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ABSTRACT
Automata walking on graphs are a mathematical formal-
isation of autonomous mobile agents with limited memory
operating in discrete environments. This paper establishes a
framework in which to model and automatically verify that
autonomous mobile agents correctly perform their tasks.
The framework consists of a logical language tailored for
expressing agent tasks, and an algorithm solving the param-
eterised verification problem, where the graphs are treated
as the parameter. We reduce the parameterised verifica-
tion problem to classic questions in automata theory and
monadic second order logic, i.e., universality and validity
problems.

We illustrate the framework by instantiating it to a popu-
lar model of robot from the distributed computing literature.

This work clarifies the border between classes of mobile-
agent systems that have decidable parameterised verification
problem, and those that do not.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Meth-
ods; F.1.1 [Computation by Abstract Devices]: Models
of Computation—Automata; C.2.2 [Computer Commu-
nication Networks]: Network Protocols—Protocol Veri-
fication; C.2.4 [Computer Communication Networks]:
Distributed Systems; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

Keywords
Model Checking; Logic; Automata Theory; Distributed Net-
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1. INTRODUCTION
Autonomous mobile agents are designed to achieve some

task in an environment, e.g., exploration, or rendezvous.
They are in an unknown environment if they do not have
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global information about the environment, e.g., mobile soft-
ware exploring hostile computer networks, or physical robots
that rendezvous in an environment not reachable by hu-
mans. This paper studies a mathematical formalisation of
autonomous mobile agents in discrete environments, i.e.,
robots on finite graphs.

The distributed computing community has recently pro-
posed and studied a number of models of robot systems [5,
33, 28, 18, 21, 16, 27]. Theorems from this literature are
parameterised i.e., they may involve graph-parameters (e.g.,
the maximum degree, the number of vertices, the diameter),
memory parameters (e.g., the number of internal states of
the robot protocol), and the number of robots may be a
parameter.

However, until recently [31, 4, 35, 32] there has been little
emphasis on formal analysis of correctness of robots in a pa-
rameterised setting. In this paper we apply formal methods
to the parameterised verification problem in which it is the
environment that is parameterised. This is how we model
that robots operate in unknown environments. Formally,
we address the following decision problem.

Parameterised Verification Problem: Given robots
R, decide if they solve the task T on all graphs G ∈ G.

In contrast, the classic (non-parameterised) verification
problem states:

Verification Problem: Given robots R and a graph G ∈
G, decide if robots R solve the task T on G.

The non-parameterised verification problem is often han-
dled using model-checking [14]. The parameterised verifi-
cation problem corresponds to a family of model-checking
problems (one for each G ∈ G), or equivalently, a single
infinite-state model-checking problem. A variety of tech-
niques have been applied to such systems, fully discussed in
Section 7 (Related Work), however none seem suited to the
problem in which the environment is parameterised. For-
tunately, the theory of automata and logic has produced a
rich understanding of the expressive power of certain logics,
e.g., monadic second-order logic MSOL, over certain classes
of graphs, e.g., context-free sets of graphs [44, 45, 29, 17].
Our framework reduces the parameterised verification prob-
lem to classic questions in automata theory and MSOL, i.e.,
universality and validity problems. The key observations are
that: i) robots are graph-walking automata, and can be de-
fined in MSOL, and ii) robot tasks correspond to properties
of runs of automata which are often definable in MSOL.

Modeling Choices.
There are a number of different modeling choices for mo-
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bile agents [38]. We list them, and emphasise (using under-
lining) the choices made in this paper: (i) is the environment
continuous (e.g., the plane) or discrete (e.g. a finite graph
whose edges are labeled by directions or port numbers)? (ii)
do agents act synchronously or asynchronously? (iii) are
agents probabilistic or non-deterministic? (iv) is there one
agent or are there multiple agents, and are the number of
agents known or unknown? (v) is the environment static,
or can agents affect their environment (e.g., by marking the
nodes of a graph)? Moreover, (vi) how much information
about the environment is known, a priori, to the agents? We
assume agents do not have global knowledge of the environ-
ment, and in particular the size is not known and nodes in
the environment do not have unique identifiers. And finally,
(vii) how do agents communicate and sense their environ-
ment? We assume agents can sense their positions in the
graph as well as those of the other agents (in the case of
multiple agents), i.e., robots acquire information about the
current state of the environment solely by vision (we use
logical formulas, which we call tests, to define these sensing
abilities).

Aim and Contributions.
The main aim of this work it to provide a clearer un-

derstanding of the border between classes of autonomous
mobile-agent systems that have decidable parameterised ver-
ification problem, and those that do not.

In particular, we provide a quite general formalisation of
robot systems (using the modeling choices above) in which
all components (i.e., environments, robots, and tasks) are
modeled separately. We formalise reasoning about robot sys-
tems as the parameterised verification problem (PVP) where
the environment is treated as a parameter. We show how
to reduce the PVP to problems about automata and logic,
i.e., universality and validity problems. We then prove that
the PVP is decidable for suitable restrictions of the com-
ponents, notably the case of a single robot on context-free
sets of graphs. We illustrate the power of the framework by
instantiating it to a model of robot systems from the dis-
tributed computing literature. This instantiation falls into
our decidable restrictions.

2. BACKGROUND: AUTOMATA THEORY
In order to make this paper self-contained, this section

contains the necessary background. In particular, we will use
basic notions from mathematical logic and automata theory
to formalise the robot systems (a full logical background can
be found in [22], and a smaller discussion of monadic second-
order logic MSOL over graphs can be found in [17, Sec-
tion 1.3.1]), and easy-to-state theorems (e.g., Kleene’s The-
orem about the equivalence of regular expressions and au-
tomata, and Courcelle’s Theorem on satisfiability of MSOL
over context-free sets of graphs [17]) to give an algorithm
for solving the parameterised verification problem.

