
Endgame Solving in Large Imperfect-Information Games∗

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

ABSTRACT
The leading approach for computing strong game-theoretic
strategies in large imperfect-information games is to first
solve an abstracted version of the game offline, then per-
form a table lookup during game play. We consider a mod-
ification to this approach where we solve the portion of the
game that we have actually reached in real time to a greater
degree of accuracy than in the initial computation. We call
this approach endgame solving. Theoretically, we show that
endgame solving can produce highly exploitable strategies in
some games; however, we show that it can guarantee a low
exploitability in certain games where the opponent is given
sufficient exploitative power within the endgame. Further-
more, despite the lack of a general worst-case guarantee, we
describe many benefits of endgame solving. We present an
efficient algorithm for performing endgame solving in large
imperfect-information games, and present a new variance-
reduction technique for evaluating the performance of an
agent that uses endgame solving. Experiments on no-limit
Texas Hold’em show that our algorithm leads to significantly
stronger performance against the strongest agents from the
2013 AAAI Annual Computer Poker Competition.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory; Game Solving; Imperfect Information

1. INTRODUCTION
Sequential games of perfect information can be solved in

linear time by a straightforward backward induction pro-
cedure in which solutions to endgames are propagated up

∗This material is based on work supported by the National
Science Foundation under grants IIS-1320620, IIS-0964579,
and CCF-1101668, as well as XSEDE computing resources
provided by the Pittsburgh Supercomputing Center.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

the game tree.1 However, this procedure does not work
in general in imperfect-information games because different
endgames can contain nodes that belong to the same in-
formation set and cannot be treated independently. More
sophisticated algorithms are needed for this class of game.
One algorithm for solving two-player zero-sum imperfect-
information games is based on a linear program (LP) for-
mulation [14], which scales to games with around 108 nodes
in their game tree [7]. Many interesting games are signifi-
cantly larger; for example, two-player limit Texas Hold’em
has about 1017 nodes, and a popular variant of two-player
no-limit Texas Hold’em has about 10165 nodes [12]. To
address such large games, newer approximate equilibrium-
finding algorithms have been developed that scale to games
with around 1014 nodes, such as counterfactual regret mini-
mization (CFR) [21] and an algorithm based on the excessive
gap technique (EGT) [10]. These algorithms are iterative
and guarantee convergence to equilibrium in the limit.

The leading approach for solving extremely large games
such as Texas Hold’em (TH)2 is to abstract the game down
to a game with only around 1012 nodes, then to compute an
approximate equilibrium in the abstract game using one of
the algorithms described above [2, 7]. In order to perform
such a dramatic reduction in size, significant abstraction is
often needed. Information (aka card) abstraction involves
reducing the number of nodes by bundling signals (e.g., forc-
ing a player to play the same way with two different hands),
and action (aka betting) abstraction involves reducing the
number of actions by discretizing large action spaces into a
small number of actions. All of the computation (both for
constructing the abstraction and computing an approximate
equilibrium in the abstraction) is done offline, and a table
lookup is performed in real time to implement the strategy.

We consider a modification to this approach where we re-
tain the abstract equilibrium strategies for the initial portion
of the game tree (called the trunk), and discard the strate-
gies for the final portion (called the endgames). Then, in real
time, we solve the relevant endgame that we have reached to
a greater degree of accuracy than the initial abstract strat-
egy, where we use Bayes’ rule to compute the distribution of
players’ private information leading into the endgames from
the precomputed trunk strategies. This approach, which we
call endgame solving, is depicted in Figure 1.

We present the first theoretical analysis of endgame solv-

1Prior work has shown that precomputing solutions to
endgames offline can be effective in large perfect-information
games [1, 18]. In contrast, we solve endgames online.
2See Appendix A for background on Texas Hold’em poker.

37

Figure 1: Endgame solving (re-)solves the relevant
endgame that we have actually reached in real time
to a greater degree of accuracy than in the offline
computation.

ing in imperfect-information games, and show that it can ac-
tually produce highly exploitable strategies in some games.
In fact, we show that it can fail even in a simple game with
a unique equilibrium and a single endgame, even if our base
strategy were an exact equilibrium (of the full game) and we
were able to compute an exact equilibrium in the endgame.
However, we show that endgame solving can guarantee a
low exploitability (difference between game value and pay-
off against a nemesis) in some games when the opponent is
given sufficient exploitative power within the endgame.

Endgame solving has been used by several prior agents
for the limit variation of TH (where bets must be of a sin-
gle fixed size). The agent GS1 precomputed strategies only
for the first two rounds, using rough approximations for the
payoffs at the leaves of that trunk based on the (unrealistic)
assumption that there was no betting in future rounds [7].
Then in real time, the relevant endgame consisting of the
final two rounds was solved using the LP algorithm. GS2
precomputed strategies for the first three rounds, using sim-
ulations to estimate the payoffs at the leaves; it then solved
the endgames for the final two rounds in real time [8].

However endgame solving has not been implemented by
any competitive agents for the significantly larger and more
challenging domain of no-limit Texas Hold’em (NLTH) prior
to our work. We present a new algorithm that is capa-
ble of scaling to extremely large games such as no-limit
Texas Hold’em, and incorporates several algorithmic im-
provements over the prior approaches (the benefits described
in this paragraph would be improvements over the prior ap-
proaches even for the limit variant). First, the prior ap-
proaches assume that the private hand distributions lead-
ing into the endgame are independent, while they are ac-
tually dependent and the full joint distribution should be
computed. The näıve way of accomplishing this would re-
quire O(n2) strategy table lookups, where n is the number
of private hands (1081 for the final round of poker), and
computing these distributions would become the bottleneck
of the algorithm and make the real-time computation in-
tractable; however, we developed a technique for comput-
ing the joint distributions that requires just O(n) strategy
table lookups. Second, the prior approaches use a single
perfect-recall card abstraction that has been precomputed
offline (which assumes a uniform random distribution for
the opponent’s hand distributions). In contrast, we use an
imperfect-recall card abstraction3 that is computed in real
time in a finer granularity than the initial offline abstraction

3Imperfect-recall abstractions allow for greater flexibility in
which hands can be grouped together, and significantly im-
prove performance over perfect-recall abstractions [20, 13].

and that is tailored specifically to the relevant distribution
of the opponent’s hands at the given hand history. Further-
more, the prior approaches did not compare performance
between endgame solving and not using it (since the base
strategies were not computed for the endgames), while we
provide such a comparison.

