
Monitoring Hierarchical Agent-based Simulation Traces

Benjamin Herd, Simon Miles, Peter McBurney, Michael Luck
Department of Informatics

King’s College London
London, United Kingdom

{benjamin.c.herd, simon.miles, peter.mcburney, michael.luck}@kcl.ac.uk

ABSTRACT
Due to their internal complexity, agent-based simulations are rarely
amenable to conventional formal verification. With its focus on in-
dividual traces, runtime verification represents an interesting alter-
native for correctness assessment. Here, execution traces produced
by the running system are observed by a monitor and checked for
correctness on-the-fly. If the truth or falsity of a given property can-
not be determined at time t, then the monitor creates an obligation
that the current trace needs to satisfy at time t + 1 in order for the
whole property to become true.

With different observational levels, traces produced by agent-
based simulations have an inherently hierarchical nature which com-
plicates the structure and manipulation of obligations significantly.
However, it turns out that this problem is general enough to be dealt
with in an abstract, language-independent way.

In this paper, we provide a general framework for the monitor-
ing of hierarchical traces. It introduces different types of obliga-
tions and appropriate manipulation procedures along with minimal
requirements that a property specification language needs to satisfy
in order to be monitorable. We provide a full formalisation of the
framework and an example implementation of a subset in Haskell.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Moni-
tors; I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems

General Terms
Verification, Theory, Algorithms

Keywords
Runtime verification; agent-based simulation; monitoring; tempo-
ral logic

1. INTRODUCTION
Agent-based simulation (ABS) is rapidly emerging as a popu-

lar paradigm for the simulation of complex systems that exhibit
non-linear and emergent behaviour [14]. Similar to other software
systems, correctness also plays a central role in the development of
ABSs and the demand for tailored verification techniques increases.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

In the more general area of multiagent systems (MAS), temporal
logic model checking has been used successfully to verify a wide
range of properties [13]. Despite impressive advances made in re-
cent years, exponential growth of the underlying finite-state model
(the so-called ‘state space explosion’) remains a central problem
which renders the verification of large-scale real-world systems dif-
ficult or even impossible. Due to their high level of complexity, the
exhaustive verification of ABSs is, in general, far beyond the capa-
bilities of contemporary model checking techniques and tools.

Runtime verification represents a promising alternative for the
evaluation of large-scale systems [8]. It refers to the idea of observ-
ing the execution of a program at runtime and perform correctness
checks on-the-fly. A central component of any runtime verification
approach is a monitoring process which observes an execution trace
against the background of a given correctness criterion (e.g. a lin-
ear temporal logic formula) and reports for each state in the trace
whether the given property has already been satisfied or violated
or whether a clear verdict cannot be made yet. In the latter case,
an obligation is produced; it describes those aspects of the original
property that the system needs to satisfy in the next step in order to
satisfy the overall property.

Runtime verification of software systems has been investigated
extensively in the past twenty years, yet in the area of MAS in
general and ABS in particular, approaches are still largely missing.
One reason for that is complexity. Conventional runtime verifi-
cation assumes traces to be monolithic, i.e. composed of atomic,
individual states. In a multiagent setting, however, traces have
a more fine-grained internal structure: Traces still represent se-
quences of states (population states) yet, at the same time, they
also represent sets of sequences of group states as well as sets of
sequences of individual agent states. This has significant implica-
tions on the nature of obligations and their manipulation at runtime.
Whilst some existing approaches to runtime verification and moni-
toring in the area of general MAS have to deal with certain aspects
of obligation manipulation, a general and specification language-
independent treatment of the monitoring problem is still missing.
It turns out that the nature of obligations in a multiagent context as
well as their manipulation is independent of the underlying specifi-
cation language and can (and should) thus be treated entirely sepa-
rately from the latter’s design and implementation.

This paper makes the following contributions:

• we present a language-independent framework for the mon-
itoring of hierarchical traces with a particular focus on the
manipulation of obligations. The framework serves as an ab-
stract description of a monitoring procedure which, due to its
general nature, can be used as a blueprint for developers to
implement concrete monitors for different specification lan-
guages;

463

• we give a full typechecked formalisation of the framework
using the Z notation; and
• we show the correspondence of the abstract framework and

an implementation by translating a subset of the framework
into executable Haskell code.

We start with an overview of related work in Section 2 and some
background in Section 3. We then provide an informal description
of the idea of hierarchical traces in Section 4 which is succeeded
by a formal treatment of the obligation manipulation problem in
Section 5. Instead of tying the monitoring problem to a particu-
lar specification language, we aim to be as general as possible and
treat the problem in a language-independent way. The purpose of
this endeavour is to isolate the problem of obligation manipulation
in order to allow a language designer to focus solely on the core
language. We do this by developing a monitoring framework for
ABS traces for the purpose of runtime verification together with
requirements that a specification language needs to satisfy in or-
der to be usable within the framework. To this end, we introduce
the concepts of joinability, agent-monitorability, and multiagent-
monitorability. In order to show the closeness of the framework to
an executable implementation, we translate a subset of the frame-
work into Haskell code. The integration of a simple example spec-
ification language into the framework is illustrated in Section 6.

2. RELATED WORK
In the wider area of MAS, runtime verification has not yet been

dealt with in a general way. Whereas a range of problem-specific
and language-specific testing and debugging approaches have been
proposed for general MAS [9], their simulation counterparts have
been largely neglected to date. Simulation-specific monitoring and
testing approaches that have been presented tackle the monitoring
problem in an ad hoc fashion [16, 21, 4]; formal approaches to
monitor construction are still missing.