Write Bω for the set of infinite sequences over alphabet
B, and write B∗ for the set of finite sequences. The empty
sequence is denoted ε. Write [n] for the set {1, 2, · · · , n}.

Graphs.
A Σ-graph, or graph, G, is a tuple (V,E,Σ, λ) where V is a

finite set of vertices, E ⊆ V ×V is a relation called the edge
relation, Σ is a finite set of edge labels, and λ : E → Σ is the

edge labeling function. The out-degree of a vertex v, written
deg(v), is the cardinality of the set {(v, w) ∈ E : w ∈ V } of
outgoing edges of v.

Sometimes the edge labels give a sense of direction:

Example 1. An L-labeled grid is a graph with V = [n]×
[m], Σ = L× {N,S,E,W}, and labels λ((x, y), (x+ 1, y)) ∈
L × {E}, etc., where L is a finite set and n,m ∈ N. An
L-labeled line is an L-labeled grid with V = [n] × [1]. If
|L| = 1 then we call the grid (or line) unlabeled.

Example 2. A ∆-ary tree (for ∆ ∈ N) is a Σ-graph
(V,E,Σ, λ) where (V,E) is a tree, Σ = [∆]∪{up}, and λ la-
bels the edge leading to the node in direction i (if it exists) by
i, and the edge leading to the parent of a node (other than the
root) is labelled by up. We may rename the labels for conve-
nience, e.g., for binary trees (∆ = 2) we let Σ = {lc, rc, up}
where lc replaces 1 and rc replaces 2.

First-order and Monadic Second-order Logic.
Formulas will be interpreted in Σ-graphs G (an excep-

tion are formulas in Section 4.3). Define the set of monadic
second-order formulas MSOL(Σ) as follows. Formulas of
MSOL(Σ) are built using first-order variables x, y, · · · that
vary over vertices, and set variables X,Y, · · · that vary over
sets of vertices. The atomic formulas (when interpreted over
Σ-graphs) are: x = y (denoting that vertex x is the same as
vertex y), x ∈ X (denoting that vertex x is in the set of ver-
tices X), and edgσ(x, y) (denoting that there is an edge from
x to y labeled σ ∈ Σ). The formulas of MSOL(Σ) are built
from the atomic formulas using the Boolean connectives (i.e.,
¬,∨,∧,→) and variable quantification (i.e., ∀, ∃ over both
types of variables). The fragment of MSOL(Σ) which does
not mention set variables is called first-order logic, denoted
FOL(Σ). Write MSOLk(Σ) for formulas with k-many free
variables.

Here are some examples of formulas and their meanings:

MF1. The formula ∀x(x ∈ X → x ∈ Y ) means that X ⊆
Y . Similarly, there are formulas for the set operations
∪,∩,=, and relative complement X \ Y .

MF2. The formula edg(x, y) :=
∨
σ∈Σ edgσ(x, y) means that

there is an edge from x to y (here Σ is assumed to be
finite).

MF3. The formula ∃x∃y(x 6= y∧ edg(z, x)∧ edg(z, y)) means
that deg(z) ≥ 2.

MF4. If φ(x, y) is an MSOL(Σ) formula then define φ∗(x, y)
by ∀Z[(closedφ(Z)∧x ∈ Z)→ y ∈ Z]. Here closedφ(Z)
is defined as ∀a∀b[(a ∈ Z ∧ φ(a, b)) → b ∈ Z]. Note
that φ∗ is an MSOL(Σ)-formula.

Note that φ∗(x, y) holds in a graph G if and only if
there exists a finite sequence of vertices v1v2 · · · vm ∈
V ∗ (here m ≥ 1) such that x = v1, y = vm and
φ(vi, vi+1) holds in G for all i < m. This shows that
that if a binary relation is MSOL-definable, then so is
its transitive-closure.

Similarly, define φω(x, y) := φ∗(x, y) ∧ ∃z(φ(y, z) ∧
φ∗(z, y)). Note φω(x, y) holds in a graph G if and only
if there is an infinite sequence of vertices v1v2 · · · ∈ V ω
with x = v1, vi = y for infinitely many i ∈ N, and
φ(vi, vi+1) holds in G for all i ∈ N. This uses the fact
that V is finite.
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MF5. The k-ary transitive-closure operator is the function
that maps a 2k-ary relation ρ(x, y) to the 2k-ary rela-
tion ρ∗(x, y) such that, in every graphG: ρ∗(x, y) holds
if and only if there exists a sequence v1, v2, · · · , vm
such that x = v1, y = vm, and ρ(vi, vi+1) holds for
every i < m. For k > 1, it is not the case that if a
k-ary relation φ is MSOL-definable, then so is its k-
ary transitive-closure, because, intuitively, this would
require having k-ary relation variables Z.1

For a formula φ(x1, · · · , xk), a graph G, and v1, · · · , vk ∈
V , write G |= φ(v1, · · · , vk) to mean that φ holds in G with
variable xi substituted by vertex vi (for i ≤ k).

The Validity Problem and Courcelle’s Theorem.
A sentence is a formula with no free variables. Let Φ be a

set of sentences, and let G be a set of graphs. The Φ-validity
problem of G is to decide, given φ ∈ Φ, whether or not for
all graphs G ∈ G, it holds that G |= φ. Unfortunately for us,
the FOL(Σ)-validity problem for G = the set of all Σ-graphs
is undecidable [22]. On the other hand, many interesting
cases have decidable validity. One version of Courcelle’s
Theorem states that the MSOL-validity problem is decidable
for every context-free set of graphs G [17].2 Context-free sets
of graphs are the analogue of context-free sets of strings, and
are generated by graph grammars or equations using certain
graph operations. Examples include, for a fixed alphabet,
the set of labeled lines, the set of rings, the set of trees, the
set of series-parallel graphs, the set of cliques, but not the
set of all grids.