Very recent work, which appeared subsequently to the
first version of this work, has presented approaches for de-
composing imperfect-information games into smaller games
that can be solved independently offline, and provides some
theoretical guarantees on full-game exploitability. One of
these approaches has only been applied to the small domain
of limit Leduc Hold’em, which has 936 information sets in
its game tree, and is not practical for larger games such as
NLTH due to its running time [3]. A second related (offline)
approach includes counterfactual values for game states that
could have been reached off the path to the endgames [11].
This approach has been demonstrated to be effective in limit
Leduc Hold’em, and has also been implemented in NLTH,
though no experimental results are given for that domain.
For NLTH, it is implemented by first solving the game in
a coarse abstraction, then fixing the strategies for the pre-
flop (first) round, and re-solving for certain endgames start-
ing at the flop (second round) after common preflop bet-
ting sequences have been played. All of this computation is
done offline. In contrast, our approach enables us to solve
endgames at the river (final round) in real time. It is infea-
sible to solve the river endgames using the prior approach
for several reasons. First, there are far too many of them
to be solved individually in advance (there is a different one
for each sequence of public cards and betting actions). Sec-
ond, by the time play gets down to the river, there are many
possible alternative actions that a player could have taken
to avoid reaching the given endgame, and counterfactual
values for each of these would need to be computed and
then included in the solution to the endgame solver; this
would likely be infeasible to do in real time. Solving the
river endgames, as opposed to the flop endgames which the
prior approach does, is very important because CFR only
occasionally samples from a specific river endgame during
the course of the initial equilibrium computation, while it
very frequently samples from the flop endgames that follow
common preflop betting sequences. So, our approach is ad-
dressing a more pressing limitation.

Our approach has significant benefits over the standard
approach for solving large imperfect-information games, in-
cluding computation of exact (rather than approximate) e-
quilibrium strategies (within a given abstraction), the abil-
ity to compute certain equilibrium refinements that cannot
be computed in the full offline computation, finer-grained
abstraction in the endgames, abstraction that takes into ac-
count realistic distributions of players’ private information
entering the endgame (as opposed to the typical assumption
of uniform random distributions), and a solution to the “off-
tree” problem that arises when the opponent has taken ac-
tions that are not allowed in the abstraction. We present an
efficient algorithm for performing endgame solving in large
imperfect-information games, and present a novel variance-
reduction technique for evaluating the performance of an
agent that uses endgame solving. Experiments on no-limit
Texas Hold’em show that using our algorithm leads to a sig-
nificantly stronger performance against the strongest 2013
poker competition agents.

38

2. ENDGAME SOLVING
Definition 1. E is an endgame of game G if the follow-

ing properties hold:

1. The set of E’s nodes is a subset of the set of G’s nodes.

2. If s′ is a child of s in G and s is a node in E, then s′

is also a node in E.

3. If s is in the same information set as s′ in G and s is
a node in E, then s′ is also a node in E.

For example, we can consider endgames in poker where
several rounds of betting have taken place and several pub-
lic cards have already been dealt. In these endgames, we
can assume players have a joint distribution of private infor-
mation from nodes prior to the endgame that are induced
from the precomputed base approximate-equilibrium strat-
egy using Bayes’ rule. Given this distribution as input, we
can then solve individual endgames in real time using more
accurate abstractions.

Unfortunately, this approach has some fundamental theo-
retical shortcomings. It turns out that even if we computed
an exact equilibrium in the trunk (which is an unrealistically
optimistic assumption in large games) and in the endgame,
the combined strategies for the trunk and endgame may fail
to be an equilibrium in the full game. One obvious reason
for this is that the game may contain many equilibria, and
we might choose one for the trunk that does not match up
correctly with the one for the endgame; or we may com-
pute different equilibria in different endgames that do not
balance appropriately. However, Proposition 1 shows that
it is possible for this procedure to output a non-equilibrium
strategy profile in the full game even if the full game has a
unique equilibrium and a single endgame.

Proposition 1. There exist games—even with a unique
equilibrium and a single endgame—for which endgame solv-
ing can produce a non-equilibrium strategy profile.

Proof. Consider a sequential version of Rock-Paper-Scis-
sors where player 1 acts, then player 2 acts without observ-
ing player 1’s action. This game has a single endgame—
when it is player 2’s turn to act—and a unique equilibrium—
where each player plays each action with probability 1

3
. Now

suppose we restrict player 1 to follow the equilibrium in the
initial portion of the game. Any strategy for player 2 is
an equilibrium in the endgame, because each one yields her
expected payoff 0. In particular, suppose our equilibrium
solver outputs the pure strategy Rock for her. This is clearly
not an equilibrium of the full game.