The approach closest to ours is the one presented by Dastani and
Meyer [5]. They propose MDL, a specification language for the
formulation of properties about BDI-based multiagent programs to-
gether with a debugging, i.e. runtime verification procedure. MDL
allows for the specification of temporal properties about BDI-based
systems and, in addition to temporal operators, provides a means to
limit the scope of a property to an individual agent, to a group of
agents, or to the overall population1. As opposed to the approach
described above, Dastani and Meyer give MDL a two-valued se-
mantics, according to which properties are either true (if clearly
satisfied) or false (if either violated or not yet satisfied). The al-
gorithm is thus not optimal w.r.t. the early detection of violations.
Furthermore, as opposed to producing obligations, they seem to re-
verify the entire trace prefix produced so far once a new state has
been processed. Giving t time steps, (t + 1)/2 states thus need
to be verified. This offline nature of the verification procedure cir-
cumvents the obligation problem discussed in this paper, yet it also
renders the approach non-optimal w.r.t. the number of checks nec-
essary to answer a given property.

Sharpanskykh and Treur presented TTL, the temporal trace lan-
guage [17]. It subsumes languages based on temporal logics and
differential equations and thus allows for the expression of prop-
erties which go beyond purely temporal statements. The specifi-
cation language takes into consideration the hierarchical nature of
traces obtained from MAS executions and offers the possibility to
observe behaviours on different levels of observation. The authors
also describe a verification procedure on sets of traces. However,
1In that respect, it bears a strong similarity with simLTL, a property
specification language for ABS traces [10, 11].

the procedure is exhaustive in nature, i.e. it expects full traces to be
present prior to verification. Similar to Dastani and Meyer’s work
described above, this circumvents the need to deal with obligations.

3. BACKGROUND

Linear temporal logic (LTL).
The treatment of time in temporal logic can be roughly subdi-

vided into branching time (CTL, CTL*) and linear temporal logic
(LTL) [2]. Branching time logics assume that there is a choice be-
tween different successor states at each time step and thus views
time as an exponentially growing tree of possible worlds. Linear
time logic views time as a linear sequence of states. The prob-
lem addressed in this paper is based upon the analysis of individual
finite execution traces. Since each path comprises a sequence of
states, it is natural to assume linear temporal flow. We thus focus
on LTL, the syntax of which is given below:

φ ::= true | p | φ ∧ φ | φ ∨ φ | ¬ φ | Xφ | φU φ

The basic building blocks are atomic propositions p, the Boolean
connectives ∧ (‘and’), ∨ (‘or’) and ¬ (‘not’) and the temporal
connectives X (‘next’) and U (‘until’). LTL formulae are eval-
uated over paths. For formula φ and state s, true always holds,
p holds iff it is true in s, φ1 ∧ φ2 holds iff φ1 holds and φ2

holds, φ1 ∨ φ2 holds iff either φ1 or φ2 holds, ¬ φ holds iff φ
does not hold and Xφ holds iff φ holds in the direct successor
state of s. For formulae φ1 and φ2, φ1 U φ2 holds in state s iff
φ1 holds until φ2 holds at some point in the future. Other logical
connectives such as ‘⇒’ or ‘⇔’ can be derived in the usual man-
ner: φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2 and φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧
(φ2 ⇒ φ1). Additional temporal operators such as F (‘eventu-
ally’), G (‘always’) and W (‘weak until’) can be derived as fol-
lows: Fφ ≡ true U φ (φ holds eventually), Gφ ≡ ¬ F(¬ φ)
(φ holds always) and φ1Wφ2 ≡ (φ1 U φ2) ∨ Gφ1 (φ1 may be
succeeded by φ2).

Runtime verification.
As indicated above, the application of conventional model check-

ing is severely constrained by the size of the underlying system.
Runtime verification attempts to circumvent this problem by fo-
cussing on the current execution of a system instead of its universal
behaviour [12]. In that respect, runtime verification bears a strong
similarity with testing. However, in contrast to conventional test-
ing, runtime verification typically allows for the formulation of the
system’s desired behaviour in a less ad hoc and more rigorous, e.g.
logic-based, way and can thus be considered more formal.

Runtime verification represents a large research area in its own
right and we can only give a very superficial description here. A
typical runtime verification approach has the following three char-
acteristics: (i) the behaviour of the system under consideration is
observed while the system is running; (ii) a property describing the
system’s desired behaviour is checked against the current execu-
tion trace; and (iii) a result is reported as soon as the property has
been satisfied (or violated). Due to its focus on individual execution
traces, runtime verification views time as a linear flow and proper-
ties are thus often formulated in a variant of LTL. Those properties
are then translated into a monitor which is used to observe the ex-
ecution of the system and report any satisfaction or violation that
may occur. In order for a monitoring approach to be efficient, it
necessarily needs to be forward-oriented; having to ‘rewind’ the
execution of a system in order to determine the truth of a property
is generally not an option. In terms of monitor construction, two

464

Xφ ≡ true ∧ Xφ (1)
φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 U φ2) (2)

Table 1: Expansion laws for the elementary LTL operators

different approaches — automaton-based and symbolic — can be
distinguished. They are briefly described below.

The automaton-based approach is related to automata-theoretic
model checking of LTL properties and involves the construction of
an automaton, for example a finite state automaton, a Büchi au-
tomaton or an alternating finite automaton [19]. The automaton
represents the language L(φ) defined by a given LTL property φ
which describes all allowed traces of the system. One typical prob-
lem in runtime verification is that the truth of a property φ at time
t may need additional information about the future behaviour of
the trace which is not yet available. From the monitor’s point of
view at a particular point in time, the future is not foreseeable.
Depending on the type of automaton being used, transitions may
thus need to be taken nondeterministically which raises questions
about the correct traversal mode. In the case of depth-first traver-
sal, the automaton can only ever be in a single state, yet it may re-
quire backtracking if the wrong path has been taken. In the case of
breadth-first traversal, the automaton can be in a number of states at
the same time, yet the number of currently active states may grow
exponentially over time.