Automata and Regular Expressions.
Ordinary regular-expressions over a finite alphabet B are

built from the sets ∅, {ε}, and {b} for b ∈ B, and the opera-
tions union +, concatenation ·, and Kleene-star ∗. Kleene’s
Theorem states that the languages recognised by regular ex-
pressions over alphabet B are exactly those recognised by
finite automata over alphabet B.

An ω-regular expression over the finite alphabet B is in-
ductively defined to be of the form: expω, exp · r, or r + r′,
where exp is an ordinary regular-expression over B, and
r, r′ are ω-regular expressions over B. An ω-regular lan-
guage is one defined by an ω-regular expression. A vari-
ation of Kleene’s Theorem says that the languages recog-
nised by ω-regular expressions over alphabet B are exactly
the languages recognised by Büchi automata over alphabet
B (which are like non-deterministic finite automata except
that they take infinite words as input, and accept if some
accepting state occurs infinitely often).

3. THE MODEL OF ROBOT SYSTEMS
We provide a framework for modeling multi-robot systems

parameterised by their environment.

1To prove this formally, note that 2-ary transitive closure on
finite words (i.e., binary-labeled lines) can define the non-
regular language {0n1n : n ∈ N}; now use the fact that, over
finite words, MSOL can only define the regular languages,
part of a result known as the Büchi-Elgot-Trakhtenbrot The-
orem, see [45].
2Actually, a strong form of the theorem states that there is
an algorithm that given a description of a context-free set
of graphs G and an MSOL-formula φ decides if every graph
in G satisfies φ.

3.1 The model of robot systems
In this section we define robot systems, i.e., robot proto-

cols, environments, and tasks.
Environments are modeled as Σ-graphs,3 and robots are

modeled as regular languages of instructions, as in [7]. An
instruction either tells the robot to move along an edge,
or it allows the robot to test the positions of the robots
(e.g., a robot can learn which other robots are at the same
vertex as it is, or if there is a robot north of it). Tests are
formalised as logical formulas. As discussed in Section 5,
our model is general enough to be able to express a popular
model of robot systems found in the distributed computing
literature [27, 21, 16, 33, 28, 18].

We first define robot systems consisting of a single robot,
and then define multi-robot systems.

Robot Instruction Set.
A robot follows instructions from the instruction set

insΣ,1 := {↑σ: σ ∈ Σ} ∪MSOL1(Σ).

Instructions are of two kinds, moves and tests:4↑σ tells the
robot to move from its current vertex along the edge labeled
σ; and MSOL1(Σ) consists of formulas τ(x) that allow the
robot to test that τ(x) holds in G, where x is the current
vertex of the robot in G. Typical tests include: is the degree
of the current vertex at least d? is there an edge out of the
current vertex labeled σ? Here is a more complex test: is
there a path from the current vertex that only uses edges
labeled σ to a vertex of degree d?

For a sequence ins ∈ (insΣ,1)∗, write [[ins]]G ⊆ V 2 for the
set of pairs of vertices (u, v) such that, in G, one can reach
v from u by following the instructions ins. Formally,

1. (u, v) ∈ [[ε]]G iff u = v,

2. (u, v) ∈ [[↑σ]]G iff λ(u, v) = σ,

3. (u, v) ∈ [[τ(x)]]G iff u = v and G |= τ(u), and

4. (u, v) ∈ [[d · e]]G for d ∈ (insΣ,1)∗ and e ∈ insΣ,1

iff there exists z ∈ V such that (u, z) ∈ [[d]]G and
(z, v) ∈ [[e]]G.

Robot Protocols.
Fix a set of edge-labels Σ. A 1-robot, or robot, R, is a pair

(Q, δ) where Q is a finite set of states, and δ ⊂ Q×insΣ,1×Q
is a finite transition relation.

We sometimes designate certain states of the robot to be
initial, denoted I ⊆ Q and certain states to be repeating,
denoted A ⊆ Q. A state p ∈ Q is called halting if the robot
has the transition (p, true, p), i.e., state p is a sink. Thus we
model a halting robot as one that stays in the same state
forever. The set of halting states is denoted H ⊆ Q.

Example 3. The robot in Figure 1 does a (perpetual)
depth-first search of trees in which every node has zero or two
children.5 Tests are written leaf, lc, rc, root (whose mean-
ings are “is the current node a leaf?”, “left-child?”, “right-
child?”, “the root?”), and move instructions are written ↑up,
3The fact that Σ-graphs are finite corresponds to our mod-
eling assumption that environments are discrete.
4Looking at the instruction set we see that robots cannot
alter the graph, i.e., the environment is static.
5To make the diagram readable, an edge may be labeled by
multiple successive actions separated by semicolons.
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↑lc, and ↑rc (whose meanings are “move up to the parent”,
“to the left-child”, “to the right-child”).

start

¬leaf ; ↑lc
leaf ; ↑up; ↑rc

¬leaf ; ↑lc

leaf ; ↑up

rc

lc; ↑up; ↑rc

root

↑up; rc

↑up; lc; ↑up; ↑rc

↑up; root
leaf

¬leaf ; ↑lc

Figure 1: Robot that does a DFS on binary trees.

Configurations and Runs.
A robot walks about a Σ-graph G. Let R = (Q, δ) be

a robot with instruction set insΣ,1. A configuration c of R
on G is a pair 〈v, q〉 ∈ V × Q. Say that the configuration
〈v, q〉 has position v. A configuration is initial (resp. halt-
ing, repeating) if q is. The following definition expresses that
one configuration results from another after the robot exe-
cutes a single instruction: for configurations c = 〈v, p〉 and
d = 〈w, q〉, say that d results from c iff there is a transition
(p, ins, q) of δ such that (v, w) ∈ [[ins]]G. A run α of R
on G starting with an initial configuration c is an infinite
sequence c1c2c3 · · · of configurations such that c1 = c and
for all i, ci+1 results from ci.