Rock-Paper-Scissors (RPS) is somewhat of an extreme ex-
ample though, because player 1 does not actually make any
moves in the endgame. At the other extreme, if the endgame
were the entire game, then endgame solving would produce
an exact equilibrium. As a slightly less extreme example,
consider the game in Figure 2, where P1 selects an action
ai, and then a sequential imperfect-information game Gi is
played. Suppose we are solving endgames after P1’s ini-
tial action. Then we will solve the endgame Gi and produce
strategies with zero exploitability in the full game. Endgame
solving could be very useful in this game for several rea-
sons. First, if the number of initial actions n for P1 were
extremely large, it may be infeasible to solve and/or store

solutions to all of the endgames in advance of game play.
Endgame solving would only require solving the endgames
that are actually reached during game play, and would be
feasible even if n is extremely large as long as the number of
game repetitions were relatively small. And second, the typ-
ical approach would actually not even involve solving each
of the Gi separately in advance; it would be to solve the full
game, which includes each of the Gi as well as P1’s initial ac-
tions. It is very possible that equilibrium-finding algorithms
would not scale to the full game and/or it would not fit in
memory, while equilibria could be computed quickly and fit
into memory for the individual endgames Gi.

Figure 2: Player 1 selects his action ai, then the
players play imperfect-information game Gi.

One could imagine much more complex trunk games than
the above example with imperfect information and multiple
actions for both players where it is difficult to know for sure
how “important” the trunk strategies are for the endgames.
In such games, it may be possible for endgame solving to still
guarantee a reasonably low exploitability in the full game.
As Proposition 2 shows, in general, the more exploitative
power the opponent has within the endgame, the lower the
full-game exploitability of the strategies produced by (ap-
proximate) endgame solving are.

Proposition 2. If every strategy that has exploitability
strictly more than ε in the full game has exploitability of
strictly more than δ within the endgame, then the strat-
egy output by a solver that computes a δ-equilibrium in the
endgame induced by a trunk strategy t would constitute an
ε-equilibrium of the full game when paired with t.

Proof. Suppose a strategy is a δ-equilibrium in the end-
game induced by t, but not an ε-equilibrium in the full game
when paired with t. Then by assumption, it has exploitabil-
ity of strictly more than δ within the endgame, which leads
to a contradiction.

Intuitively, Proposition 2 says that endgame solving pro-
duces strategies with low exploitability in games where the
endgame is a significant strategic portion of the full game,
that is, in games where any endgame strategy with high
full-game exploitability can be exploited by the opponent
by modifying his strategy just within the endgame.

One could classify different games according to how they
fall regarding the premise of Proposition 2, given a subdivi-
sion of the game into a trunk and endgames, and given fixed
strategies for the trunk. If the premise is satisfied, then
we can say that the game/subdivision satisfies the (ε, δ)-
endgame property. An interesting property would be the
smallest value ε∗(δ) such that the game satisfies the (ε, δ)-
endgame property for a given δ. For instance, the game in
Figure 2 would have ε∗(δ) = δ for all δ ≥ 0, while RPS
would only have ε∗(δ) = 1 for each δ ≥ 0. While Proposi-
tion 2 is admittedly somewhat trivial, such a classification
could be useful in developing a better understanding of when
endgame solving would be helpful in general.

39

3. BENEFITS OF ENDGAME SOLVING
Even though we showed in the previous section that end-

game solving may lead to highly exploitable strategies in
some games, it has many clear benefits in large imperfect-
information games, which we now describe. These benefits
and techniques are enabled by using endgame solving (rather
than being techniques that help alongside endgame solving).

3.1 Exact Computation of Nash Equilibrium
in Abstracted Endgames

The best algorithms for computing approximate equilibria
in large games of imperfect information scale to about 1014

nodes. However, they are iterative and guarantee conver-
gence only in the limit; in practice they only produce approx-
imations of equilibrium strategies (within a given abstrac-
tion). Sometimes the approximation error is quite large.
For example, a recent NLTH agent reported having an ex-
ploitability of 800 milli big blinds per hand (mbb/h) even
within the abstract game [4] (an agent that folds every hand
would only have an exploitability of 750 mbb/h). The best
general-purpose LP algorithms find an exact equilibrium,
though they only scale to games with around 108 nodes [7].
While the LP algorithms do not scale to reasonable abstrac-
tions of full TH, we can (and do) use them to exactly solve
abstracted endgames that have up to around 108 nodes.

3.2 Ability to Compute Certain Equilibrium
Refinements

The Nash equilibrium (NE) solution concept has some
theoretical limitations, and several equilibrium refinements
have been proposed which rule out NEs that are not ratio-
nal in various senses. In general, these solution concepts
guarantee that we behave sensibly against an opponent who
does not follow his prescribed equilibrium strategy (i.e., he
takes actions that should be taken with probability zero in
equilibrium). Specialized algorithms have been developed
for computing many of these concepts [15, 16, 17]. How-
ever, those algorithms do not scale to large games. In TH,
computing a reasonable approximation of a single Nash equi-
librium already takes months (using the leading algorithms,
CFR or EGT), and there are no known algorithms for com-
puting any of the common refinements that scale to games
of that size. However, when solving endgames that are sig-
nificantly smaller than the full game, it can be possible to
compute certain refinements. An undominated Nash equi-
librium (UNE) can be computed by solving two LPs instead
of one and an ε-quasi-perfect-equilibrium by solving a sin-
gle LP (though the second one is not technically a refine-
ment and has documented numerical stability issues). We
have implemented algorithms for computing both of these on
large NLTH endgames, which demonstrates for the first time
that they are feasible to compute in imperfect-information
games of this magnitude. Preliminary experiments indicate
that in NLTH endgames UNE is useful, though those re-
sults were not statistically significant, so we do not report
on those experiments here.

3.3 Finer-Grained, History-Aware, and
Strategy-Biased Abstraction

Another important benefit of endgame solving in large
games is that we can compute better abstractions in the
endgame that is actually played than if we are forced to
abstract the entire game at once in advance. In addition to

allowing us to compute finer-grained abstractions, endgame
solving enables us to compute an abstraction specifically for
the situation at hand. In other words, we can condition
the abstraction on the path of play so far (both the players’
actions and nature’s actions). For example, in poker, we
can condition the abstraction on the betting history (which
offline game-solving approaches do not do) and on the board
cards (which offline game-solving approaches cannot afford
to do at an equally fine granularity).

