-
rect we can use the following LTL property, which says that
having both a UAV and an helicopter intercepting ub (an
unauthorized boat) always results in a violation of nd2.

2((intercepting(uav,ub) ∧ intercepting(heli,ub)

∧ inArea(ub,rArea))→ violated(2))

The model checker returns false and an example of an ex-
ecution trace that violates the property. In fact, if uav and
heli start intercepting at two different instants of time, the
obligation instance is considered fulfilled when the first agent
starts intercepting. In order to capture the intended mean-
ing we need a combination of an obligation to have someone
intercepting before the deadline and a prohibition from hav-
ing more than one agent intercepting the same boat.

Table 1.a shows execution times and number of states ex-
plored for the model checking of different scenarios1. cA and
uB are the number of coalition agents and unauthorized
boats respectively. Columns nd1 to nd4 specify whether
each norm was included or not (nd1 and nd4 are the two
prohibitions that specify norm 1). We verified a true safety
property which requires the model checker to explore all the
reachable states.

Table 1.b illustrates that modelling deadlines, even using
Lamport’s abstraction [2], has a significant impact on ex-
ecution times. Increasing the number of agents modelled
also has an important effect, but this may be mitigated by
exploiting domain symmetries (e.g. all UAVs may be be-
haviourally equivalent).

5. CONCLUSIONS
We have outlined the syntax and semantics of còir, a nor-

mative language that supports the specification of contrary-
to-duty, collective and event-driven imperatives with dead-
lines. We have shown how LTL properties can be verified
via the Maude implementation of còir and briefly discussed
some of the challenges in model checking such complex nor-
mative systems specifications.

Acknowledgments
This research was sponsored by Selex ES.

REFERENCES
[1] M. Clavel et al. All about Maude-a high-performance

logical framework. Springer, 2007.

[2] L. Lamport. Real-time model checking is really simple.
In Correct Hardware Design and Verification Methods,
pages 162–175. Springer, 2005.

[3] T. J. Norman and C. Reed. A logic of delegation.
Artificial Intelligence, 174(1):51 – 71, 2010.

[4] G. D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, University
of Aarhus, 1981.

1All tests ran on a Intel Core i5 2.7Ghz, 16 GB RAM.

1822