The set of positions of a run α = (v1, q1)(v2, q2) · · · is
the set of positions {v1, v2, · · · } of its configurations. The
sequence of positions of a run α is the sequence of positions
v1v2 · · · of its configurations.

Multi-Robot Systems.
We extend the previous definitions to k-many of robots.
A k-robot ensemble is a sequence 〈R1, · · · , Rk〉 where, writ-

ing Ri = (Qi, δi), each Qi is a finite set of states, and each
δi ⊂ Qi× insΣ,k×Qi is a finite transition relation, where the
instruction set is insΣ,k := {↑σ: σ ∈ Σ} ∪MSOLk(Σ). For a
sequence ins ∈ ((insΣ,k)k)∗ define6 [[ins]]G ⊆ V 2k such that
(u, v) ∈ [[ins]]G if and only if, in G, one can reach v from u
by following the instructions in ins.

Formally,

1. If ins = ε, then (u, v) ∈ [[ins]]G if and only if u = v;

2. If ins = (d1, · · · , dk) ∈ insΣ,k then (u, v) ∈ [[ins]]G if,
for each i ≤ k:

(a) if di =↑σ then λ(ui, vi) = σ,

(b) if di = τ(x1, · · · , xk) then ui = vi and G |=
τ(u1, · · · , uk).

6To improve readability, the notation [[ ]]G does not men-
tion k.

3. If ins = d · e then (u, v) ∈ [[ins]]G if and only if there
exists z ∈ V such that (u, z) ∈ [[d]]G and (z, v) ∈ [[e]]G.

Fix a Σ-graph G. A configuration c of 〈R1, · · · , Rk〉 on
graph G is a pair 〈v, q〉 ∈ V k ×

∏
i≤kQi. A configuration

is initial if qi is the initial state of robot Ri (for all i ≤
k). The following definition expresses that one configuration
results from another after the robots simultaneously execute
their own next instruction (which may be to move along an
edge labeled σ, or to test the current position of all the
robots):7 configuration 〈w, q〉 results from 〈v, p〉 iff there are
transitions (pi, insi, qi) ∈ δi (for i ≤ k) such that (v, w) ∈
[[(ins1, · · · , insk)]]G. Runs and their sets of positions and
sequences are defined as before.

Robot Tasks.
Robots should achieve some task in their environment: a

k-robot task, or simply a task, T, is a function that maps a
graph G to a set of sequences of positions of G, i.e., T(G) ⊆
(V k)ω. A robot-ensemble R achieves T on G if for every
run α of R on G it holds that α′ ∈ T(G), where α′ is the
sequence of positions of the run α.

We give some examples of foundational robot tasks [34]:

RT1. A robot explores and halts if, no matter where it starts,
it a) eventually halts, and b) visits every vertex of the
graph at least once.

RT2. A robot perpetually explores if, no matter where it
starts, it visits every vertex of G infinitely often.

RT3. A robot explores and returns if, no matter where it
starts, it a) eventually stops where it started, and b)
visits every vertex of the graph at least once.

RT4. An ensemble of robots collaboratively explores a graph
if, no matter where they start, every node is eventually
visited by at least one robot.

RT5. A k-robot ensemble gathers if, no matter where each
robot starts, there is a vertex z, such that eventually
every robot is in z.

4. REASONING ABOUT ROBOT SYSTEMS
We formalise the parameterised verification problem for

robot protocols, and then describe our solution to it (Theo-
rem 2) which shows how to reduce parameterised verification
in the case of a single robot to the logical validity problem
of certain logics.

4.1 The Parameterised Verification Problem
The parameterised verification problem depends on a set

of graphs G, a set of robot ensembles R, and a robot task T .
Note that G is typically infinite.

Definition 1. The parameterised verification prob-
lem PVPT(G,R) states: given a robot ensemble R from R,
decide whether or not R achieves the task T on every graph
G ∈ G.

Unfortunately, this problem is easily undecidable for the
types of systems we have:

7This is where we model the assumption that robots act
synchronously.
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Theorem 1. There exists a task T and computable sets
G and R such that PVPT(G,R) is undecidable.

In particular, we can choose k = 1, T to be the task “never
halt”, G to be the set of unlabeled-grids, and R to be all robots;
or we can choose k = 2, T to be the task “no robot ever halts”,
G to be the set of unlabeled-lines, and R to be all robots.

Proof Sketch. Since the proof technique is a standard,
we merely sketch it. We reduce the non-halting problem for
(Turing-powerful) two-counter machines to PVPT(G,R), i.e.,
given machine M build robot(s) R such that M accepts no
input if and only if R achieves task T on all graphs in G.

Case k = 1: As observed by [8] for their “2-dimensional
automata”, one robot on a grid can simulate a two-counter
machine: counter values (n,m) ∈ N2 are encoded by the
robot being at position (n,m) of the grid. The only tests
that are needed are to check whether or not the robot is on
the boundary (this is to simulate the counter machine’s “test
for zero”, as well as to alert about a counter overflow).

Case k = 2: The idea is that two distinguishable robots on
a line can simulate one robot on a square grid; the position
of the ith robot on the line gives the ith co-ordinate of the
single robot on the grid. The robots only need to be able to
test if they are at the end points of the line. Alternatively,
one can directly code computations of Turing machines, as
was done by [40] to show that universality of 2-head one-way
finite-state automata is undecidable.

In light of this negative result, our main task is to un-
derstand in what way we can restrict the systems to get
decidability.

