Open Game Tournaments in STARLITE

(Demonstration)

Jack Hopkins
Dept. of Computer Science
Royal Holloway
University of London, UK

jack.hopkins@me.com

ABSTRACT

STARLITE is a novel web-based agent platform that allows open,
dynamic execution of agent simulations. Using STARLITE re-
searchers can start simulations as web applications whose URI can
then be used by other researchers to inspect progress with these
simulations and deploy their agents on them dynamically to test
their behaviour and performance. We describe the overall archi-
tecture of STARLITE and exemplify its main features through a
tournament simulation for the Iterated Prisoner’s Dilemma (IPD).

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Experimentation

Keywords

Agent platforms, Game tournaments, Web agents

1. INTRODUCTION

Models and representation languages that enable agents to make
decisions in social contexts are becoming increasingly important
because they help us gain insights into how complex social interac-
tions might evolve in the real world. However, how to make these
models computationally tractable and use them to test hypotheses
for practical applications is often a challenge. One common ap-
proach in this context is to experimentally validate theoretical mod-
els with simulation, as it is often the case with mechanisms based
on game theory. In such applications accuracy can be traded for
complexity, allowing for far more complex models that explain a
wide range of phenomena, from altruism to eusociality. Insights
into such systems can be made by analysing individual agent strate-
gies and how they compare when competing with each other. De-
spite extensive research into such strategies, very few general sim-
ulation environments have been proposed for game simulations.

STARLITE (Simulation Testbed for Agent Research) ! is a gen-
eral and adaptive web-based framework that allows continuous test-
ing of agent strategies contributed by researchers from all over the

"http://dice.cs.rhul.ac.uk/software_project/starlite/

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum

(eds.), May 4-8, 2015, Istanbul, Turkey.

Copyright © 20135, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Ozgir Kafal
Dept. of Computer Science
Royal Holloway
University of London, UK

ozgur.kafali@rhul.ac.uk kostas.stathis@rhul.ac.uk

1927

Kostas Stathis
Dept. of Computer Science
Royal Holloway
University of London, UK

Model

Iterative Prisoners Dilemma Tournament

Persistence

Retneve

controller

Wurker worker Woorker Worker Worker

b . .

Infrastructure
Agent

Application
Agent

Figure 1: The MVC-based STARLITE architecture.

world, via custom simulations (e.g. tournaments). It is built upon
GOLEMLITE [1], a framework that allows both agents and envi-
ronments in which they are situated to be specified imperatively (in
Java) or declaratively (in Prolog). The work introduces STARLITE
and outlines how it can be used to run an IPD tournament.

2. RELATED WORK

Popular agent platforms (e.g. JADE) do not allow developers to
add agents dynamically from any web-location to an already run-
ning application. Modelling4All> allows non-programmers to build
agents on the web. However, developers can only utilise high level
functions such as do-at-setup and do-every [interval], which can be
restrictive in some applications. Because Modelling4All programs
execute in the browser within a ‘NetLogo’ Virtual Machine [4],
their agents cannot communicate over HTTP and connect to exter-
nal APIs/web-services in the way that STARLITE agents can. Re-
liance on NetLogo limits incorporating work from the wider agent
developers’ community into applications. Axelrod’s simulation ex-

Zhttp://m.modelling4all.org/

periment for IPD tournaments incorporated agents submitted by
leading game theorists. Since this experiment several frameworks
have been developed for research into game theory, with Halpern
et al. [2] being a notable example. Despite recent implementations
of IPD tournaments [3], there have been relatively few attempts to
create generalised testbeds for game-theoretic simulations.