The second, symbolic approach is based on the idea of formula
manipulation. Instead of constructing a full automaton as men-
tioned above, the monitor is represented as a formula which de-
scribes (i) the requirements that the currently observed state needs
to satisfy in order to either satisfy (or at least not violate) a given
property φ, and (ii) those requirements which the rest of the trace
needs to fulfil in order for φ to be eventually satisfied. To that end,
the symbolic approach makes use of the recursive nature of tempo-
ral logic by exploiting expansion laws (the laws for the basic LTL
operators are shown in Table 1). Informally, expansion laws allow
for the decomposition of an LTL formulae into two parts: the frag-
ment of the formula that needs to hold in the current state and the
fragment that needs to hold in the next state in order for the whole
formula to be true. It is useful to view both fragments as obliga-
tions, i.e. aspects of the formula that the trace under consideration
needs to satisfy immediately and aspects that it promises to satisfy
in the next step. Consider, for example, the expansion law for the
‘until’ operator shown in Table 1. The equivalence states that, in
order for a formula φ1 U φ2 to be satisfied at time t, either (i) φ2

needs to be satisfied at time t, or (ii) φ1 needs to be satisfied at time
t and φ1 U φ2 needs to be satisfied at time t+ 1.

Expansion laws play an important role in the idea of runtime
verification, since they form the basis of a decision procedure that
a monitor can use to decide in a certain state whether a given prop-
erty has already been satisfied or violated. By decomposing a for-
mula into an immediate and a future obligation, optimality can be
achieved: as soon as the immediate obligation is satisfied and no
future obligation is created, the formula is satisfied and evaluation
ends. Expansion laws work well if the trace under consideration is
infinite. In the presence of finite traces, however, certain problems
arise. A thorough discussion of the finite trace problem is beyond
the scope of this paper, for further information, see e.g. [3].

4. HIERARCHICAL TRACES
Although the monitoring of hierarchical traces is a general prob-

lem in the area of MAS, we put a particular focus on simulations

here. We can assume that simulation traces are, by definition, fi-
nite and therefore maximal, i.e. there is no ‘unknown future’ that
a monitor needs to take into account. As a consequence, we can
restrict our focus to a three-valued truth domain, i.e. true, false,
and undecided (the latter of which only occurs in the middle of a
trace, not at its end) [3]; furthermore, in a simulation context, the
focus is typically on the purely state-based behaviour of the system
rather than on epistemic, deontic or doxastic issues, as it is often the
case in the multiagent world [13].

As opposed to other types of software system, traces produced by
an ABS are not monolithic but hierarchical in nature. In addition to
describing the evolution of the overall agent population, each trace
also describes at the same time the evolution of all possible groups
of agents as well as the evolution of all individual agents. An ex-
ample of a hierarchical trace is shown in Figure 1. It describes the
temporal evolution of four agents in a simple epidemiological con-
text. The agents are grouped into two categories (male and female)
and can be in one of two states (healthy or infected). Each vertical
sequence of boxes below an agent name can be seen as the evolu-
tion of the respective agent’s state over time. For example, Agent 2
is initially healthy but becomes infected at time 3.

Due to the logical grouping of agents into a male and a female
fragment, the simulation trace exhibits a hierarchical structure; it
can be seen as comprising four agent traces, two group traces and
one population trace. Each group can be understood as a meta agent
which is characterised by its own state and its own behaviour. For
example, the state of the group of male agents at time t is defined
as the union of the states of male agents 1 and 2 at time t. The
same holds for the entire population whose state at time t is de-
fined as the union of the states of all agents at time t. It is important
to note that groups are not just containers that host their children.
They can also possess attributes which are functions of their chil-
dren’s states but nevertheless attributes of the group itself. For ex-
ample, we might be interested in the number of infected female
agents. This is clearly a group attribute that cannot be expressed
as a combination of individual agent attributes. The same hierar-
chy that exists within a full trace also exists within a single time
step. For example, the state of the entire population at time t can
be subdivided into the state of all male agents and the state of all
female agents, each of which in turn can be itself subdivided into
the states of its constituents. The hierarchical structure thus perme-
ates the trace on all levels — temporal and atemporal. The diagram
on the right hand side of Figure 1 illustrates the tree structure of a
hierarchical trace. The leaf nodes represent individual agents, the
composite nodes represent groups of agents. Groups can be seen as
meta agents which, besides serving as containers for other groups
or individual agents, have their own state and behaviour.

In a verification context, the presence of hierarchical traces has
important implications. It requires the ability to formulate hierar-
chical correctness properties, i.e. properties about individual agents,
about groups of agents, as well as about the whole population. Con-
sequently, when the correctness of a simulation model is to be as-
sessed, this can (and, in fact, has to) be done on multiple levels.
Each component of a hierarchical trace, i.e. each node in the tree
structure, is a potential candidate for correctness assessment.

Formally, we view an agent’s evolution over time as a simple
sequence of states. We refer to such a sequence as an agent trace:

Tra == seqAState

where AState == Name → V alue is a mapping from the
set of attribute names to the set of attribute values. Each group of
agents is assumed to be finite and composed of n individual agents.
Consequently, a group state is defined as a function from the set of

465

infected

infected

infected

healthy

healthy

infected

infected

... ...

healthy

healthy

infected

healthy

healthy

healthy

... ...

Group stateAgent
state

Population state

Agent 1 Agent 2 Agent 3 Agent 4

Male agents Female agents

Population
tim

e

Population

Male agents Female agents

Agent 1 Agent 2 Agent 3 Agent 4

Figure 1: Example of a hierarchical trace (left) and its internal structure represented as a tree (right)

agent identifiers Ag to the set of agent states AState:

GState == Ag→AState

Since agents evolve over time, groups also evolve. A group trace
is thus defined as a sequence of group states:

Trg == seqGState

The next section discusses the verification of temporal multi-
level properties on hierarchical traces.

5. MONITORING HIERARCHICAL TRACES
Due to the presence of individual agents as well as groups of

agents which may themselves be arbitrarily nested, the analysis of
hierarchical traces poses particular challenges. For example, in the
presence of individual agents (each with its own distinct life his-
tory), obligations are no longer atomic but also hierarchical in na-
ture. Furthermore, obligations referring to groups of agents may be
understood in different ways — collectively or individually.

The crucial point is that those complications are essentially inde-
pendent of the specification language being used. They are, in fact,
common to all languages which allow for the formulation of state-
ments about individuals as well as about groups. A developer of
such a specification language is thus guaranteed to eventually face
the problem of obligation manipulation which, given its generality,
should be solved on a higher level of abstraction.