4.2 Reducing Parameterised Verification to Va-
lidity

We first describe, at a high level, the approach we use
to solve (restricted cases of) the parameterised verification
problem PVPT(G,R). Suppose we can build, for every k-
ensemble R of robots, a formula φR,T such that for all graphs
G the following are equivalent:

• G |= φR,T

• R achieves task T on G.

Then, for every R and G, we would have reduced the pa-
rameterised verification problem PVPT(G,R) to the ΦR,T-
validity problem for G where ΦR,T is the set of formulas

{φR,T : R ∈ R}.8
We now detail this approach in the case of a single robot,

i.e., k = 1.

Lemma 1. Let R = (Q, δ) be a robot over instruction set
insΣ,1, and let p, q ∈ Q.

We can build MSOL(Σ) formulas ψR,p,q(X,x, y) so that
for every graph G: G |= ψR,p,q(X,x, y) if and only if there
exists a run of R on G starting from configuration 〈x, p〉 that
has a prefix that reaches the configuration 〈y, q〉 and the set
of positions on the prefix is exactly X.

We can build MSOL(Σ) formulas ψ∞R,p,q(X,x, y) so that
for every graph G: G |= ψ∞R,p,q(X,x, y) if and only if there
is a run of R on G starting from configuration 〈x, p〉 that
reaches the configuration 〈y, q〉 infinitely often and the set of
positions on the run is exactly X.
8Note that in our approach φR,T does not depend on R or
on G.

Proof. A robot R = (Q, δ) is a finite automaton (with-
out initial or final states) over a finite alphabet Alph of
instructions, i.e., Alph ⊂ {↑σ: σ ∈ Σ} ∪ MSOL1(Σ). By
Kleene’s theorem — which states that every finite-state au-
tomaton can be translated into a regular expression — we
can build a regular expression exp (that depends on R, p, q)
over alphabet Alph for the language of the automaton R
with initial state p and final state q.

By induction on the structure of regular expressions over
alphabet Alph we build MSOL formulas:

• ϕ∅ := false

• ϕε(X,x, y) := x = y ∧ x ∈ X

• ϕ↑σ (X,x, y) := edgσ(x, y) ∧ x, y ∈ X

• ϕτ (X,x, y) := x = y ∧ τ(x) ∧ x ∈ X

• ϕr+s := ϕr ∨ ϕs

• ϕr·s(X,x, y) := ∃z [ϕr(X,x, z) ∧ ϕs(X, z, y)]

• ϕr∗(X,x, y) := ∀Z[(clφr (X,Z) ∧ x ∈ Z) → y ∈ Z]
where

clφ(X,Z) := ∀a, b [(a ∈ Z ∧ ϕ(X, a, b))→ b ∈ Z] .

An easy induction shows that G |= ϕr(X,x, y) if and only
if there is a sequence of instructions ins ∈ Alph∗ accepted
by the regular expression r and a path from x to y that
follows instructions ins, and that only visits vertices in X
(but not necessarily all of X). Finally, define the MSOL
formula ψR,p,q(X,x, y) to state that φexp(X,x, y) holds and
X is minimal: φexp(X,x, y) ∧ ¬∃Y (φexp(Y, x, y) ∧ Y ⊂ X).

Similarly, by a variation of Kleene’s Theorem, we can
build an ω-regular expression exp over alphabet Alph for
the language consisting of all infinite sequences that label
infinite paths in R that start in p and see q infinitely often.
Then, inductively build ϕexp, as before, with the following
additional rule:

ϕrω (X,x, y) := ∃z [ϕr∗(X,x, y) ∧ ϕr(X, y, z) ∧ ϕr∗(X, z, y)]

As before, define the MSOL formula ψ∞R,p,q(X,x, y) to state
that X is minimal such that ϕexp(X,x, y) holds.

The idea of the proof of Lemma 1 follows [7] who built a
formula expressing that there is a run starting in configu-
ration 〈x, p〉 that reaches configuration 〈y, q〉. Our Lemma
extends this in two ways, i.e., recording the visited states X,
and expressing that a configuration occurs infinitely often.

Note 1. The case of multiple robots (k > 1) is more sub-
tle. For instance, the analogue of Lemma 1 does not hold.
Indeed, for k = 2, let R1 = R2 be robots that have one state
p and that non-deterministically move in every direction.
Then the statement “there is a run of the robots from config-
uration 〈x1, x2, p, p〉 to configuration 〈y1, y2, p, p〉” is equiva-
lent to the statement that the k-ary transitive closure of the
edge relation in graph G contains the tuple 〈x1, x2, y1, y2〉.
However, the k-ary transitive closure is not expressible in
MSOL (as was pointed out in Example MF5 in Section 2).
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4.3 Robot Task Logic — RTL

We now define a logic, called RTL, for expressing robot
tasks in the case of one robot (k = 1).

Syntax. Formulas of RTL are built, as in the defini-
tion of MSOL from Section 2, from the following atomic for-
mulas: x = y, Reach(X,x, y), Halt(X,x, y), Infty(X,x, y),
and Rept(X,x, y).

Semantics. Formulas of RTL are interpreted with re-
spect to graphs and robots. Thus, given a graph G and a
robot R with state set Q, initial-state set I, repeating-state
set A, and halting-state set H, define the satisfaction rela-
tion |=RTL:

〈G,R〉 |=RTL Reach(X,x, y) iff G |=
∧
p∈I

∨
q∈Q

ψR,p,q(X,x, y)

〈G,R〉 |=RTL Halt(X,x, y) iff G |=
∧
p∈I

∨
q∈H

ψR,p,q(X,x, y)

〈G,R〉 |=RTL Infty(X,x, y) iff G |=
∧
p∈I

∨
q∈Q

ψ∞R,p,q(X,x, y)

〈G,R〉 |=RTL Rept(X,x, y) iff G |=
∧
p∈I

∨
q∈A

ψ∞R,p,q(X,x, y)

The formulas ψR,p,q and ψ∞R,p,q are from Lemma 1. Extend
the satisfaction relation to all formulas of RTL in the natural
way.

