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ABSTRACT

Given the real-world applications of Stackelberg security games
(SSGs), addressing uncertainties in these games is a major chal-
lenge. Two competitive approaches have been pursued by previous
work on addressing uncertainties in SSGs, namely: (1) applying
robust optimization techniques without requiring a prior distribu-
tion; and (2) using probabilistic models to capture uncertainties. In
general, the decision of which approach to use is based on the avail-
ability of data. While the first approach suits data-sparse domains,
the second approach works better for data-rich domains. My the-
sis will focus on addressing uncertainties in SSGs following these
two leading approaches. In particular, with regards to robust meth-
ods, I attempt to develop new maximin/minimax regret-based ro-
bust algorithms for computing a defender’s optimal strategy given
uncertainties. I also aim to contribute to probabilistic modeling
techniques by developing a new computational model of human
decision making to capture the adversary’s bounded rationality.
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1. INTRODUCTION

Real-world deployed applications of defender-attacker Stackel-
berg Security Games [8, 1] have led to significant research em-
phasis on handling uncertainties. Two different approaches have
been pursued. The first approach, focused on domains with spar-
sity of data, uses robust optimization with the maximin method of
maximizing defender expected utility under the worst case resulting
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from such uncertainty [2]. The second approach, focused on data-
rich domains, on the other hand, applies probabilistic-modeling
methods for capturing uncertainties in SSGs with two key ideas.
The first idea assumes a known distribution of payoff uncertainty
and solves the resulting Bayesian Stackelberg game models [10].
The another idea predicts the attacker’s decision making using be-
havioral models and computes the defender’s optimal strategy as-
suming the attacker’s response follows that model [9].

There are several open issues remain in addressing uncertainties
with respect to these leading approaches. First, existing maximin-
based robust algorithms compartmentalize uncertainties; the lack of
a unified framework implies that existing algorithms suffer losses
in solution quality in handling uncertainties in real-world security
situations — where multiple types of uncertainties may exist si-
multaneously. Second, with regard to robust techniques, previous
works in security games only focus on the maximin method. We
lack an alternative less-conservative robust criterion for addressing
uncertainties in SSGs. Finally, in terms of modeling human adver-
saries’s behaviors, the model-free algorithm MATCH [7] has been
shown to outperform BRQR, the algorithm based on the Quantal
Response (QR) model [9], leading to important open question of
whether there is any value in adversary modeling in SSGs.

I present the first unified maximin-based framework for handling
the different types of uncertainties explored in SSGs. Based on that
framework, I propose a set of new “unified” robust algorithms to
address combinations of these uncertainties [4]. I then introduce
approximate scalable robust algorithms for handling these uncer-
tainties that leverage insights across compartments. Furthermore,
I propose the use of the less conservative minimax regret decision
criterion for handling uncertainties in SSGs [5]. More specifically,
I present new novel algorithms for computing minimax regret for
addressing payoff uncertainty. I also address the challenge of pay-
off elicitation, using minimax regret to develop the first elicitation
strategies for reducing payoff uncertainty. Finally, I explore a new
model of human adversary’s behavior, SUQR, a novel integration
of human behavior model with the subjective utility function [6]. I
show that my algorithm, SU-BRQR, based on SUQR, significantly
outperforms the model-free algorithm, MATCH.

2. UNIFIED MAXIMIN-BASED METHOD

My first contribution is to remedy weaknesses of state-of-the-art
maximin-based algorithms when addressing uncertainties in SSGs,
due to uncertainty compartmentalization. I present a unified com-
putational framework — a single core problem representation for
handling the different types of uncertainties and their combinations,