The standard approach for performing information ab-
straction is to bucket information sets together for hands
that perform similarly against a uniform distribution of the
opponent’s private information [7, 13].4 However, the as-
sumption that the opponent has a hand uniformly at random
is extremely unrealistic in many situations; for example, if
the opponent has called large bets throughout the hand, he
is unlikely to hold a very weak hand. Ideally, a success-
ful information abstraction algorithm would group hands
together that perform similarly against the relevant distri-
bution of hands the opponent actually has—not a näıve uni-
form random distribution. Fortunately, we can accomplish
such strategy-biased information abstraction in endgames.
Our algorithm is detailed in Section 4.

3.4 A Solution to the Off-Tree Problem
When we perform action abstraction, the opponent may

take an action that falls outside of our action model for him.
When this happens, an action translation mapping (aka re-
verse mapping) is necessary to interpret his action by map-
ping it to an action in our model [5, 19]. However, this
mapping may ignore relevant game state information. In
poker, action translation works by mapping a bet of the op-
ponent to a ‘nearby’ bet size in our abstraction; however, it
does not account for the size of the pot or remaining stacks.
For example, suppose remaining stacks are 17,500, the pot
is 5,000, and our abstraction allows for bets of size 5,000 and
17,500. Suppose the opponent bets 10,000, which we map
to 5,000 (if we use a randomized mapping, we will do this
with some probability). So we map his action to 5,000, and
simply play as if he had bet 5,000. If we call his bet, we will
think the pot has 15,000 and stacks are 12,500. However,
in reality the pot has 25,000 and stacks are 7,500. These
two situations are completely different and should be played
very differently (for example, we should be more reluctant
to bluff in the latter case because the opponent will be get-
ting much better odds to call). This is known as the off-tree
problem. Even if one is using a very sophisticated translation
algorithm, one will run into the off-tree problem.

When performing endgame solving in real time, we can
solve the off-tree problem completely. Regardless of the
action translation used to interpret the opponent’s actions
prior to the endgame, we can take the stack and pot sizes (or
any other relevant game state information) as inputs to the
endgame solver. Our endgame solver in poker takes the cur-
rent pot size, stack sizes, and prior distributions of the cards
of both players as inputs. Therefore, even if we mapped the
opponent’s action to 5,000 in the above example, we cor-
rect the pot size to 25,000 (and the stack sizes accordingly)
before solving the endgame.

4Recent work has also considered an approach where the op-
ponent’s preflop hands are first grouped into several buckets,
then hands for the later rounds are grouped together if they
perform similarly against each of the preflop buckets [13].

40

4. ENDGAME SOLVING ALGORITHM
In this section we present our algorithm for endgame solv-

ing in imperfect-information games with very large state and
action spaces. Pseudocode is given in Algorithm 1. The core
algorithm is domain independent, although we present the
signals as card-playing hands for concreteness. An example
poker hand illustrating each step of the algorithm is given
in Appendix B.

Algorithm 1 Algorithm for endgame solving

Inputs: number of information buckets per agent ki; ab-
straction parameter T ; action abstractions Bi with bi action
sequences; clustering algorithms Ci; equilibrium-finding al-
gorithm Q; number of private hands H; hand rankings R[]

Compute joint hand-strength distribution D[i][j]
E1, E2 ← array of dimension H of zeroes
for h1 = 1 to H do

r1 ← R[h1], s1, s2 ← 0
for h2 = 1 to H do

r2 ← R[h2], s1 += D[h1][h2], s2 += D[h2][h1]
if r2 < r1 then

E1[h1] += D[h1][h2], E2[h1] += D[h2][h1]
else if r1 == r2 then

E1[h1] += D[h1][h2]
2

, E2[h1] += D[h2][h1]
2

E1[h1] = E1[h1]
s1

, E2[h1] = E2[h1]
s2

ki ← b Tbi c for i = 1, 2

Ai ← information abstraction created by clustering ele-
ments of Ei into ki buckets using Ci for i = 1, 2
Solve game with information abstractions Ai and action
abstractions Bi using Q

The first step is to compute the joint input distribution of
private information using Bayes’ rule. The näıve approach
for doing this would require iterating over all possible pri-
vate hand combinations h1, h2 for the players, and for each
pair looking up the probability that the base agent would
have taken the given action sequence. This requires O(n2)
lookups to the strategy table, where n is the number of pos-
sible hands (n = 1081 for the final round in poker). It turns
out that this computation would become the bottleneck of
the entire endgame-solving algorithm and would make real-
time endgame solving computationally infeasible. For this
reason, prior approaches for endgame solving have made the
(significantly) simplifying assumption that the distributions
are independent [7, 8]. However, we developed an algorithm
that does this with just O(n) table lookups. Pseudocode for
our algorithm is given in Algorithm 2.

In short, the algorithm first computes the distributions
separately for each player (as done by the independent ap-
proach), then multiplies the probabilities together for hands
that do not share a common card (and setting the joint
probability to zero otherwise). In order to make sure hands
are indexed properly in the array, we must make use of two
helper indexing functions, Algorithms 3 and 4. The former
gives an algorithm for indexing the two-card private hands,
and the latter gives an algorithm for indexing the 7-card
river hand consisting of the two private cards and five pub-
lic cards. Then, in Algorithm 2, we iterate over all sets of
private hands (p1, p2), and create an array called IndexMap
that maps the 7-card hand index to the corresponding 2-card
hand index. In the course of this loop, we also look up the

probability that each player would play according to the ob-
served betting history in the precomputed trunk strategies,
which we then normalize in accordance with Bayes’ rule.

