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ABSTRACT
We consider the problem of learning the meaning of natural
language expressions. In contrast to traditional settings, in
which agents infer prescribed meanings from observations,
we focus on an algorithm for the coordination of meaning
among many agents. We do not assume any external cor-
rectness criterion. We propose an agent-based iterative al-
gorithm for coordinating the semantics of upward monotone
proportional quantifiers. We describe simple instances of our
model in terms of Markov chains. We observe a mathemat-
ical connection between the possibility of convergence and
specific levels of agents authority and complexity of commu-
nication patterns. We discuss the possibility of extending
the model to cover the parameter of spatial separation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—coherence and coordination; I.2.0 [Artificial In-
telligence]: General—philosophical foundations
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1. INTRODUCTION
Semantics acquisition is traditionally modelled as conver-

gence to an external, prescribed meaning on the basis of
observations. The existence of such ‘true’ semantics is how-
ever conditional on the prior emergence of meanings through
communication between many agents. Even the ‘true’ mean-
ings change and are rarely completely shared within a pop-
ulation. Nevertheless, humans somehow adjust the reper-
toire of meanings and become successful in communicating.
Completely shared unique semantics is not necessary for this
purpose. We study a possible agent-based mechanism for
distributed coordination of meanings.

Learnability of quantifiers has been studied in the single-
agent context (see e.g. [2]). The idea of semantic change is
mentioned, in a relevant context, in [3]. Semantic coordina-
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tion methods have been used before in the context of colour
categorization [4].

2. COORDINATION MECHANISM
We identify meanings of expressions with algorithms for

checking the expression’s truth value in finite models. Dur-
ing coordination each agent may reassign an algorithm to a
given expression. We focus on mathematically usable quan-
titative expressions, generalized quantifiers. For simplicity,
we restrict to upward monotone proportional quantifiers of
type (1). The meanings of quantifiers are identified with
completely reduced fractions from [0, 1], called Farey frac-
tions, which serve as rough approximations of algorithms.
Given a quantifier expression Q, identified with p/q, and
a finite model (U,R) with the universe U 6= ∅ and the
property R ⊆ U , the sentence QxR(x) is true in (U,R) iff
|R|/|U | > p/q. The computation procedure is clear from
the definition. The most prominent example of a natural
language quantifier interpretable in this way is Most. Note
that the only information necessary to calculate the truth
value is the proportion |R|/|U |, where | · | stands for cardi-
nality. Thus, we identify relevant finite models with rational
numbers from [0, 1].

Below we model the coordination of meaning of a quanti-
fier expression Q via communication. We think of agents as
equipped with a quantifier Q and simple linguistic construc-
tion, relevant for uttering sentences of the form QxR(x).1

Let Fk denote the set of irreducible fractions between 0 and
1 (inclusively) whose denominators do not exceed k. Pa-
rameters of the model are n, k,X, where n, k are positive
integers and X is a random variable with an associate prob-
ability function P . H = Fk is the space of hypotheses which
agents may choose from. A = {1, 2, . . . , n} is referred to as
the population. X assumes values in [0, 1] and approximates
the contexts (environments) in which agents communicate.

The coordination proceeds in stages. At any given stage,
each agent a ∈ A associates with Q a meaning s(a) ∈ H.
Conversation patterns for the present stage are generated.
A conversation pattern consists of two agents a, b and a
topic r ∈ [0, 1]. Agents communicate according to the gen-
erated patterns. In a conversation (a, b, r), a communi-
cates to b the truth value of ‘r > s(a)’ and b does the
same towards a with ‘r > s(b)’. Next, an agent-based co-
ordination mechanism is performed simultaneously by all
agents. Let us take an agent a ∈ A, and let b1b2 . . . bm
1We assume that this type of statements are the only ones
allowed in communication among agents.