The purpose of this section is to address this problem and provide
a formal treatment of the monitoring problem for hierarchical traces
independent of the concrete shape of the underlying specification
language. We tackle the problem in a layered manner, starting with
the monitoring of individual agents in Section 5.1, followed by the
monitoring of groups in Section 5.2. Our formalisation is based
on the Z notation [18] which, together with its different extensions,
has been shown to be useful as a specification language for MAS
[6, 7, 15]. In order to keep the specifications as succinct as possible,
we follow a functional style and make use of two commonly used
functions, map and zip2.

An essential ingredient of the subsequent formalisation is a dis-
tinction between agent and group properties. Before going into
2map accepts a sequence and a function, applies the function to
each element in the sequence and returns the resulting sequence;
zip takes two sequences and combines them into a single sequence
of tuples.

more detail we introduce the notion of a Context == Agent ×
Group which describes context information for the monitor about
the current point in time. The context consists of the agent in scope,
i.e. the currently focussed agent within a group (in the case of agent
properties) as well as the group (i.e. a finite set of agents) that the
monitor is currently operating on (in the case of group properties).

5.1 Monitoring agent properties
Agent properties — as the name suggests — are properties about

individual agents. If one assumes atomic propositions to describe
Boolean facts about agents, then LTL as described in Section 3 can,
for example, be used as an agent property language. Our goal here
is to abstract away from any concrete language and reduce it to a set
of mere requirements that it needs to satisfy in order to be usable in
a runtime verification context.

To that end, we first define what it means for a language to be
joinable. Informally, for any languageL, we want to be able to both
conjoin and disjoin instances of L. This is important because — as
illustrated further below — the manipulation of obligations for any
language L may require the construction of logical conjunctions or
disjunctions of any two formulae of type L. In order for that to be
possible, L needs to provide implementations of the logical ‘and’
and ‘or’ operators. This leads to the following definition.

Definition 1. A languageL is joinable if it supports logical con-
junction and disjunction, i.e. if implementations of both operators
∧: L × L→L and ∨: L × L→L are given.

Essentially, the monitoring of individual agent properties is no
different from the monitoring of conventional linear time properties
as described in Section 3. In a three-valued setting and at any point
in time, a linear time property φ : L may be satisfied, violated
or undecided. As a consequence, the result of a property check is
either a definite truth value (true, false) or an obligation ψ : L,
the latter of which is again a property of language L. In order to
describe this formally, we define the following algebraic data type
AResultwhich describes the result of an individual agent property
check of language L:

AResult ::= ASuccess | AFailure | AO〈〈L〉〉

The first two constructors, ASuccess and AFailure are obvi-
ous: they denote the immediate success or failure of the given agent
property. The third constructor denotes an agent obligation, i.e. a

466

property of type L that the respective agent promises to satisfy in
the next step in order for the whole property to become true.

During verification, we may also need to conjoin and disjoin
monitoring results; to that end, we need to define appropriate oper-
ators. We start with conjunction:

∧ : AResult×AResult→AResult

∀ a, b : AResult •
(ASuccess ∧ b = b ∧
a ∧ ASuccess = a ∧
a ∧ AFailure = AFailure ∧
AFailure ∧ b = AFailure) ∨
a ∧ b = AO(a ∧ b)

The definition states that a conjunction of ASuccess with b al-
ways results in b, a conjunction of AFailure with something else
always results inAFailure, and all other cases result in a new obli-
gation which represents the conjunction of the respected formulae.
Disjunction can be defined accordingly:

∨ : AResult×AResult→AResult

∀ a, b : AResult •
(ASuccess ∨ b = ASuccess ∧
a ∨ ASuccess = ASuccess ∧
a ∨ AFailure = a ∧
AFailure ∨ b = b) ∨
a ∨ b = AO(a ∨ b)

The definition states that the disjunction ofASuccesswith some-
thing else always results in ASuccess, a disjunction of AFailure
with b always results in b, and all other cases result in a new obli-
gation which represents the disjunction of the respected formulae.
We see here that the conjunction and disjunction of instances of
AResult requires L to be joinable, i.e. it has to provide appropri-
ate conjunction and disjunction operators (in bold).

Formally, AResult is now now closed under conjunction and
disjunction. Theoretically, AResult should also be closed under
negation since it may be the case that an element of AResult is
to be negated as part of the obligation manipulation process. In
the case of AResult, negation is trivial and can be defined easily;
in the case of group properties described further below, however,
negation becomes more intricate. In order to circumvent the prob-
lem of obligation negation altogether, we thus assume any specifi-
cation language to be in Positive Normal Form (PNF) where nega-
tions are only allowed to appear in front of atomic predicates [2]. If
the underlying language is in PNF, then the obligation manipulation
does not need to take into account the negation of obligations.

According to the description above, once a property φ : L is
evaluated on a state of a trace at time t, a result of type AResult
is produced. In order to advance the monitoring process, this re-
sult now needs to be ‘fed into’ the evaluation of the next state at
time t + 1. Again, this evaluation procedure is a general problem
which is independent of the underlying specification language and
can thus be treated in a general way. Intuitively, monitoring of a
given formula φ : L should stop once a definite result (success,
failure) to φ has been found; if an obligation has been produced, it
is to be fed into the evaluation of the next time step. We can thus
devise the following evaluation function for instances of AResult:

evalAR : Context×AResult→AResult

∀ c : Context; a : L •
evalAR(c, ASuccess) = ASuccess ∧
evalAR(c, AFailure) = AFailure ∧
evalAR(c, AO(a)) = evalA(c, a)

As emphasised in bold in the last line, the definition of function
evalAR implies that a language L needs to provide an implemen-
tation of an evaluation function evalA that accepts an instance of
L as well as additional context information and returns either suc-
cess, failure, or an individual obligation of type L. This leads to
the following general definition.

Definition 2. A language L is agent-monitorable if it provides
the following components:

1. a representation in PNF;
2. logical conjunction and disjunction; and
3. an evaluation function that returns an instance of AResult,

i.e. success, failure, or an obligation of type L.