Algorithm 2 Algorithm for computing hand distributions

Inputs: Public board B; number of possible private hands
H; betting history of current hand h; array of index conflicts
IC[][]; base strategy s∗

D1, D2 ← array of dimension H of zeroes
for p1 = 0 to 50, p1 not already on B do

for p2 = p1 + 1 to 51, p2 not already on B do
I ← IndexFull(B, p1, p2)
IndexMap[I] ← IndexHoles(p1, p2)
P1 ← probability P1 would play according to h
with p1, p2 in s∗

P2 ← probability P2 would play according to h
with p1, p2 in s∗

D1[I] += P1, D2[I] += P2

Normalize D1 and D2 so all entries sum to 1
for i = 0 to H do

for j = 0 to H do
if !IC[IndexMap[i]][IndexMap[j]] then

D[i][j]← D1[i] ·D2[j]
else

D[i][j]← 0

Normalize D so all entries sum to 1 return D

Algorithm 3 Algorithm for computing private hand index

Inputs: Private hole cards h1, h2

if h2 < h1 then t← h1, h1 ← h2, h2 ← t
return

(
h2
2

)
+
(
h1
1

)
Algorithm 4 Algorithm for computing index of 7-card
hands on a given board

Inputs: Private hole cards h1, h2, board B consisting of five
public cards

if h2 < h1 then, t← h1, h1 ← h2, h2 ← t

n1 ← 0, n2 ← 0
for i = 1 to 5 do

for j = 1 to 2 do
if B[i] < hj then ++nj

return
(
h2−n2

2

)
+
(
h1−n1

1

)
In advance of applying Algorithm 2, we compute a table

of the conflicts between each pair of private-hand indices,
where we set IC[i][j] to 1 if hand with indices i and j share
a card in common, and 0 otherwise. Then, we set the joint
probability D[i][j] to equal the product of the two indepen-
dent probabilities D1[i], D2[j] if there is no constraint be-
tween the indices, and we set it to zero otherwise. Note that
this algorithm actually runs in O(n2), where n is the num-
ber of private hands. However, the n2 loop only involves
the simple step of looking up an element in the IC array,
which is performed extremely quickly. The time-consuming
part of the computation is looking up the strategy proba-
bilities P1, P2, which involves accessing several elements in
the massive binary strategy file. Our algorithm performs
this task only O(n) times, while the näıve approach would
do this O(n2) time, and make real-time endgame solving in-
tractable. (Note that each private hand consists of the two

41

cards p1, p2, so while the main loop in Algorithm 2 iterates
over both p1 and p2, it is only iterating once over the H
private hands and is O(n)).

Next we compute arrays E1, E2 that contain the equities
for each state of private information against the opponent’s
distribution. For player 1, we do this by adding D[h1][h2]
to E1[h1] for each hand h2 such that the rank of it on the

given board is lower than that of h1, and adding D[h1][h2]
2

for

each hand with equal rank.5 We then normalize the entries
of E1[h1], and compute E2 analogously. E1[h1] is now the
probability that player 2 has a hand worse than h1, given
the prior distribution D and the current history of betting
and public cards.

In advance of gameplay, we have computed separate action
abstractions for the endgame solver to use for each pot/stack
size that could be encountered. This allows us to solve the
“off-tree problem,” since we are taking into account the ac-
tual pot size even the opponent took an action outside the
action abstraction earlier in the hand. We have constructed
these abstractions so that the larger pot sizes (which have
shallower stacks) have more bet sizes available for each his-
tory, for several reasons; the first is that the tree is smaller
in these situations due to the shallower stack sizes (once
players are “all-in,” no additional bets are allowed), and the
second is that hands with larger pot sizes are more impor-
tant, since more money is won and lost on them, and we
would like to ensure that more bet sizes are accounted for
on these hands. Bi denotes the action abstraction to use for
the given pot size at hand, and bi denotes the number of
betting sequences of Bi, for i = 1, 2.

Next, we compute a card abstraction Ai by grouping Ei
into ki buckets, using some clustering algorithm Ci, for
i = 1, 2. Here ki = T

bi
, where T is a parameter of the

algorithm (for our agent we used T = 7500). While much
prior work on poker has used k-means as the standard clus-
tering algorithm, the following example demonstrates why
this would be problematic. Suppose there are many hands
with an equity of 0.775, and also many hands with an equity
of 0.772. Then k-means would likely create separate clus-
ters for these two equity values, and possibly group hands
with very different equities (e.g., 0.2 and 0.3) together if few
hands have those equities. To address this concern we used
percentile hand strength, which also happens to be easier
to compute. To do this, we break up the interval [0,1] into
ki regions of equal length (each of size 1

ki
). We then group

hand hi into bucket bEi[hi]
ki
c. (For our poker agent we ac-

tually use a slight modification of this approach where we
create a special bucket just for the hands with Ei[hi] ≥ α, to
ensure that the strongest hands are grouped separately (we
used α = 0.99 for our agent). Then the remaining α mass
is divided according to the previously described procedure.)
Sometimes this algorithm results in significantly fewer than
ki buckets, since there may be zero hands with Ei within
certain intervals. We take this into account, and reduce the
number of buckets in the card abstraction accordingly be-
fore solving the endgame. Note that the card abstractions
Ai may be very different for the two players (and have dif-
ferent numbers of buckets); this differs from all the standard
approaches, which use the same abstraction for all players.

5The rank of a hand given a set of public cards is an integral-
valued mapping such that stronger hands have a higher
value; for example, a royal flush has the highest rank.