1853



and r1r2 . . . rm be the complete lists of a’s interlocutors
and corresponding topics of conversations. Agent a’s goal
now is to adjust her current semantics. Each h ∈ H is as-
signed a score, corresponding to the degree of agreement
that a would attain, if h were her new semantics. Let us fix
h ∈ H. Generate a binary vector z1z2 . . . zm where zi = 1,
if ri > s(bi) ⇔ ri > h, and zi = 0 otherwise. Intuitively,
zi indicates whether the truth value communicated by bi on
ri is the same as the truth value that a would communi-
cate given the semantics h. Eventually, h is assigned a score
score(h) = Σm

i=1zi. Additionally, if h is the same as a’s
current hypothesis, the final score of h is increased by 1. Fi-
nally, we set M := {h ∈ H : ∀h′ score(h) ≥ score(h′)}. Let
S(M) denote the set of all Farey fractions from M with the
smallest denominators.2 A random element from S(M) is
chosen as a’s current hypothesis—this is the semantics that
a shall use in the next stage of the coordination.

3. COORDINATION MODELS
As the first step we consider coordination for two agents.

We define three models: a simple one, one with authority pa-
rameter, and one combining authorities and more complex
conversation patterns. Below we sum up the preliminary
findings for each of the models. We represent the models in
terms of Markov chains. We study the influence of authori-
ties and conversation patterns on coordination.

Let us start with a simple Model I. We fix the parameters,
n = 2. At each stage, agents perform one conversation on
a single topic. We represent Model I by the Markov chain
on S = Fk × Fk. A state s = s1s2 ∈ S refers to the situ-
ation in which agents 1 and 2 understand Q as s1 and s2,
respectively. For any s, s′ ∈ S, the transition probability
pss′ describes chances that a population changes its seman-
tics from s to s′ during one stage of coordination. By the
Markov representation, we observe that only the existential
quantifier or the trivial (always false) quantifier more than
everything may emerge, unless initial semantics is a constant
function s : A→ {u}, for some u ∈ H, 0 < u < 1. This ob-
servation is not favourable for Model I, as it does not explain
how more complex semantics could emerge.

Model IIA has one new parameter—authority function
w : A→ R+. We only modify the scoring procedure. Let us
take a ∈ A, and let w0 be a’s authority and w1w2 . . . wm au-
thorities of a’s interlocutors. We set score(h) = Σm

i=1(zi·wi).
Additionally, if h is the same as a’s current hypothesis, we
add w0 to the final score of h. For a constant non-zero
authority function, Model IIA resolves into Model I. How-
ever, differentiated authorities facilitate coordination. Con-
sider authorities w1 > w2. It is four times more probable
in Model IIA than in Model I that the population changes
from 01 to 00. Moreover, population cannot change from 01
to 10 (or from 10 to 01). Thus, we cannot have the following
cycles: 01, 10, 01, 10, . . ., while they may occur in Model I.
In Model IIA, if an agent with the greatest authority starts
with 0, then the semantics cannot stabilize on anything else
than 00 (similarly for 1). In Model I, it does not matter
whether agents starts with 0 or 1—she can always change to
0 or 1. If an agent with the greatest authority starts with
something other than 0 and 1, then the semantics diverge
forever. This effect is partially due to the simplicity criterion
that tells agents to choose among the simplest hypotheses,

2This choice is driven by the preference of simple solutions.

but another reason for this is a very low complexity of com-
munication patterns.

In Model IIB the communication pattern is more complex.
At each stage, two topics are generated and each agent com-
municates with every other agent about the two topics. We
observe that an agent may choose more complex semantics
only if her interlocutor possesses complex semantics and has
greater authority. Most is achievable in such a model.

Moreover, we hypothesize that if the topics of real-life con-
versations obey a rule similar to normal distribution, then
our coordination model explains why the quantifier Most
emerged in natural language.

4. CONCLUSIONS AND OUTLOOK
Markov analysis of simple models reveals several features

of coordination mechanisms. It turns out that authority
functions significantly affect the behaviour of the popula-
tion. Differentiated authority functions are propitious for
coordination and the quality of communication, whereas
equality among agents makes the coordination more difficult
and the communication less successful. This observation ex-
tends to larger populations. Moreover, higher complexity of
communication patterns may lead to the emergence of more
complex semantics.

The authority may have less impact on others when com-
munication is less frequent. It is worth noting that empirical
experiments have already revealed a strong negative corre-
lation between the physical distance and the frequency of
communication (viz. Allen’s Curve, [1]). The next step of
this research is to take into account larger populations and
to account for the distance factor.
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