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ABSTRACT
In multi robot navigation, robots need to move towards their
goal positions while adapting their paths to account for po-
tential collisions with other robots and static obstacles. Ex-
isting methods compute motions that are optimal locally
but do not account for the motions of the other robots, pro-
ducing inefficient global motions when many robots move
in a crowded space. In my research approach, each robot
uses online machine learning techniques to adapt dynami-
cally its behavior to the local conditions. The approach is
highly scalable because each robot makes its own decisions
on how to move. Experimental results obtained in simula-
tion under different conditions show that the robots reach
their destinations faster using motions that are more energy
efficient.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents
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1. INTRODUCTION
Real-time goal-directed navigation of multiple robots in

crowded environments, where each one of the robots can
only observe its nearby robots, has important applications
in many domains such as swarm robotics, planning for evac-
uation, and traffic engineering. This navigation problem is
challenging because robots have conflicting constraints. On
one hand, they need to reach their goals as soon as possible
while avoiding collisions with each other and the static ob-
stacles present in the environment. On the other hand, due
to the presence of many robots and the real-time constraints,
robots need to compute their motions independently of each
other and in a decentralized manner instead of planning in
a joint configuration space.

A recently introduced decentralized technique for real-
time multi robot navigation, ORCA [6] guarantees collision-
free motion for the robots. Although ORCA generates lo-
cally efficient motion for each robot, the overall behavior of
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Figure 1: Congestion when two groups of robots
pass through a narrow doorway in opposite direc-
tions.

the robots can be far from efficient; actions that are locally
optimal for one robot are not necessarily optimal for the en-
tire group of robots. Consider, for example, the two groups
of robots in Fig. 1 that try to pass to the other side of a
narrow doorway. Here, congestion arises around the door-
way that causes long delays and an inefficient crowd motion.
If, instead, robots coming from the back were able to stop
or temporarily move away from the doorway, the congestion
would resolve and the global motion would be much more
efficient.

My thesis research focuses on applying online methods for
planning and learning that can be completely distributed
and require no communication among the robots. My work
aims at enabling robots to make intelligent motion decisions
that will take them to their goals faster, for example, to
efficiently perform critical tasks such as search and rescue
operations or evacuating a building. Online approaches are
suitable for dynamic environments, as robots must be able
to quickly adapt their behaviors to changes in their sur-
roundings. In contrast, offline approaches are not suitable
when quick response time and robustness to dynamic envi-
ronments are desired, as they require a long training phase
and the prediction of all potential scenarios the robot might
encounter. In addition, the computational complexity of
centralized offline learning methods becomes prohibitively
high as the number of robots increases. Because of this,
current literature on multi robot learning focuses on scenar-
ios with only a few robots and sparse interactions.

2. CONTRIBUTIONS
I have proposed two methods for improving the global

motion of the robots: a learning-based and a planning-based
method. In both methods, I extended the range of motions
of the robots to increase the diversity of behaviors they can
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exhibit, beyond the myopic goal-oriented motion commonly
considered in the literature [6].

As a first step in developing online learning approaches, I
proposed an action selection technique called ε-UCB [3], in-
spired by the principles of well-known action selection tech-
niques, ε-greedy and Upper Confidence Bounds (UCB). ε-
greedy selects either the best or a random action while UCB
samples them proportionally to the upper bound of the es-
timated value of their rewards. In ε-UCB, I formulated the
problem of selecting the best motion at each timestep as an
action selection problem in a multi armed bandit setting.
In this formulation, the challenge is to carefully balance ac-
tion exploration and exploitation. ε-UCB exploits the best
action in a greedy fashion and performs biased exploration
using a version of UCB more suited to non-stationary do-
mains (by using a moving window of the history of the re-
wards). Combined with a reward function that considers
both goal-oriented motion and robot-neighborhood interac-
tions, ε-UCB allows robots to dynamically adapt their mo-
tion to their local conditions (i.e., move back or sideways
when goal-oriented motion is constrained). This indirectly
improves the global efficiency of the motions of all robots,
allowing them to reach their destination faster.

The realization that robots need to adapt the amount of
exploration to their local conditions drove me to further im-
prove this approach. I proposed a novel and general frame-
work for incorporating learning methods in multi robot nav-
igation, the ALAN framework (Adaptive Learning for Agent
Navigation) and a new context-aware action selection tech-
nique. This context-aware approach improves over ε-UCB
by introducing game-theoretic elements, considering the lo-
cal context of the robot to strategically adapt the amount
of exploration performed. Robots using the ALAN learning
framework and the context-aware technique take advantage
of pure goal-oriented motion when they are able to, and
perform biased exploration when this motion is constrained.
This enables the entire set of robots to reach their destina-
tions faster, scaling to different environments and number of
agents, and outperforming ε-UCB and other existing action
selection techniques [4].

On the planning side, I proposed an anytime local ap-
proach to plan the motions of the robots in a decentralized
manner, by adapting the Hindsight optimization technique
[1] in a progressive manner. I called this method Progres-
sive Hindsight Optimization (PHOP) [2]. PHOP reduces the
uncertainty in the long-term effects of the current motions
of the robots by generating ‘snapshots’ of potential future
scenarios. Specifically, each robot simulates possible plans
of actions for a given time horizon, and after assessing each
one of these simulated plans, it evaluates in ‘hindsight’ the
quality of the first action of the plan. Each plan consists
of a sequence of motion primitives. By performing multiple
simulations with each initial action, the robot reduces the
uncertainty associated with the long-term consequences of
each one of them. With PHOP, robots are able to predict
regions in the environment that will introduced motion con-
straints, allowing them to act accordingly (for example, by
completely avoiding paths going through that region). Re-
sults of comparing PHOP with ORCA indicate lower travel
time for the robots using PHOP.

Both my proposed learning and planning approaches im-
prove the quality of the global motion of the robots in a
decentralized manner, when no communication is possible.

Robots adapt online to large-scale complex multi robot en-
vironments using only observations of the dynamics of other
robots.

3. FUTURE WORK
I have a number of ideas for the next stages of my the-

sis work, from increasing the efficiency of the proposed ap-
proaches (to enhance their real-time applicability) to en-
abling lifelong learning in the navigation of the robots.

Specifically, I am researching into ways of incorporating
an even broader range of robot behaviors without involving
excessive exploration, which is a drawback of the current
approach. Combining the motion simulation of PHOP with
ALAN’s reward function might help in this research line, by
enabling robots to simulate a range of short-term motions
and execute the best evaluated one. Another plan is to in-
crease the awareness of each robot with respect to the robots
in its neighborhood. Instead of considering other robots only
as part of the environment, I plan to use their individual mo-
tion patterns to learn context information. Specifically, their
individual positions and velocities can provide useful infor-
mation about future constraints in the environment before
they directly affect the robot. With this information, robots
might prefer to move together, forming groups in an emer-
gent manner, if this is predicted to increase the efficiency of
their collective motion.

Furthermore, I would like to extend the learning frame-
work to enable robots to be continuously learning and reusing
learned policies in new environments, empowering them to
improve their motion behaviors in a lifelong learning pro-
cess [5]. Several challenges need to be addressed to achieve
this, such as how to transfer learned policies, generalize the
learned knowledge, and many others.

Finally, I am also interested in environments where robots
coexist and work in harmony with humans. To achieve
this, robots should be able to navigate through the world
in a human-like manner, and adapt to social conventions by
learning and applying human-like actions.
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