Algorithm 5 Algorithm for computing endgame informa-
tion abstractions
Inputs: Equity arrays Ei; desired number of buckets per
agent ki; parameter for top bucket α; total number of pos-
sible private hands H

J ← α
k1−1

A1 ← array of zeroes of size H
U1 ← array of booleans initialized to false of size H
for h = 1 to H do

if E1[h] ≥ α then b← k1 − 1
else

b← bE1[h]
J
c

if U1[b] == FALSE then U1[h]← TRUE

M1 ← array of zeroes of size k1, g ← 0
for i = 0 to ki do

M1[i]← g
if U1[i] == TRUE then g = g + 1

for h = 1 to H do
if E1[h] ≥ α then A1[h]←M1[k1 − 1]
else

A1[h]←M1

[
bE1[h]

J
c
]

Compute A2 analogously

Finally, we compute an (exact) equilibrium in the ab-
stracted endgame by applying an equilibrium-finding algo-
rithm Q to the game with card abstractions Ai and betting
abstractions Bi. While the card abstractions were computed
independently (based on equities derived from the joint dis-
tribution), we use the joint distribution for determining the
probabilities that players are dealt hands from their respec-
tive buckets when constructing the endgame. For our agent,
we used Gurobi’s parallel LP solver [9] as Q.

5. EXPERIMENTS ON NO-LIMIT TEXAS
HOLD’EM

We tested our algorithm against the two strongest agents
from the 2013 poker competition. The base agent was a ver-
sion of the agent we submitted to the 2014 AAAI computer
poker competition (that came in first place) from shortly be-
fore the competition. Ordinarily it would be very time con-
suming to differentiate the performance of the base strate-
gies from the endgame solver with statistical significance,
since the endgame solver plays relatively slowly (it averaged
around 8 seconds per hand, which still kept us well within
the competition time limit of 7 seconds per hand on average,
since only around 25% of hands make it to the final betting
round). A useful variance-reduction technique is to only con-
sider hands where both agents make it to an endgame. In
Appendix C we prove that this technique is unbiased. The
results using this evaluation metric are given in Table 1,
where the ± indicates 95% confidence intervals.

Hyperborean.iro Slumbot
+87 ± 50 +29 ± 25

Table 1: Improvement by using endgame solving
against the strongest agents from the 2013 poker
competition over all hands where both agents made
it to some endgame (i.e., to the river betting round).
Units are milli big blinds per hand.

42

The base agent used a procedure called purification on all
rounds (except for the first preflop action); this procedure
selects the maximal probability action at each information
set with probability 1 instead of randomizing according to
the abstract equilibrium strategy (ties are broken uniformly
at random) [6]. This parameter setting was shown to be
the best in our thorough experiments in prior years, and we
had used this as the standard setting when evaluating our
base agent. The main motivation for purification is that it
compensates for the failure of iterative equilibrium-finding
algorithms to fully converge to equilibrium in the abstract
game (a phenomenon that has been documented by prior
agents, e.g., [4]). The endgame solving agent did not use
any rounding for the river, as the endgame equilibria are
exact (within the chosen abstraction), and the problem of
the equilibrium-finding algorithm failing to converge is not
present. Both agents used the pseudoHarmonic action trans-
lation mapping [5] for all rounds to interpret actions taken
by the opponent that fall outside of the action abstraction.

The results are from 100 duplicate matches against Hyper-
borean and 155 duplicate matches against Slumbot. Since
each match is 3,000 hands, this means we played 600,000
and 930,000 hands; out of these hands, both versions of our
agent made it to the river round on 173,568 and 318,700
hands against the respective opponents. If we had used the
standard duplicate approach for evaluating performance, we
would not have been able to statistically differentiate the
base agent from the endgame solver over this sample. How-
ever, we were able to obtain statistically significant results
using our new evaluation approach.

6. CONCLUSION
We demonstrated that endgame solving can be success-

ful in practice in large imperfect-information games despite
the fact that the strategies it computes is not guaranteed
to constitute an equilibrium in the full game (which we
showed). We also showed that endgame solving guarantees a
low exploitability in certain games, and presented a frame-
work that can be used to evaluate its applicability more
broadly. We described several benefits of endgame solving
in large imperfect-information games, including exact com-
putation of Nash equilibria in abstracted endgames, the abil-
ity to compute certain equilibrium refinements, the ability
to compute finer-grained, history-aware, and strategy-biased
abstractions in endgames, and a solution to the off-tree prob-
lem. We presented an efficient algorithm for performing
endgame solving in very large imperfect-information games
and showed that it led to a significantly stronger perfor-
mance against the strongest no-limit Texas Hold’em agents
from the 2013 computer poker competition, utilizing a new
variance-reduction technique that we described.

This work opens many interesting avenues for future re-
search. We showed that endgame solving can produce strate-
gies with high exploitability in certain games, while it guar-
antees low exploitability in others. It would be interesting to
study where different game classes fall on this spectrum. It is
possible that for interesting classes of games—perhaps even
classes that include variants of poker—endgame solving is
guaranteed to produce strategies with low exploitability. We
would also like to study various subdivisions of a game into
a trunk and endgames, to experiment on additional game
classes, to experiment with the refinements we described,
and to develop improved variance-reduction techniques.

APPENDIX
A. NO-LIMIT TEXAS HOLD’EM POKER

No-limit Texas Hold’em is the most popular variant of
poker among humans, and the two-player version is the game
of most active research in the computer poker community
currently. This game works as follows. Initially two players
each have a stack of chips (worth $20,000 in the computer
poker competition). One player, called the small blind, ini-
tially puts $50 worth of chips in the middle, while the other
player, called the big blind, puts $100 worth of chips in the
middle. The chips in the middle are known as the pot, and
will go to the winner of the hand.

Next, there is an initial round of betting. The player
whose turn it is can choose from three available options:

• Fold: Give up on the hand, surrendering the pot to
the opponent.