Examples. Here are some example RTL formulas and
their meanings.

1. The atomic formula Reach(X,x, y) expresses that the
robot, starting in position x, reaches position y, and
the set of visited vertices is X. The RTL formula
∀x∃yReach(V, x, y) expresses that the robot explores
the graph, no matter where it starts.

2. The RTL formula ∀x∃yHalt(V, x, y) expresses “explore
and stop”.

3. The RTL formula ∀xHalt(V, x, x) expresses “explore
and return”.

4. The atomic formula Infty(X,x, y) expresses that the
robot, starting in position x, visits position y infinitely
often, and the set of vertices the robot visits along
this run is exactly X. Thus ∀xInfty(V, x, x) is an
RTL formula expressing that the robot “perpetually
explores” the graph.

A task T is captured by an RTL formula ϑ if 〈G,R〉 |=RTL ϑ
is equivalent to the statement that every run of R on G is in
T(G). The example formulas show that the first three tasks
from Section 3.1 are captured by RTL formulas.

Here is the main theorem that solves the parameterised
verification problem in the case of a single robot (k = 1).
It reduces the PVP to MSOL-validity of the set of environ-
ments.

Theorem 2. Fix an edge-label set Σ. Let R be the set of
all robots over insΣ,1, let T be a task that is captured by an
RTL formula, and let G be a set of Σ-graphs with decidable
MSOL-validity problem. Then PVPT(G,R) is decidable.

Proof. Say RTL formula ϑ captures T. Given R ∈ R,
build the formula φR,T by replacing every atomic formula in

ϑ by its definition with respect to R, e.g., Reach(X,x, y) is
replaced by

∧
p∈I

∨
q∈Q ψR,p,q(X,x, y). A routine induction

on the structure of the formula ϑ gives: 〈G,R〉 |=RTL ϑ if
and only if G |= φR,T. But by Lemma 1 φR,T is a formula
in MSOL(Σ). Thus we can apply the fact that the MSOL-
validity problem for G is decidable to decide whether or not
G |= φR,T for all G ∈ G.

Corollary 1. If R and T are as in Theorem 2 and G is
a context-free set of graphs, then PVPT(G,R) is decidable.

Note 2. The case of multiple robots (k > 1) is harder to
analyse. Indeed, Theorem 1 states that PVP is undecidable
already for k = 2 on lines (which is a very basic context-free
set of graphs) and simple reachability tasks. It is a challeng-
ing problem to find natural and useful restrictions on robots
which allow the analogue of Corollary 1 (or Lemma 1) to
hold in the case of multiple robots.

5. ILLUSTRATION: DISTRIBUTED COM-
PUTING

We now instantiate our framework to a popular model of
autonomous mobile-agent from the distributed computing
literature, i.e., [27, 21, 16, 33, 28, 18]. To distinguish their
agents from ours, we call theirs DC-robots. Here is their
model: environments are modeled as undirected graphs, and
each vertex is annotated with a local port numbering i.e.,
for every vertex v the set of labels of the edges of v are
in bijection with {1, 2, · · · , deg(v)}. A DC-robot finding it-
self at vertex v can decide to exit via local port-number
d and update its local state based on a) its current state,
b) the identification of the robots at the same vertex v, c)
the degree of v, and d) the local-port number of v of the
edge it used when arriving at v. Thus graphs are assumed
to have bounded degree ∆. Typical tasks from this litera-
ture are “perpetual exploration”, “exploration with return”,
and “gathering”. The main twist is that the robots should
perform their task on a graph no matter the local port num-
bering.

Such robot systems are easily expressible in our frame-
work. The edge-label set Σ is defined to be [∆], the edge-
relation E is assumed to be symmetric, and λ(v, w) = i codes
that i is v’s port number for the undirected edge {v, w}.
Note that λ(v, w) need not equal λ(w, v). The interesting
aspect is how to simulate d) above. Our robot must store
in its state both the state of the DC-robot, as well as the
local-port number with which it entered the current vertex.
It does this as follows: when our robot is at vertex v, and the
DC-robot says to take exit i, our robot first determines the
w such that λ(v, w) = i, and then it determines the j ∈ ∆
such that λ(w, v) = j. It can do this with test-instructions
in FOL(Σ).

Rotor-Robot We now give a simple but important ex-
ample that can be analysed in our framework. The rotor
robot operates as follows: when it enters a vertex v by port
i it leaves by port i+ 1 modulo deg(v). This robot is known
by various other names: Abelian mobile robot, rotor walk,
ant walk, Eulerian walker, and Propp machine. It is impor-
tant because it is a viable alternative to probabilistic robots
that perform random walks [11]. It has the property that it
explores all trees — a result that seems to be folklore, and
that could be proved, for fixed degree ∆, using Theorem 2.
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Label-Guided Tasks. The graphs in this paper are
edge-labeled, but our results hold allowing vertex-labels.
Moreover, our framework can incorporate questions of the
form: given a robot and a task, decide if for every graph G ∈
G there exists a labeling of G such that the robot achieves the
task on the graph with the help of the labeling. For instance,
although there is no DC-robot that perpetually explores all
graphs, there is a DC-robot and an algorithm that colours
vertices by three colours, such that the robot can perpetu-
ally explore every such coloured graph [16]. Since the set of
all graphs does not have decidable-validity, we might only
hope to verify variations of this fact for restricted classes of
graphs, e.g., fix a context-free set of graphs G; then one can
decide, given a DC-robot, whether or not for every G ∈ G

the robot achieves the task “there is a colouring of G using
three colours that the robot can use to perpetually explore
G”. The reason this fits into Theorem 2 is that this task is
captured by an RTL formula — indeed, the property that
X1, X2, X3 ⊆ V colour a graph is easily expressed in MSOL
(just say that ∧i6=jXi ∩Xj = ∅ and X1 ∪X2 ∪X3 = V ).