5.2 Monitoring group properties
The obligation manipulation problem is slightly more complex

in the case of group properties. Similar to the agent layer, we first
need to think about what a verification result looks like when a
property is checked for a group of agents. Consider, for exam-
ple, the following property: “all agents will eventually satisfy φ”.
In this case, each agent within a given group is expected to sat-
isfy “eventually φ” individually and separately. Obligations are
thus also produced separately for each agent. As a consequence,
we may end up with a set of n obligations (where n denotes the
number of agents), each of which needs to be satisfied separately
in order for the overall formula to be satisfied. We call this type
of obligation a group obligation. Since group properties concern
groups of individual agents, several possible results may arise:

1. the current group as a whole needs to satisfy an obligation in
the next step;

2. several agents within the current group need to satisfy an
obligation as a group in the next step;

3. several agents within the current group need to satisfy obli-
gations individually in the next step;

4. a logical conjunction or disjunction of cases 1-3 needs to be
satisfied in the next step; or

5. no future obligation exists (property is immediately satisfied
or violated).

In order to formalise the idea of a group result, we define again an
algebraic data type GResult which captures these different cases:

GResult ::= GSuccess | GFailure
| CGO〈〈Group× L〉〉
| IGO〈〈N× seq(GResult×Group)〉〉
| GAnd〈〈GResult×GResult〉〉
| GOr〈〈GResult×GResult〉〉

The first two constructors are straightforward, they denote group
success and group failure, respectively. The third constructor,CGO,
describes a collective group obligation, i.e. an obligation which
needs to be satisfied collectively by a certain group of agents; it
accommodates the first two cases in the list above. As described
above, an obligation of an individual agent in a language L is al-
ways another L formula. The first argument of constructor CGO
is a group, i.e. a finite set of agents, for which the formula must
be satisfied, the second argument is a formula φ ∈ L. This type
of obligation may, for example, result from the evaluation of an
aggregate group property, i.e. a property which makes a statement
about the group as a whole. The fourth constructor, IGO repre-
sents an individual group obligation and accommodates the third

467

case in the list above. Here, different obligations are to be satis-
fied by different groups of agents. The obligation accepts a se-
quence of tuples, each of which contains an obligation as well as
an agent; it also contains a satisfaction constraint in the form of
a natural number which describes the number of agents within the
group that need to satisfy the given criterion. The evaluation of
this type of obligation can be seen as an iteration over the given
group of agents, for each of which the given sub-obligation is eval-
uated. This type of obligation may, for example, result from the
evaluation of a universally quantified group formula. Similar to
AResult discussed above, it is necessary for instancesGResult to
be closed under conjunction and disjunction. However, as opposed
to AResult where conjunction and disjunction always resulted in
either ASuccess, AFailure, or AO, it is not always possible to
simplify combinations of CGO and IGO such that the result can
be described as a singleGSuccess,GFailure,CGO, or IGO. In
order to solve this problem, constructors 5 and 6, GAnd and GOr,
allow for the recursive description of conjunctions or disjunctions
of obligations and thus accommodate the fourth case above.

We can now look at the conjunction and disjunction of instances
of GResult. Similar to AResult, we define operators ∧ and ∨ as
shown below.

∧ : GResult×GResult→GResult

∀ a, b : GResult •
(GSuccess ∧ b = b ∧
a ∧ GFailure = GFailure ∧
GFailure ∧ b = GFailure ∧
a ∧ GSuccess = b ∧
(∀ g1, g2 : Group; a1, a2 : Lang •

(CGO(g1, a1)) ∧ (CGO(g2, a2)) =
if g1 = g2 then CGO(g1, a1 ∧ g2)
else (let o1 == CGO(g1, a1);

o2 == CGO(g2, a2) •
GAnd(o1, o2)))) ∨

a ∧ b = GAnd(a, b)

The definition states that a conjunction of GSuccess and any
other instance b always results in b, and a conjunction ofGFailure
and any other instance always results in GFailure. Things are
slightly more complex for the conjunction of collective group obli-
gations. Here, we have to distinguish between different cases: if
both obligations refer to the same group of agents, then we can
create a single new obligation containing the conjunction of the re-
spective formulae; otherwise, we cannot perform any further sim-
plifications and thus construct an obligation of type GAnd which
represents a conjunction of obligations. This is also done for all
other combinations of obligations, as described in the last line3.

Disjunction can be given accordingly:

∨ : GResult×GResult→GResult

∀ a, b : GResult •
(GSuccess ∨ b = GSuccess ∧
a ∨ GSuccess = GSuccess ∧
GFailure ∨ b = b ∧
a ∨ GFailure = a) ∨
a ∨ b = GOr(a, b)

A disjunction of GSuccess with any other instance always re-
sults in GSuccess, a disjunction of GFailure with any other in-
stance b always results in b, and a disjunction of all other combina-
tions always results in GOr3.
3Further simplifications are possible but, for clarity and space lim-
itation, we keep the description simple.

We can now describe how instances of GResult are to be ma-
nipulated over time. Similar to AResult, monitoring should stop
once success or failure of a property has been determined. In all
other cases, the obligations have to be fed into the evaluation of the
next step. This is described by function evalGR which accepts as
an input the current context as well as an instance of GResult and
produces another instance of GResult:

evalGR : Context×GResult→GResult

∀ c : Context •
evalGR(c,GSuccess) = GSuccess ∧
evalGR(c,GFailure) = GFailure ∧
(∀ a : Ag; g, g′ : Group; o : Lang •
evalGR((a, g), CGO(g′, o)) = evalG((a, g′), o)) ∧

(∀ a : Ag; g : Group; k : N; os : seq(GResult×Group) •
evalGR((a, g), IGO(k, os)) =

(let fct == (λ t : (GResult×Group) •
evalGR((a, second t), first t)) •

(let chks == map(fct, os) •
kSat(k, zip(chks, snds(os)))))) ∧

(∀x1, x2 : GResult •
evalGR(c,GAnd(x1, x2)) =

(let r1 == evalGR(c, x1); r2 == evalGR(c, x2) •
r1 ∧ r2)) ∧

(∀x1, x2 : GResult •
evalGR(c,GOr(x1, x2)) =

(let r1 == evalGR(c, x1); r2 == evalGR(c, x2) •
r1 ∨ r2))