3. STARLITE OVERVIEW

STARLITE generalises and distributes a meta-platform to act
as a repository for multi-agent experiments. To support scalabil-
ity and fault recovery, STARLITE uses several state-of-the-art Java
and Scala technologies allowing for high performance, easy exten-
sibility as well as supporting a distributed web platform, to mitigate
the single point of failure concern which plagues most centralised
systems. STARLITE utilises the actor-based environment Akka for
load balancing and task execution, and the Play framework® for
Scala templating and HTTP request handling. Figure 1 summarises
this architecture, based on the Model-View-Controller (MVC) pat-
tern. STARLITE supports the following types of agents:

e Platform Infrastructure Agents: These agents exists outside
the tournament domain model, and handle incoming con-
nections over HTTP. They are stateless agents and therefore
suitable for recycling and easy substitution / recovery (as
the agent state need not be transferred when the agent is re-
placed). The number of these worker agents increase propor-
tionally with the server load, to allow the platform to scale
well with the number of users and running simulations.

Application Infrastructure Agents: These are application spe-
cific agents, which in the case of game tournaments are re-
sponsible for maintaining tournament state and serving cus-
tom application views over HTTP. Moreover, they can pro-
vide tournament data asynchronously for other agent views,
meaning that we can display agent utility information in real-
time without having to reload view pages.

Application Agents: These are the application agents, which
(in the case of IPD) participate in tournaments and imple-
ment different game theoretic strategies.

All agent classes can be added dynamically into running applica-
tions through the posting of source code RESTfully to a STARLITE
server. Compilation takes place via hot patching, and the resulting
agent can be instantiated at will and added to any tournament that
the user has permission to access. Tournament scenarios are con-
sidered first class entities alongside agents, and can similarly be
uploaded, instantiated and configured in real-time.

4. APPLICATION: IPD TOURNAMENT

We have reimplemented Axelrod’s IPD tournament in STAR-
LITE, with the use of two infrastructure agents and four initial appli-
cation agents, each of which employs one of the following distinct
strategies: defect, cooperate, random and tit for tat. We consider
the former three to be control strategies, allowing for other strate-
gies to be better examined through competition. These application
agents serve dynamic web content representing the historical suc-
cess of the agent and its utility over time against all competitors. In
addition to the application agents, a utility inspector agent keeps an
up to date reference of all other entities in the tournaments, and is
responsible for directing user-agent interaction via an HTML view

3https://www.playframework.com

1928

random
silent
titForTat

betray

v B itForTat
v W silent
v Brandom

uill

—

Smoothing

Utility: 0.46

fitForTat 0.14

Figure 2: Web view from a running Defect agent.

served over the web. The other infrastructure agent is the tourna-
ment manager, which is responsible for brokering agent-to-agent
interaction within the tournament. This agent maintains the tourna-
ment state, and is informed by the utility inspector agent whenever
an agent enters or leaves a running tournament. For each simula-
tion iteration, the fournament manager broadcasts messages to all
application agents, each containing the ID of another agent and the
decision history of the pair. The recipient can then reason on this
information and reply with a decision to the manager.

Figure 2 demonstrates a view from the Web interface. All ap-
plication agents display their global utility and also display a chart
showing the running mean utility of the subject agent against all
other competitor agents. In this application, by default each agent
will play every other 500 times, at which point it will go dormant to
save server resources. The addition of any new agents to the appli-
cation will wake up all application agents to resume competition.

5. CONCLUSIONS & FUTURE WORK

We have described the overall architecture of STARLITE and ex-
emplified its main features through a tournament simulation for the
Iterated Prisoner’s Dilemma (IPD). We have also used the platform
to build agent applications for negotiation, e-health and systems bi-
ology. Because of its web-based interface, STARLITE is suitable
for social experiments, where human users can compete/cooperate
with software agents playing different games. This is an exciting
direction that we would like to pursue in the future, as we have all
the necessary components to support such experimentation.

REFERENCES

[1] S. Bromuri and K. Stathis. Situating Cognitive Agents in
GOLEM. In EEMAS’07, Germany, Oct. 2007. Springer.

[2] J.Y. Halpern and R. Pass. Algorithmic rationality: Adding
cost of computation to game theory. SIGecom Exch.,
10(2):9-15, 2011.

[3] C. H. Pence and L. Buchak. Oyun: A new, free program for
iterated prisoner’s dilemma tournaments in the classroom,
2012.

[4] E. Sklar. NetLogo: a multi-agent simulation environment.
Artificial Life, 13(3):303-311, 2007.