6. COMPLEXITY CONSIDERATIONS
As discussed in Section 4.2, the framework reduces the

parameterised verification problem PVPT(G,R) to the ΦR,T-
validity problem for G where ΦR,T is the set of formulas

{φR,T : R ∈ R}. Unfortunately, the complexity of the deci-
sion procedure for PVPT(G,R) in Corollary 1 may be non-
elementary, i.e., not bounded by any tower of exponentials
in the size of the input robot R. Indeed: although the size of
the computed formula φR,T is exponential in the size of the
robot R and linear in the size of the RTL formula capturing
T, but the complexity of the MSOL-validity problem for G is
non-elementary even taking G to be the set of binary-labeled
lines [42].

Consequently, we illustrate that improved decision proce-
dures can be found for interesting tasks and sets of graphs.

A robot is deterministic if for all p ∈ Q, either a) there
exists q, q′ ∈ Q and τ ∈ MSOL(Σ) and the only transi-
tions out of p are (p, τ, q) and (p,¬τ, q′), or b) there ex-
ists σ ∈ Σ, q, q′ ∈ Q and the only transitions out of p are
(p, ↑σ, q) and (p,¬∃z(edgσ(x, z)), q′). In other words, a) says
that if test τ holds goto state q else goto state q′, and b) says
that if there is an edge in the graph labeled σ then traverse
it (in case of many such edges, pick one nondeterministi-
cally) and go to state q, otherwise goto state q′. A Σ-graph
is deterministic if λ(v, w) = λ(v, w′) implies w = w′. For
instance, ∆-ary trees are deterministic. Note that determin-
istic robots have at most one run on deterministic graphs.

Theorem 3. Fix ∆ ∈ N. Let G be the ∆-ary trees, let
R be all deterministic robots, and let T be the “explore and
halt” task. Then PVPT(G,R) is ExpTime-Complete.

Proof Sketch. The idea is to inter-reduce the param-
eterised verification problem with the universality problem
for deterministic tree-walking automata (DTWA). A DTWA
is a deterministic machine that can recognise sets of trees:
the automaton starts at the root, at any given time the au-
tomaton sits on a node of the input tree, can test if the cur-
rent node is a leaf, the root, or the ith child (for i ≤ ∆), and
based on these tests the machine updates its internal state
and executes one of the commands: “accept the tree”, “reject
the tree”, “go to the parent” or “go the ith child”. The uni-
versality of DTWA is ExpTime-Complete. Indeed, from

a DTWA A build a DTWA B that simulates A and rejects
whenever A runs forever (this causes a quadratic blowup in
the number of states [36]); then complement B by swapping
accept and reject states to get a DTWA C; then convert
C into an ordinary frontier-to-root tree automaton D using
a subset construction that calculates loops of C [9, Fact 1]
(this causes an exponential blowup); then test D for empti-
ness (which can be done in P).

Here is the reduction that gives the upper bound: given a
deterministic robot R build a DTWA AR that operates on
trees t with marked nodes s and v, written (t, s, v), as fol-
lows: first it does a DFS from the root, and when it reaches
s it begins the simulation of R; after the simulation begins,
AR remembers if v is visited; if R enters a halt state and v
was visited then AR accepts (t, s, v), and if R enters a halt
state and v was not visited then AR rejects input (t, s, v).
Thus: R “explores and halts” iff for all (t, s, v) the run of
R on t starting at s visits v and later enters a halt state iff
AR accepts all inputs of the form (t, s, v). The size of AR is
linear in the size of R.

Here is the reduction that gives the lower bound: given a
DTWA A, build a robot RA which first explores the input
tree t (doing, say, a DFS), then simulates A from the root,
and halts iff A accepts (thus RA runs forever if A rejects).
Since RA always explores its input, A accepts t iff RA ex-
plores and halts on t. The size of RA is linear in the size of
A.

Note 3. For every ∆ ≥ 2, there is no robot that “explores
and halts” on all local port-numbered ∆-ary trees [21]. The
proof above is easily adapted to yield an algorithm that, given
a robot R and ∆ ≥ 2, returns a local-port numbered tree on
which the robot does not succeed to “explore and halt”.

7. COMPARISON WITH RELATED WORK
Robot systems are considered distributed if they involve

autonomous agents with no central control. In light of this,
we first describe the relationship of our work to formal veri-
fication of distributed systems generally, and then to formal
verification of robot protocols in particular.

Formal verification of distributed systems.
Typical parameters that arise in the study of distributed

systems are the number of agents, the number of assumed
faulty agents, etc. Since parameterised problems of dis-
tributed systems are, in general, undecidable [3, 43], the
formal methods community developed sound but incomplete
methods that require human intervention, e.g., counter- and
predicate-abstractions, inductive invariants, regular model
checking and acceleration techniques. See for instance [39,
references on pages 2-3].

On the other hand, by simplifying the systems one can get
decidable PVP. These use techniques from games, automata
theory and logic, notably finite-model properties/cutoffs, re-
duction to Petri nets, and the theory of well-structured tran-
sition systems [24, 26, 23, 15, 31, 19, 1, 2].