If the result to be checked is either GSuccess or GFailure,
then there is nothing else to be done. In the case of a collective
group obligation (CGO), the two parameters of CGO (the group
in scope together with the obligation to be fulfilled) are passed to a
language-specific evaluation function evalG (in bold) which itself
returns an instance of GResult. In the case of an individual group
obligation, the situation is slightly more complicated. As opposed
to a collective group obligation which wraps a group formula, the
individual group obligation wraps a list of result-group tuples to-
gether with a numeric value that describes a satisfaction constraint,
i.e. the required number of successful checks. To this end, an indi-
vidual, recursive call to evalGR is performed for each entry in the
list (using map). The resulting list of check results is then ‘zipped’
with the list of groups. This results in another list which is checked
for satisfaction w.r.t. the numeric constraint using a function kSat
which checks whether at least k elements in the given list are equal
to GSuccess. The manipulation of obligation conjunctions and
disjunctions is straightforward and not described in further detail
here. This leads to the following final conclusion.

Definition 3. A languageL is multiagent-monitorable if it pro-
vides the following components:

1. a representation in positive normal form;
2. logical conjunction and disjunction;
3. a group evaluation function that returns an instance ofGResult,

i.e. success, failure, a collective group obligation, an individ-
ual group obligation, or a conjunction or disjunction of the
previous two types of obligation; and

4. an agent evaluation function that returns an instance ofAResult,
i.e. success, failure, or an individual agent obligation.

This concludes the description and the formalisation of the mon-
itoring framework. The next section illustrates the implementation
of the agent layer of the framework in Haskell.

468

5.3 Implementation
The description of the monitoring framework has been purely

formal in nature so far. As mentioned in the introduction, its pur-
pose is to serve as a blueprint for developers to construct their
own monitoring procedures. To illustrate this process and show
that the formal description is sufficiently close to an executable im-
plementation, we provide here a formulation of the framework in
Haskell. The code shown below is part of MC2MABS, a practical sta-
tistical runtime verification framework for large-scale agent-based
simulation models [10, 1]. For space limitations, we restrict our
description to the agent layer here; the group layer can be trans-
lated accordingly. A more comprehensive description of MC2MABS
including implementation details, complexity considerations, and
case studies is given elsewhere [10]; the source code of MC2MABS
together with additional documentation is available online [1].

Haskell is a strongly typed, purely functional language, so we
first need to think about the necessary types. In analogy to the Z
description given above, AResult can be defined as an algebraic
data type with a generic parameter a that denotes the underlying
language type:

AResult a ::= ASuccess | AFailure | AO a

Requirements that a type needs to satisfy can be described by
means of type classes in Haskell; consequently, all types that be-
long to a given type class need to satisfy the given constraints. The
notion of joinability can thus be described conveniently as follows.

class Joinable a where
and :: a → a → a
or :: a → a → a

The type class requires that any type a has to provide both an
‘and’ and an ‘or’ function, which is precisely the definition of join-
ability given above. Using this information, we can now describe
the conjunction of elements of type AResult. As described in
Section 5.1, in order for elements of type AResult to be conjoin-
able, formulae of the underlying language also need to provide an
appropriate ‘and’ function. This can be formulated as a type con-
straint utilising the Joinable type class in the signature of the
function:

andAR :: Joinable a ⇒ AResult a → AResult a → AResult a
andAR ASuccess b = b
andAR _ AFailure = AFailure
andAR AFailure _ = AFailure
andAR b ASuccess = b
andAR b1 b2 = do r1 ← b1

r2 ← b2
return $ r1 ‘and‘ r2

Disjunction can be described accordingly:

orAR :: Joinable a ⇒ AResult a → AResult a → AResult a
orAR ASuccess _ = ASuccess
orAR _ ASuccess= ASuccess
orAR AFailure b = b
orAR b AFailure= b
orAR b1 b2 = do r1 ← b1

r2 ← b2
return $ r1 ‘or‘ r2

In order for elements of type AResult to be evaluable by func-
tion evalAR, the underlying specification language also needs to
provide an appropriate evaluation function evalA. This in combi-
nation with joinability (and the PNF which, for simplicity, is omit-
ted here), provides the basis for the notion of agent monitorability
which is described by the following type class4:
4Context information is dealth with using the State Monad [20].

class AgentMonitorable a
evalA :: a → State Context (AResult a)

We now have everything that we need for evaluation of agent for-
mulae which is described by function evalAR (see Section 5.1).
Similar to the functions above, it can be translated into a corre-
sponding Haskell function in a straightforward way, utilising the
constraint imposed upon the underlying language by type class
AgentMonitorable.
evalAR :: AgentMonitorable a ⇒

AResult a → State Context (AResult a)
evalAR ASuccess= return ASuccess
evalAR AFailure= return AFailure
evalAR (AO a) = do res ← evalA a

return res

This concludes the implementation of the agent layer. Group-
related types and functions can be translated accordingly. It is in-
teresting to note that, despite exhibiting the same functionality and
the same level of rigour, the Haskell notation is significantly more
succinct than the Z description given above.

The next section illustrates the application of the ideas by de-
scribing how a simple example specification language can be made
monitorable by satisfying the necessary requirements.

6. EXAMPLE: QUANTIFIED LTL
The nature of property specification languages depends critically

on the type of system to be analysed. The concepts of joinability,
agent-monitorability, and multiagent-monitorability introduced in
the previous section serve as a basic interface that a specification
language needs to implement in order to be monitorable in a three-
valued runtime verification context.

In order to illustrate this idea, we introduce here qLTL, a variant
of LTL which supports the formulation of properties about individ-
ual agents as well as about groups of agents. In order to achieve
that, we make a syntactic distinction between agent formulae and
group formulae, as described further below. It is important to note
that the focus here is on illustration rather than on the develop-
ment of a full specification language; the description is thus kept
deliberately simple and superficial. A comprehensive description
of simLTL, a conceptually similar, yet more complex and real-
istic specification language that is used within MC2MABS is given
elsewhere [10, 11]. The syntax of qLTL formulae is described by
the following abstract data type.