• Call: Put in the minimum number of chips needed to
match the number of chips put into the pot by the
opponent. For example, if the opponent has put in
$1000 and we have put in $400, a call would require
putting in $600 more. A call of zero chips is also known
as a check.

• Bet: Put in additional chips beyond what is needed
to call. A bet can be of any size up to the number of
chips a player has left in his stack. If the opponent has
just bet, then our additional bet is also called a raise.

The initial round of betting ends if a player has folded,
if there has been a bet and a call, or if both players have
checked. If the round ends without a player folding, then
three public cards are revealed face-up on the table (called
the flop) and a second round of betting occurs. Then one
more public card is dealt (called the turn) and a third round
of betting, followed by a fifth public card (called the river)
and a final round of betting. If a player ever folds, the other
player wins all the chips in the pot. If the final betting round
is completed without a player folding, then both players re-
veal their private cards, and the player with the best hand
wins the pot (it is divided equally if there is a tie).

In the experiments, we will be solving endgames after the
final public card is dealt but before the final round of betting.
(Thus, the endgame contains no more chance events, and
only publicly observable actions of both players remain.)

B. EXAMPLE
In this section we demonstrate the operation of our al-

gorithm on an example hand of no-limit Texas Hold’em.
Recall that blinds are $50 and $100 and that both players
start with $20,000. In the example hand, we are in the small
blind with 8dTh. We raise to $250, the opponent re-raises
to $750, and we call (there is now $1500 in the pot). The
flop is Jc6s2c. The opponent checks and we check. The
turn is Kd. The opponent checks, we bet $375, and he calls
(there is now $2250 in the pot). The river is Qc. Up until
this point we have just played according to the precomputed
base strategy; the endgame-solving algorithm begins now.

According to the pseudocode for Algorithm 1, the first
step is to compute the joint prior hand distribution D from
the base strategies, using Algorithm 2. This took 0.433 sec-
onds. We then compute the equities Ei for each player, using
Algorithm 1. This took 0.015 seconds.

43

The next step is to look at the betting abstraction that
has been precomputed for this specific pot/stack size (pot
size of $2250 and stack sizes of $18875). Note that for this
particular hand all of the opponent’s actions before the river
fell inside of our betting abstraction; however, if they had
not, and we were forced to use an action translation mapping
to map his action to an action in our betting abstraction, we
would be able to correct our misperception of the pot size at
this point, by selecting the precomputed betting abstraction
for the actual pot/stack size (as opposed to the size that
assumed he played an action in our betting abstraction).
This solves the “off-tree” problem, discussed in the paper.

The betting abstraction for a pot size of $2250 has 196
betting sequences for each player. For this hand we used a
betting abstraction parameter of T = 10000 (while for the
experiments described in the paper, we used T = 7500).
Therefore, we will use ki = b 10000

196
c = 51 card buckets for

each player for this hand.
Next, we compute card abstractions for both players We

used used a top bucket parameter of α = 0.995 (while for the
experiments described in the paper, we used α = 0.99). Af-
ter applying our card abstraction algorithm for both players,
the resulting abstractions had 38 and 35 buckets respectively
for the two players (since not all of the 51 hand equity inter-
vals contained hands). Computing these took 0.008 seconds.

Our actual hand (8dTh) had rank 296 (out of 1081) and
actually had an equity of 0 vs. the opponent’s hand dis-
tribution (we thought the opponent would never play the
hand the way he did so far with a worse hand than 8dTh).
This places us in bucket 0 (the worst bucket, out of 35). By
contrast, if the opponent had our hand, he would have an
equity of 0.336 against our hand distribution, and would be
in bucket 8 (where his buckets range from 0–37).

We then construct the LP matrices for the resulting ab-
stracted endgame, which took 0.15 seconds, and then com-
pute an exact equilibrium by solving the LP using Gurobi’s
parallel LP solver (it took 1.051 seconds to construct the
LP instance and 5.328 seconds to solve it). Overall, the
endgame-solving algorithm took 6.985 seconds for this hand.

The opponent checked for his initial action on the river.
The betting abstraction for this hand had nine available op-
tions for the first action for each player: check, 0.1 pot, 1

3

pot, 2
3

pot, pot, 1.5 pot, 2 pot, 3 pot, all-in. The strategy
from our endgame solver said for us to check with proba-
bility 0.742, bet 2

3
pot with probability 0.140, bet pot with

probability 0.103, and bet 2 pot with probability 0.014.

C. VARIANCE-REDUCTION TECHNIQUE
When comparing the performance of one version of an

agent A1 to another version that is identical except that it
plays differently on endgames A2, one would like to take ad-
vantage of the fact that the agents play identically up until
the endgames in order to evaluate the performance differ-
ence more efficiently. Ideally, we could play A1 against a
given opponent, and when the endgame is reached, evalu-
ate how both A1 and A2 would do on that same endgame
given the trunk history. However, such a technique is not
possible on the poker competition test server. All that is
allowed is to play A1 and A2 against an opponent for a full
set of matches. The agents may reach endgames on different
hands, or may reach different endgames even on the same
hands (since both our agent and the opponent may be play-
ing randomized strategies before the endgames).

One possible approach for reducing variance would be to
only consider hands where both A1 and A2 arrive at the
same endgame (the same betting history was played). It
turns out that this approach is actually biased, so it can-
not be applied to accurately measure performance. A sec-
ond approach, that it turns out is unbiased, would be to
only consider the hands where both agents arrive at some
endgame (though not necessarily the same one). If we only
consider these hands, then the difference in performance be-
tween the two agents is an unbiased estimator of their true
performance difference. This would allow us to achieve sta-
tistical significance using a smaller sample of hands.

Proposition 3. Let A1 and A2 be two algorithms that
differ in play only for endgames. Then the difference in
performance looking at only the hands where both make it
to the same endgame is not an unbiased estimator of the
overall performance difference.

