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ABSTRACT
Drug and vaccination therapies are important tools in the
battle against infectious diseases such as HIV and influenza.
However, many viruses, including HIV, can rapidly escape
the therapeautic effect through a sequence of mutations. We
propose to design vaccines, or, equivalently, antibody se-
quences that make such evasion difficult. We frame this as
a bilevel combinatorial optimization problem of maximizing
the escape cost, defined as the minimum number of virus
mutations to evade binding an antibody. Binding strength
can be evaluated by a protein modeling software, Rosetta,
that serves as an oracle and computes a binding score for
an input virus-antibody pair. However, score calculation for
each possible such pair is intractable. We propose a three-
pronged approach to address this: first, application of local
search, using a native antibody sequence as leverage, second,
machine learning to predict binding for antibody-virus pairs,
and third, a poisson regression to predict escape costs as a
function of antibody sequence assignment. We demonstrate
the effectiveness of the proposed methods, and exhibit an
antibody with a far higher escape cost (7) than the native
(1).

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization-Stochastic pro-
gramming; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems-Medicine and science; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search-
Heuristic methods
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1. INTRODUCTION
We formulate antibody design as a Stackelberg game be-

tween the vaccine designer who stimulates an antibody with
particular binding characteristics (this is the binding site in
the antibody sequence), and the virus subsequently responds
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to the antibody by attempting to evade it (evade binding to
it) through a series of local mutations. So, the “designer”
chooses an antibody, and the virus responds through the
shortest sequence of mutations leading to escape. In nature,
evasion models natural selection where fitness criterion prin-
cipally includes not binding to the antibody. Conceptually,
our work follows on the steps of Stackelberg game modeling
efforts in security [10]. However, the specific models devel-
oped for security are completely inadequate for our domain.
There is superficial similarity to game theoretic models of
vaccination decisions [2, 3, 9]. Other related work include
[7], [1],[8], [11] and [5]. However, our work, to our knowl-
edge, is the first game theoretic model of molecular-level in-
teraction between infectious disease treatment and disease.

2. ANTIBODY DESIGN AS A STACKELBERG
GAME

Let v0 denote the native virus, which we treat simply as
a sequence (vector) of amino acids, and v and a arbitrary
virus and antibody sequences, respectively. Let O(a, v) rep-
resent binding energy for the antibody-virus pair (a, v). The
“dilemma” faced by the virus is the following constrained op-
timization problem:

min
v∈V
‖v0 − v‖0 (1a)

s.t. : O(a, v) ≥ θ, (1b)

where V is the space of virus sequences under considera-
tion, and θ is a threshold on binding energy which designates
escape. The l0 norm computes the number of sequence po-
sitions in v that are different from v0. The optimization
problem 1 can be viewed as a best response of the virus to a
fixed antibody a. Let v(a) be the solution to this problem,
a function of the antibody choice a. The designer’s decision
problem is then

max
a∈A
‖v0 − v(a)‖0, (2)

where A is the antibody design space. Sequence permuta-
tions are restricted to the binding site.

This game poses two challenges: 1) enormous search space
for both the designer and the virus (≥ 1050 in each case),
and 2) determination whether an arbitrary antibody-virus
pair bind. We propose, and compare the performance of,
several stochastic local search heuristics [6], using the na-
tive antibody as a “springboard”. Even for computing virus
escape alone, this approach scales poorly. We use Rosetta, a
premier computational protein modeling tool [4] to address
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Figure 1: The native antibody, H and L, with the na-
tive virus, G (left) and antibody with escape cost=7
(right). The arrows point at some significant differ-
ences.

the second challenge. Rosetta, however, can be extremely
time consuming even for a single evaluation. To significantly
speed up the search, we use classification learning to predict
whether or not an antibody-virus pair bind, limiting Rosetta
evaluations only to cases in which the classifier predicts that
they do not. The bi-level nature of the problem means that
antibody design is still quite time consuming. To address
this, we make use of Poisson regression to predict virus es-
cape cost. In summary, we make the following contributions:

1. A bi-level optimization (Stackelberg game) model of
antibody design and virus escape interaction,

2. stochastic local search techniques to determine optimal
virus escape, with classifier-in-the-loop used to speed
up the evaluations, and

3. stochastic local search techniques for optimal antibody
design, making use of Poisson regression to predict
minimal virus escape time.

3. EVALUATION
We used the native co-crystal structure of the antibody

VRC01 complexed with the HIV envelope protein GP120.
The binding site on the virus is chain G with 45 residues,
while the binding site on the antibody includes chains H and
L with a total of 52 residues. The visual representation of
the native binding structure is shown in Figure 1 (left).
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Figure 2: Evaluated antibodies for θ = 0, ranked by
escape cost. The native antibody escape cost is 1.

The actual set of antibodies we generated as a part of
our search process, ranked in terms of evaluated escape cost
(Figure 2). We found many antibodies which are much more
robust to escape than the native when θ = 0. Our best has
escape cost of 7, and the resulting antibody complexed with
the native virus is shown in Figure 1 (right). Visually, the

differences appear quite small, but make a significant dif-
ference in the ultimate breadth of binding, emphasizing the
importance of a computational micro-level design approach.

4. CONCLUSION
We have, for the first time, formulated the virus evading

antibodies problem as a Stackelberg game. We were able to
exploit the problem structure to develop effective classifica-
tion algorithms to significantly speed up the search. Finally,
we exhibited an antibody that is far more robust to virus es-
cape than the native.
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