Of all these models, token-passing systems (i.e., the mod-
els in [24, 15, 1, 2]) are the closest to robots — both tokens
and robots move along the vertices of graphs. However,
we now argue that the model in these cited papers is in-
comparable with our model. First, the translation of their
token-passing systems into robot systems would require that
robots can read and write to variables at the vertices (this
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is to model the fact that processes have states). However,
we assumed environments are static (because otherwise the
PVP is quickly undecidable). Conversely, translating robot-
systems into the cited token-passing systems requires that
the robot-systems satisfy the following unrealistic assump-
tions (that are used in their decidability proofs): when a
robot decides to move, an adversary decides which edge it
takes, as well as to which of its internal states to transition
(i.e., even the robot’s memory may be scrambled). Not even
the simplest robots from the distributed computing litera-
ture (e.g., the rotor robot, or the DFS robot) satisfy this
double restriction.

Formal verification of robot systems.
The formal methods community has only recently [30, 20,

12, 6, 4, 35] begun explicitly verifying and synthesising robot
protocols (rather than distributed systems in general). How-
ever, half of these papers only treat small values of the pa-
rameters. For instance, one such paper concludes [6, page
11]:

While our method is parameterised by both
k [the number of robots] and n [the size of the
graph], it does not permit to verify whether a
[robot] protocol is valid for every k and n sat-
isfying a particular predicate.

The papers that do treat parameterised robot protocols
do not give sound and complete decision procedures for
their systems, as we do. Indeed, [4] uses a proof assistant
to provide certificates (formal proofs) of impossibility re-
sults about robot networks; [35] uses the theory of games on
graphs to synthesise a robot protocol for gathering k robots
on a ring of size n (for small values of k, n), and relies on a
hand-proven induction to prove that the synthesised robot
protocol works for all values of the parameters k, n; and [32]
presents a sound technique that may identify cutoffs using
a counter-abstraction in order to draw conclusions about
certain swarm algorithms, independently of the number of
swarming agents.

The quotation above continues:

Adapting recent advances in parameterised model
checking [citation elided] would be a nice way to
obtain such results.

Both the methodology (reducing parameterised verifica-
tion of robot systems to validity problems in logic) and
the results of this paper (algorithms for automatic param-
eterised verification of robot systems consisting of a sin-
gle robot in an unknown environment) are novel and have
succeeded where other methods and “recent advances” (dis-
cussed in the previous subsection) have not.

Comparison with graph-walking automata.
Graph-walking automata. There is no canonical def-

inition of automaton on graphs. Our model of a single
robot is equivalent to graph-walking automata with MSOL-
tests [7]. The proof idea of Lemma 1 (which compiles robots
into formulas over graphs) is borrowed from [7, 25]. Other
classical notions of automata on graphs (e.g., [8]) are often
too expressive and lead to undecidable parameterised verifi-
cation problems (see the proof of Theorem 1).

Multi-head automata. If agents are modeled as finite-
state machines, then multi-agent systems are instances of

multi-head automata, and the parameterised verification prob-
lem for reachability tasks is equivalent to the universality
problem of such automata. A technical difference between
our robot-ensembles and multi-head automata is that the
k-many heads of a multi-head automaton are operated from
a central control. In the language of robots this would mean
that the robots can communicate their current local states to
each other. Such communication is disallowed as it quickly
results in undecidability. However, the proof of Theorem 1
shows that, similarly, even simple vision-based communica-
tion leads to undecidability.

Tree-walking automata (TWA) are a natural general-
isation to trees of two-way automata on words. Tree-walking
automata with a single head, and their corresponding reg-
ular expressions, have been studied for their own sake [9],
in formal verification, e.g., [46, 10, 37], and as tree pattern-
matching tools [13, 41]. TWA are used in Theorem 3 to
reason about a single robot walking on unknown trees.

8. FUTURE CHALLENGES
This paper takes a step in the following general research

agenda: find natural robot systems that have decidable or
tractable PVP.

Regarding decidability, much work remains to be done.
An important problem is to extend the methodology or re-
sults of this paper to multiple robots. Notes 1 and 2 discuss
the challenges facing such an investigation.

Similarly, in light of the fact that PVP is quickly unde-
cidable in a dynamic environment (e.g., this is the case for
simple reachability tasks of a single robot that can read and
write to every vertex on a line, cf. [43, 24]), what restric-
tions on the robot or the dynamic environment will result
in decidable PVP?

On the other hand, we believe it is feasible to extend
our framework to quantitative tasks, such as minimising the
number of steps to complete a task.

Regarding complexity, we have seen that our general algo-
rithm for solving the PVP (in Theorem 2) has high compu-
tational complexity, and we have seen (in Theorem 3) that a
certain problem on trees is ExpTime-Complete. For which
systems (tasks, classes of graphs, and classes of robots) is the
PVP solvable in P, NP, or PSpace?

We believe that tackling these questions will open avenues
both in automata theory and in the verification of mobile
multi-agent systems in unknown environments.
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[37] J. Obdržálek. Fast mu-calculus model checking when
tree-width is bounded. In CAV, pages 80–92, 2003.

[38] A. Pelc. Disc 2011 invited lecture: Deterministic
rendezvous in networks: Survey of models and results.
In DISC, pages 1–15, 2011.

[39] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,∞)-
counter abstraction. In CAV, pages 93–111, 2002.

[40] A. Rosenberg. On multi-head finite automata. IBM
Journal of Research and Development, 10(5):388–394,
Sep 1966.

[41] T. Schwentick. Foundations of xml based on logic and
automata: A snapshot. In FoIKS, pages 23–33, 2012.

[42] L. J. Stockmeyer. The complexity of decision problems
in automata theory and logic. PhD thesis, MIT, 1974.

[43] I. Suzuki. Proving properties of a ring of finite-state
machines. Inf. Process. Lett., 28(4):213–214, July 1988.

[44] W. Thomas. Automata on infinite objects. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics, pages 133–192, 1990.

207



[45] W. Thomas. Languages, automata, and logic. In
Handbook of Formal Languages, pages 389–455, 1996.

[46] M. Y. Vardi. Reasoning about the past with two-way
automata. In ICALP, pages 628–641, 1998.

208