Proof. Suppose there were only two betting sequences
and both make it to the river, where the first one (A) hap-
pens 99% of the time and the second one (B) happens 1% of
the time. Then the probability that both hands hit the river
with B on any particular hand is 0.01%, and the probability
that both hands hit the river with A with any particular
hand is 98.01%. So if you look at all hands where both hit
the river with the same sequence, there would be only 1 (B)
for every 9802 (A) sequences.

Proposition 4. Let A1 and A2 be two algorithms that
differ in play only for endgames. Then the difference in
performance looking at only the hands where both make it to
some (but not necessarily the same) endgame is an unbiased
estimator of the overall performance difference.

Proof. For each history that leads into an endgame hi,
let pi be the probability that hi is played when we use the
base strategy against the opponent O. Then the expectation
of the difference in payoff between playing A1 (base strategy)
and A2 (endgame solver) against O is

∑
i

[pi (U(A1, O, hi) − U(A2, O, hi))]

=
∑
i

[piU(A1, O, hi)] −
∑
i

[piU(A2, O, hi)]

Suppose that we look at performance over all hands where
both algorithms make it to some endgame. The probability
that A1 makes it to the endgame with history hi and A2

makes it to the endgame with history hj is pipj . Thus, the
expectation of the payoff difference is

∑
i

∑
j

[pipj (U(A1, O, hi) − U(A2, O, hj))]

=
∑
i

∑
j

[pipjU(A1, O, hi)] −
∑
i

∑
j

[pipjU(A2, O, hj)]

=
∑
i

piU(A1, O, hi)
∑
j

pj

 −
∑
j

[
pjU(A2, O, hj)

∑
i

pi

]

=
∑
i

[piU(A1, O, hi)] −
∑
j

[pjU(A2, O, hj)]

=
∑
i

[piU(A1, O, hi)] −
∑
i

[piU(A2, O, hi)]

44

REFERENCES
[1] R. E. Bellman. On the application of dynamic

programming to the determination of optimal play in
chess and checkers. National Academy of Sciences of
the United States of America, 53:244–247, 1965.

[2] D. Billings, N. Burch, A. Davidson, R. Holte,
J. Schaeffer, T. Schauenberg, and D. Szafron.
Approximating game-theoretic optimal strategies for
full-scale poker. In Proceedings of the 18th
International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[3] N. Burch, M. Johanson, and M. Bowling. Solving
imperfect information games using decomposition. In
Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2014.

[4] S. Ganzfried and T. Sandholm. Tartanian5: A
heads-up no-limit Texas Hold’em poker-playing
program. In Computer Poker Symposium at the
National Conference on Artificial Intelligence (AAAI),
2012.

[5] S. Ganzfried and T. Sandholm. Action translation in
extensive-form games with large action spaces:
Axioms, paradoxes, and the pseudo-harmonic
mapping. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2013.

[6] S. Ganzfried, T. Sandholm, and K. Waugh. Strategy
purification and thresholding: Effective
non-equilibrium approaches for playing large games.
In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS), 2012.

[7] A. Gilpin and T. Sandholm. A competitive Texas
Hold’em poker player via automated abstraction and
real-time equilibrium computation. In Proceedings of
the National Conference on Artificial Intelligence
(AAAI), 2006.

[8] A. Gilpin and T. Sandholm. Better automated
abstraction techniques for imperfect information
games, with application to Texas Hold’em poker. In
Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS), 2007.

[9] I. Gurobi Optimization. Gurobi optimizer reference
manual, 2014.

[10] S. Hoda, A. Gilpin, J. Peña, and T. Sandholm.
Smoothing techniques for computing Nash equilibria
of sequential games. Mathematics of Operations
Research, 35(2):494–512, 2010.

[11] E. Jackson. A time and space efficient algorithm for
approximately solving large imperfect information
games. In AAAI Workshop on Computer Poker and
Incomplete Information, 2014.

[12] M. Johanson. Measuring the size of large no-limit
poker games. Technical report, University of Alberta,
2013.

[13] M. Johanson, N. Burch, R. Valenzano, and
M. Bowling. Evaluating state-space abstractions in
extensive-form games. In Proceedings of the
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2013.

[14] D. Koller, N. Megiddo, and B. von Stengel. Fast
algorithms for finding randomized strategies in game
trees. In Proceedings of the 26th ACM Symposium on
Theory of Computing (STOC), pages 750–760, 1994.

[15] P. B. Miltersen and T. B. Sørensen. Computing
proper equilibria of zero-sum games. In Computers
and Games, pages 200–211, 2006.

[16] P. B. Miltersen and T. B. Sørensen. Fast algorithms
for finding proper strategies in game ttrees. In
Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 874–883, 2008.

[17] P. B. Miltersen and T. B. Sørensen. Computing a
quasi-perfect equilibrium of a two-player game.
Economic Theory, 42(1):175–192, 2010.

[18] J. Schaeffer, Y. Björnsson, N. Burch, R. Lake, P. Lu,
and S. Sutphen. Building the checkers 10-piece
endgame databases. In Advances in Computer Games
10, 2003.

[19] D. Schnizlein, M. Bowling, and D. Szafron.
Probabilistic state translation in extensive games with
large action sets. In Proceedings of the 21st
International Joint Conference on Artificial
Intelligence (IJCAI), 2009.

[20] K. Waugh, M. Zinkevich, M. Johanson, M. Kan,
D. Schnizlein, and M. Bowling. A practical use of
imperfect recall. In Proceedings of the Symposium on
Abstraction, Reformulation and Approximation
(SARA), 2009.

[21] M. Zinkevich, M. Bowling, M. Johanson, and
C. Piccione. Regret minimization in games with
incomplete information. In Proceedings of the Annual
Conference on Neural Information Processing Systems
(NIPS), 2007.

45