QLTL ::= Atom〈〈Prop〉〉 |
And〈〈QLTL×QLTL〉〉 | Or〈〈QLTL×QLTL〉〉 |
Next〈〈QLTL〉〉 | Until〈〈QLTL×QLTL〉〉 |
ForAll〈〈QLTL〉〉 | ForAgent〈〈QLTL〉〉

The basic building blocks are atomic propositions p ∈ Prop,
Boolean conjunction and disjunction, temporal operators ‘next’ and
‘until’, and quantifiers ‘forAll’ and ‘forAgent’. In the case of ‘forAll’,
the enclosed qLTL formula is checked for each agent in the current
group; in the case of ‘forAgent’, the enclosed formula is checked
on the agent that is currently in scope5.

qLTL provides an implicit distinction between agent and group
formulae. Agent formulae are those that are enclosed by a ‘for-
Agent’ statement; all other formulae are group formulae. The se-
mantics of agent formulae are formulated over agent traces for-
mally introduced in Section 4. Let tra : Tra be an agent trace.
5Note that the syntax allows for the construction of semantically
invalid formulae. For example, ForAgent(ForAll(Prop(p))) is
syntactically correct but, due to the enclosing of a ‘forAll’ state-
ment in a ‘forAgent’ statement, semantically questionable. In a
real-world scenario, the syntax would have to be crafted more care-
fully in order to avoid such problems.

469

Then, for all p, p1, p2 : qLTL, tra satisfies p (denoted tra |= p)
iff p is true in state tra[0], tra satisfies Atom(p) (denoted tra |=
Atom(p)) iff p is true in state tra[0], tra satisfies And(p1, p2) iff
tra |= p1 and tra |= p2, tra satisfies Or(p1, p2) iff tra |= p1
or tra |= p2, tra satisfies Next(p) iff tra[1..] |= p and, finally,
tra |= Until(p1, p2) iff tra |= p2 or tra |= p1 until eventu-
ally tra |= p2. The semantics of group formulae are defined over
group traces. The basic operators are similar to the agent case.
Let trg : Trg be a group trace. Then, trg satisfies ForAll(p)
iff p holds for all agents in the current group. and trg satisfies
ForAgent(p) iff p holds for the agent currently in scope.

As described in Section 5, any specification language needs to be
joinable, agent monitorable, and multiagent monitorable in order to
be usable in a runtime verification context for ABSs; furthermore,
its formulae need to be in PNF. In the qLTL grammar given above,
negation is not supported, so the PNF requirement is already sat-
isfied. Furthermore, qLTL is closed under logical conjunction and
disjunction, i.e. the requirement of joinability is also already satis-
fied. It remains just to discuss the requirements of agent and multi-
agent monitorability. In order to satisfy both requirements, we need
to provide appropriate evaluation functions.

We start with the evaluation of qLTL agent formulae. Informally,
in any state, an agent formula is either true, false, or not yet decid-
able. In the latter case, an obligation (which is again a qLTL agent
formulae) is produced. This is described by the algebraic datatype
AResult that was introduced in Section 5.1 above. We can thus de-
scribe the evaluation of agent formulae by a function evalA shown
below; it accepts context information and an agent formula as input
and returns an instance ofAResult. Obligations are only produced
in the case of formulae that contain temporal operators (‘next’ or
‘until’); in all other cases, a verdict can be produced immediately.

evalA : Context×QLTL→AResult

∀ c : Context •
(∀ p : Prop • evalA(c, Atom(p)) = holds(c, p)) ∧
(∀ a, b : QLTL • evalA(c, And(a, b)) =
evalA(c, a) ∧ evalA(c, b)) ∧

(∀ a, b : QLTL • evalA(c,Or(a, b)) =
evalA(c, a) ∨ evalA(c, b)) ∧

(∀ a : QLTL • evalA(c,Next(a)) = AO(a)) ∧
(∀ a, b : QLTL • evalA(c, Until(a, b)) =

if evalA(c, b) = ASuccess thenASuccess
else if evalA(c, a) = ASuccess
then AO(Until(a, b)) elseAFailure)

The evaluation of group formulae differs from that for agent for-
mulae only w.r.t. the temporal operators and the quantifiers. The
evaluation of a ‘next’ formula results in the creation of a collec-
tive group obligation CGO which can be explained as follows: if
the group as a whole needs to satisfy formula p in the next step
(as denoted by the ‘next’ operator), then this can only become true
if it promises to satisfy p in the next step — hence the collective
obligation. In the evaluation of an ‘until’ formula, if the second
subformula b is satisfied, then the overall formula is satisfied. Oth-
erwise, if the first subformula, a, is already satisfied, then the group
as a whole promises to satisfy Until(a, b) in the future. In this
case, again, a collective group obligation is produced. If neither a
nor b is satisfied, then there is no chance for the group to satisfy the
overall property. The evaluation of a universally quantified formula
is slightly different. Here, the nested agent formula p is evaluated
separately for each agent in the current group. If we assume het-
erogeneity in the group then, clearly, there may also be different
evaluation results for the agents. As a consequence, an individual

group obligation IGO is returned. It represents a list of individual
agent obligations that need to be satisfied in the next step. A formal
description of function evalG is given below.

evalG : Context× qLTL→GResult

...
(∀ a : Agent; g : Group •

(∀ p : QLTL • evalG((a, g), Next(p)) = CGO(g, p)) ∧
(∀ a, b : QLTL • evalG((a, g), Until(a, b)) =

if evalG((a, g), b) = GSuccess thenGSuccess
else if evalG((a, g), a) = GSuccess

then CGO(g, Until(a, b)) elseGFailure) ∧
(∀ p : QLTL • evalG((a, g), ForAll(p)) =

(let os == {n : N; a′ : Agent | n ∈ 1 . .# g ∧ a′ ∈ g •
n 7→ (evalG((a, g), p), g)} • IGO(# g, os))) ∧

(∀ p : QLTL • evalG((a, g), ForAgent(a, p)) =
(let res == evalA((a, g), p) •

if res = ASuccess thenGSuccess
else if res = AFailure thenGFailure
else CGO({a}, p))))

This concludes the description of qLTL. With a PNF representa-
tion, joinability, agent monitorability and multiagent monitorabil-
ity, qLTL now satisfies all requirements in order for it to be used in
a three-valued runtime verification context.

