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ABSTRACT
We propose a lifelong experimental learning method for cog-
nitive robots to build and transfer knowledge among appro-
priate contexts. Experience gained through learning is used
as a guide to future decisions of robots for both efficiency
and robustness.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles; I.2.6 [Learning]: Concept learning
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1. INTRODUCTION
Learning is an important key to robustness and efficiency

in future decisions of a robot. Our main objective in this
work is to investigate methods that ensure robustness in task
execution by a cognitive robot through its real-world exper-
imentation and learning. Our work builds on our previous
work and extends it with a lifelong experience-based learning
approach [2]. We use Inductive Logic Programming (ILP)
as the learning method to frame hypotheses mapping from
execution contexts to action outcomes. Execution contexts
include symbolic predicates on actions, objects in interest
and their relations which are expressed in first-order logic
sentences for derivation of hypotheses. Derived hypotheses
are then used to devise heuristics for guidance in planning.

Our contribution lies in the way we use learning and incor-
porate contextual information into a knowledge-based learn-
ing approach for hypothesis derivation. Hypotheses can be
expressed in first-order logic sentences, and the learning pro-
cess can use background knowledge to generalize. We show
that without a model-based failure isolation, robustness can
be ensured by experience-based learning and learning-guided
planning to present alternative solutions to failed cases.
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2. LEARNING FAILURE CONTEXTS
The lifelong experience-based learning problem that we

investigate asks for cognitive robots to learn hypotheses (H)
that map action execution contexts (C) to failure cases thro-
ugh observations. This is needed to model such cases and
prevent from potential damages to the environment or the
objects in interest. An incremental and continual approach
is needed to model the observations on the outcomes of exe-
cution. Furthermore, the learning algorithm should be able
to represent hypotheses by logic sentences since the knowl-
edge base of a cognitive robot is represented symbolically to
reason and plan for achieving its goals. Since a robot has
partial observability, the facts that it can extract from the
world do not always cover all the predicates that describe
the world but only the observable ones.

The main problem that we address differs from that of ex-
isting systems [1, 3, 4, 6] in the way experience is built and
learning is accomplished by a cognitive robot. The robot
is assumed to have an initial domain knowledge, and we
let the robot learn failure contexts from experimentation in
the real world. The robot learns incrementally and builds
its experience runtime. Then, it updates its planning do-
main based on its experience on failure contexts to reduce
further failures in execution. The robot comes up with cor-
rect conclusions by using abstraction and reasoning. These
facts necessitate knowledge-based learning methods to be
integrated with planning systems.

We use Inductive Logic Programming as the continual
learning process. Inductive Logic Programming framework
for real-world experimentation incorporates the following in-
puts for each operator oi corresponding to a real-world ac-
tion ai:

1. Real-world observation history Obs is built by each
observation at time step t, obst ∈ Obs (0 ≤ t ≤ T )
maps an observed execution context ct ∈ C that in-
cludes symbolic predicates to the observed outcome
(success, failure) of the execution of ai. Eventually,
Obs represents a set of positive examples (p) corre-
sponding to successful outcomes and negative exam-
ples (n) to failed outcomes of execution of ai.

2. Background theory B representing prior knowledge.

Either the known or the observed features of objects to be
manipulated, their relations and the observable features of
the world state are considered in representations of contexts.
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Given these inputs, the learner finds a hypothesis space H,
that explains the positive examples and rejects the negative
examples about ai and generalizes C using B. Whenever
needed, new hypotheses may be framed based on new obser-
vations or existing ones are abandoned, and the knowledge
base (KB) is updated according to this inference result.

We use and enhance the Progol algorithm [5], and inves-
tigate its strengths and weaknesses for framing hypotheses
on failure cases. Progol is based on inverse resolution ap-
plying an inverted deductive proof process. Since the set of
classifications are fixed (success, failure) in our case, the
process can trace back to frame a general hypothesis. We
enhanced the algorithm to interpret ambiguous observations
by computing probabilities of hypotheses (PROGOL−P ).

2.1 Hypothesis Framing for Failure Cases
To illustrate how hypotheses are framed for failure cases,

a ground robot scenario can be given as follows. Assume
that the following observations are taken by the robot:

obs1 : category(box)∧ shape(prism)∧ color(green)∧
material(paper) ∧ size(small) ∧ success(pickUp)

obs2 : category(box) ∧ shape(prism) ∧ color(black) ∧
material(paper) ∧ size(large) ∧ success(pickUp)

obs3 : category(box)∧ shape(cylinder)∧ color(red)∧
material(paper) ∧ size(large) ∧ failure(pickUp)

Each observation obst corresponds to an instance of an
execution of action pickUp. A context ct, in this example
represented by the attributes of the object to be picked up
is mapped to the outcome of the observed action (success/
failure). When the ILP learning is applied on this set, the
following hypotheses are derived:

shape(prism) → success(pickUp)

shape(cylinder) → failure(pickUp)

After framing these hypotheses, suppose that the robot
gets a new observation:

obs4 : category(box)∧ shape(prism)∧ color(green)∧
material(plastic) ∧ size(large) ∧ failure(pickUp)

After getting this observation, hypotheses in the KB are
generalized as follows:

shape(prism)∧material(paper) → success(pickUp)

material(plastic)∨shape(cylinder) → failure(pickUp)

Note that the probabilities for these hypotheses are com-
puted as 1 since there are no conflicting observations. In
this particular example, only the attributes of a single ob-
ject are taken into account. However, in a more complex
scenario involving many objects, the attributes of all objects
and their relations are in consideration. As with other super-
vised learning methods, a sufficient number of observations
are needed to come up with correct conclusions. The main
superiority of the ILP learner to the conventional learning
methods is its knowledge-based representation.

2.2 Learning-based Guidance
Lifelong learning procedure continually frames new hy-

potheses during execution. Hypotheses derived from ob-
servations are then used to provide feedback to improve a
robot’s performance on its future tasks which enables real-
world experimentation. In this work, we particularly use
precondition update guidance method for failed operators.
A learned failure context is added as a constraint in the
corresponding precondition. The other proposed guidance
methods are out of the scope of this paper [7].

3. RESULTS AND CONCLUSIONS
We investigate how our autonomous robot autonomously

builds experience in a task of cleaning the environment by
manipulation of objects randomly scattered around. When-
ever a failure is detected, the corresponding observation along
with its related context is encoded in the KB. All processes
run online on the robot without any supervision.

The overall success rate of the robot in action pickUp is
97.08% in 100 pickUp trials. In our scenarios, we analyze
hypothesis generation performance of our system if exter-
nal failures are introduced by human intervention. We have
seen that when the robot is enforced to fail executing pickUp
action on a specific object type, the system can generate
hypotheses to explain failure cases. In this particular ex-
periment, the other learning algorithms (Naive Bayes Clas-
sifier, Bayes Networks, Support Vector Machines and ID3
Decision Tree Learning) are also successful in framing cor-
rect hypotheses. However, these algorithms perform poorly
where the use of background knowledge is benefical. In our
second experiment, we have analyzed this issue. In this case,
the robot is enforced to fail when the objects are located in a
bounded spatial region. Without background knowledge on
locations, the learning algorithms cannot correctly explain
the underlying failure situation. However, PROGOL−P al-
gorithm, outperforming the others, can incorporate back-
ground knowledge and can abstract the failure context with
97.06% accuracy.
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