including uncertainty in the attacker’s payoffs, uncertainty related
to the defender’s strategy (due to the defender’s execution and the
attacker’s observation), and uncertainty in the attacker’s bounded
rationality. The first key component of my unified framework is
a unified formulation of uncertainty sets for SSGs that captures
all major existing approaches. Furthermore, based on this unified
framework, I present a unified algorithmic framework from which I
can derive different “unified” robust algorithms which address any
combination of uncertainties presented in the framework. Also,
exploiting new insights from our unified framework, I present fast
approximate algorithms for handling different subsets of uncertain-
ties in large-scale security games. Finally, my experiments show
the solution quality and runtime advantages of our algorithms. The
key insights in my unified robust algorithms include: 1) under any
combinations of uncertainties, the corresponding robust optimiza-
tion problem can be represented as a single maximin problem in
which all these uncertainties are encapsulated into a set of adver-
sary’s strategies; and 2) the space of the defender’s strategies can
be partitioned into different sets; for any defender strategy within
a set, the adversary’s feasible strategies are identical. Thus, I can
solve any robust optimization problem for addressing uncertainties
—modeled within my framework — as the maxima of all correspond-
ing simpler sub-optimization problems created by this partition.

3. MINIMAX REGRET-BASED METHOD

My second contribution is introducing the use of the leading
minimax regret decision criterion for addressing uncertainties in
SSGs. I start with developing minimax regret-based methods for
Strict Uncertainty Payoff games (SPAC). SPAC refers to where de-
fender payoffs are known but attacker payoffs are assumed only to
lie within some interval with no distributional information. Min-
imax regret focuses on the loss with respect to decision quality
over possible payoff realizations, making decisions with the tight-
est possible optimality guarantees. Indeed, minimax regret has not
yet been available to policy makers — my work makes it a viable
criterion for generating new, less conservative, candidate defensive
strategies. Unfortunately, operationalizing minimax regret involves
complex, non-convex optimization for which efficient algorithms
do not exist. Thus, I develop novel, efficient algorithms for approx-
imating minimax regret, and provided experimental results demon-
strating high solution quality along with fast runtime. Furthermore,
I develop a payoff elicitation procedure which is based on minimax
regret solutions that can be used to optimize the defender’s efforts
in assessing payoffs, allowing reduction in the uncertainty of those
parameters that most improve decision quality. This is another rea-
son to use minimax regret as my robustness criterion — it has been
proven to be an effective driver of elicitation in several domains.

4. ATTACKER BEHAVIORAL MODELING

My third contribution on behavioral modeling builds on the sig-
nificant support for QR: I hypothesize that QR’s stochastic response
is crucial in building a human decision making model. Where I part
company with the original QR model is in its assumption that hu-
man stochastic response is based on expected value. Instead, I pro-
pose a new model based on integration of a novel subjective utility
function (SU) into QR, called the SUQR model. The novelty of
my subjective utility function is the linear combination of the game
features such as the defender’s coverages and the attacker’s pay-
offs. I show that the SUQR model has superior predictive power
compared to the QR model. Then, the defender’s optimal strategy
is computed by maximizing the defender’s expected value given
that the adversary chooses to attack each target with a probability
according to SUQR. The resulting SUQR-based SU-BRQR algo-
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rithm, similar to BRQR, to compute the defender strategy is eval-
uated through two sets of experiments using an online game with
Amazon Mechanical Turk (AMT) workers. The experimental re-
sults show that SU-BRQR significantly outperforms the model-free
MATCH algorithm as well as improved versions of MATCH. Fur-
thermore, by conducting experiments with new game scenarios,
where no human behavior data exists, I show SU-BRQR with its
earlier learned parameters still outperforms MATCH; and learning
from more data, SU-BRQR performance can be further improved.

5. FUTURE WORK

I focus on solving green security games wherein security re-
sources are allocated to patrol a vast geographical area against envi-
ronmental criminals such as poachers in wildlife security domains.
The main objective of park rangers is to prevent poaching by con-
ducting patrols throughout the parks. While game-theoretic ap-
proaches have been advocated to generate rangers’ patrols, there
is significant uncertainty in domain features such as animal density
and vegetation, etc. My first goal is to apply my previous research
to solve this real-world security problem, in particular, modeling
poachers’ behaviors and addressing domain uncertainty using ro-
bust algorithms. I also aim to explore new challenges in the domain
that my previous work cannot handle. Currently, I'm working on a
paper which is under submission based on wildlife protection [3].
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