7. CONCLUSIONS
Monitoring properties about hierarchical traces is a complex,

yet essentially language-independent problem and can (and should)
thus be tackled in a general way. This paper addresses the monitor-
ing problem on a high level of abstraction and proposes a language-
independent solution. We first introduced formally the notion of
hierarchical which allows for the evaluation of properties on two
different observational levels — groups of agents and individual
agents. This serves as the semantic basis for a general, language-
independent monitoring framework for hierarchical traces in a three-
valued setting. The existence of observational levels has an im-
portant impact on the nature of obligations produced during mon-
itoring. We introduced different types of obligations — both on
the agent and the group level — together with algorithms for their
manipulation at runtime. Language independence is achieved by
the definition of minimal requirements or contracts which a speci-
fication language needs to satisfy in order to be used in a runtime
verification setting. To this end, we introduced the concepts of join-
ability, agent monitorability and multiagent monitorability. Along
with the conceptual description of the framework, we also provided
a full typechecked formalisation in Z.

The overall purpose of the framework is to serve as an abstract
description of a general monitoring procedure which can, for ex-
ample, be implemented as a generic library in a particular pro-
gramming language. In order to illustrate this and show the close
correspondence between the formal description and the executable
implementation, we gave an example implementation of the agent-
related functions and data types in Haskell. The implementation is
part of MC2MABS, a practical statistical runtime verification frame-
work for large-scale agent-based simulation models [10, 1].

The integration of an existing specification language into the
framework by implementing appropriate evaluation functions as re-
quired by the notions of agent monitorability and multiagent moni-
torability was illustrated using a simple example language, concep-
tually similar to the one used by MC2MABS.

470

REFERENCES
[1] MC2MABS website. https://github.com/bherd/mc2mabs. Last

access: 02/15.
[2] C. Baier and J.-P. Katoen. Principles of Model Checking. The

MIT Press, 2008.
[3] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL

semantics for runtime verification. Journal of Logic and
Computation, 20(3):651–674, June 2010.

[4] I. Cakirlar, Ö. Gürcan, O. Dikenelli, and S. Bora. RatKit: A
repeatable automated testing toolkit for agent-based
modeling and simulation. In Proc. 15th Int. Workshop on
Multi-Agent-Based Simulation, 2014.

[5] M. Dastani and J.-J. C. Meyer. Correctness of multi-agent
programs: A hybrid approach. In M. Dastani, K. V. Hindriks,
and J.-J. C. Meyer, editors, Specification and Verification of
Multi-agent Systems, pages 161–194. Springer US, 2010.

[6] M. d’Inverno and M. Luck. Understanding Agent Systems.
Springer, 2004.

[7] M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and
M. Wooldridge. The dMARS architecture: A specification of
the distributed multi-agent reasoning system. Autonomous
Agents and Multi-Agent Systems, 9:5–53, July 2004.

[8] Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime
verification. Engineering Dependable Software Systems,
34:141–175, 2012.

[9] M. A. C. Gatti and A. von Staa. Testing & debugging
multi-agent systems: a state of the art report. Technical
report, Departamento de Informatica, Pontifical Catholic
University of Rio de Janeiro, 2006.

[10] B. Herd. Statistical runtime verification of agent-based
simulations. PhD thesis, King’s College London, 2015.

[11] B. Herd, S. Miles, P. McBurney, and M. Luck. An
LTL-based property specification language for agent-based
simulation traces. Technical Report 14-02, King’s College
London, Oct 2014.

[12] M. Leucker and C. Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic
Programming, 78(5):293 – 303, 2009.

[13] A. Lomuscio and F. Raimondi. Model checking knowledge,
strategies, and games in multi-agent systems. In Proc. 5th
Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, pages 161–168, 2006.

[14] C. M. Macal and M. J. North. Tutorial on agent-based
modelling and simulation. Journal of Simulation,
4(3):151–162, 2010.

[15] T. Miller and P. McBurney. Multi-agent system specification
using TCOZ. In T. Eymann, F. KlÃijgl, W. Lamersdorf,
M. Klusch, and M. Huhns, editors, Multiagent System
Technologies, volume 3550 of Lecture Notes in Computer
Science, pages 216–221. Springer, 2005.

[16] M. Niazi, A. Hussain, and M. Kolberg. Verification and
validation of agent based simulations using the VOMAS
approach. In Proc. of the 3rd Workshop on Multi-Agent
Systems and Simulation, 2009.

[17] A. Sharpanskykh and J. Treur. A temporal trace language for
formal modelling and analysis of agent systems. In
M. Dastani, K. V. Hindriks, and J.-J. C. Meyer, editors,
Specification and Verification of Multi-agent Systems, pages
317–352. Springer US, 2010.

[18] J. M. Spivey. The Z notation: A Reference Manual. Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1992.

[19] M. Vardi. Automata-theoretic model checking revisited. In
B. Cook and A. Podelski, editors, Verification, Model
Checking, and Abstract Interpretation, volume 4349 of
LNCS, pages 137–150. Springer, 2007.

[20] P. Wadler. Monads for functional programming. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming,
volume 925 of Lecture Notes in Computer Science, pages
24–52. Springer Berlin Heidelberg, 1995.

[21] C. J. Wright, P. McMinn, and J. Gallardo. Towards the
automatic identification of faulty multi-agent based
simulation runs using MASTER. In F. Giardini and
F. Amblard, editors, Multi-Agent-Based Simulation XIII,
volume 7838 of LNCS, pages 143–156. Springer, 2013.

471

