
Agent-Based Adaptive Mobile Computing in Games

(Demonstration)
Damian Burke, Axel Heßler, Sahin Albayrak

TU Berlin, DAI-Labor
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

{damian.burke,axel.hessler,sahin.albayrak}@dai-labor.de

ABSTRACT
The demonstration is showing a mobile application (2-player
game), utilizing context-awareness relying on agents. The
agents are gathering and processing context-data retrieved
from the device’s built-in sensors, which will be distributed
within the system. The application (game) adapts to cer-
tain changes in the environment (in the demo: connectivity,
power supply) to preserve the mobile device’s power level as
well as decrease network utilization.

The presentation can be found at: http://goo.gl/ZFOnUO

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

Keywords
Multi-agent system, mobile computing, context-awareness

1. INTRODUCTION
With increasing numbers of mobile devices, mobile com-

puting gained more traction in the last few years. Current
flagship devices are sold with quad-core or even octa-core
CPUs, high-resolution displays, as well as increased phys-
ical size of displays – offering high performance but also
high power requirements. With limited device size, the bat-
tery size is also restricted, manufacturers have to make a
trade-off between the device’s physical thickness and the
battery’s capacity. With mobile devices currently offering
resolutions ranging between 720p and 1440p, often times
they are used as mobile gaming-center. Especially running
graphics-intense 3D games on these devices decreases the
device’s life-span on a typical battery-charge immensely. To
counteract this, developers of games may reduce it’s quality
– for example lower the quality of textures, reduce the fram-
erate, or simply render the game at a lower resolution. Often
times games either offer no possibility to reduce these quality
settings, or they are placed within a multi-leveled settings
menu which the user would have to access each time these
settings are changed. To adapt these settings automatically
or in runtime requires context-awareness.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Agent systems have already found some traction in mobile
development, for example with JADE for Android[1], but
most of the approaches and implementations are focussed on
turning the device itself into an agent, working in a multi-
device agent system.

2. METHODS
The demonstration presented shows an example of a multi-

agent system within a mobile device. Multiple agents are
deployed on a mobile operating system, each autonomously
capturing and processing certain information or executing
tasks. In the demonstration, multiple agents are collecting
information on the device’s context as well as environment,
processing these and passing them on to the application.

Figure 1: Agent Management Structure

Figure 1 depicts a simplified version of the used agent
management structure. In the simplified version, the agent
management system is centralized within the application it-
self.

2.1 Agent Management
Agents are stored within the local agent management sys-

tem (AMS). In this demonstration, to allow both easy port-
ing and testing, the AMS is located within the application
itself and bound to its runtime. In an optimal setting, these
agents were to be deployed centralized on the system, gath-
ering and processing information in the background. In this
demonstration, mainly two agents are utilized. One agent is
monitoring the device’s battery – i.e. it’s power level as well
as state (charging or discharging). This plays a significant

1905

http://goo.gl/ZFOnUO


role on mobile devices – determining how much power the
application may use and such how much processing time in-
dividual tasks may require. The demonstration utilizes these
information to reduce the overall refresh rate of displayed
content, as well as the calculations – the frames per second
(FPS). Reducing the FPS in a game also reduced the user
experience since fast movements may stutter – on the other
hand it significantly reduces the processing time required
and thus the power consumption. The other agent is observ-
ing the device’s network interface; the network transmission
speed and availability is important for many applications,
and used in the demonstration to reduce or increase the
transmitted information. In all circumstances, information
to keep the application’s state synchronized and consistent
have to be transmitted. Non-essential information may be
omitted to reduce the network workload. Combining these
agents, it is possible to allow cross-referencing of the agent’s
states: Low network quality but a charging device might al-
low for compression of information sent instead of omitting
them, to further increase the user experience.

2.2 Communication
An important factor is the communication between dif-

ferent agents – especially to allow agent cross-referencing
of states between multiple agents, as well as cooperations.
Two different ways of communication are implemented into
the agent system; since this is focussing on a demonstration
of the system, the exact protocols will be omitted. Agents
are able to communicate direct or indirect. Direct commu-
nication happens by message-forwarding through the agent
management system; indirect communication takes places
by storing messages on the message board – these messages
might be broadcasted to all other connected agents or di-
rected into specific message queues.

2.3 Adaptation
To utilize the information provided by the agents, applica-

tions have to be adaptive. Implementing algorithms able to
handle different sets of available information is an important
factor, as well as adding control mechanisms into the appli-
cation to switch between these algorithms. The demonstra-
tion adapts to information provided by two deployed agents:
Upon receiving a new message, the state is checked – recog-
nizing an important change in the state (e.g. connectivity
change or power supply changed) will be treated by chang-
ing an internal flag as well as exchanging certain algorithms.
Switching from high-quality networks to lower-quality ones
will exchange the used position prediction algorithm (using
a lower-degree polynomial), this reduces the precision but
also requires less data. The removal of a power supply re-
sults in the renderer reducing the generated and calculated
frames per second, thus requiring less power.

3. RESULTS
The execution of the demonstrated approach was evalu-

ated in two settings. At first, in a simulated environment
– i.e. one device with simulated networking and added de-
lays. To gain more detailled information and value on the
approach’s usability in real-life scenarios, the multiplayer
game shown in Figure 2 used as demonstration is also gath-
ering statistical data – focussed on the impact on network
utilization and load.

Figure 2: Game implemented with example usage of agent-
based context-awareness to determine connection quality
and battery / power state of the device.

Figure 3: Network Utilization Over Time in executed sample
application: The adaptive application sent roughly 13.08%
less than the static application.

Figure 3 shows the network traffic produced by the demon-
stration application over the course of roughly 55 seconds.
With a reduction of traffic by roughly 13% while keeping the
user experience high as well as different states of applications
consistent.

4. DISCUSSION
Realizing adaptive applications with agents has potential

to improve the overall workload of mobile operating sys-
tems; even though processing power and battery capacities
are rising, these resources are still limited and need to be
preserved especially in mobile devices, which do not have
access to external power sources or high-bandwidth connec-
tions at all times. Mobile devices often times have differ in
the available hardware components, especially the sensors
– smartphones may or may not have access to a variety of
network interfaces (UMTS, LTE, . . . ) - having a modular-
ized approach with autonomous components – the agents –
allows the system to be applicable on all systems, with lim-
itations to sensors and available context-data applying in
run-time; the application utilizing these data thus is able to
respond to certain triggers or information sets, depending
on their availability.

REFERENCES
[1] M. Ughetti, T. Trucco, and D. Gotta. Development of

agent-based, peer-to-peer mobile applications on
android with jade. In Mobile Ubiquitous Computing,
Systems, Services and Technologies, 2008.
UBICOMM’08. The Second International Conference
on, pages 287–294. IEEE, 2008.

1906


	Introduction
	Methods
	Agent Management
	Communication
	Adaptation

	Results
	Discussion
	List of Requirements



