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ABSTRACT
In this paper, we focus on the facility location games
with the property of dual preference. Dual preference
property indicates that both two preferences of agents,
staying close to and staying away from the facility(s),
exist in the facility location game. We will explore two
types of facility location games with this property, the
dual character facility location game and the two-opposite-
facility location game with limited distance which model
the scenarios in real life. For both of them, we wish
to design strategy-proof mechanisms or group strategy-
proof mechanisms with the objective of optimizing the
social utility. For the dual character facility location
game, we propose a strategy-proof optimal mechanism
when misreporting is restricted to agents’ preferences, and
give a 1

3
-approximation deterministic group strategy-proof

mechanism when both location and preference are consid-
ered as private information. For the two-opposite-facility
location game with limited distance, when the number of
agents is even (denoted as 2k), we give a 1

k
-approximation

deterministic group strategy-proof mechanism, and when
the number of agents is odd (denoted as 2k−1), we propose
a 1

2k−1
-approximation deterministic group strategy-proof

mechanism. The approximation ratios for both mechanisms
are proved to be the best a deterministic strategy-proof
mechanism can achieve.
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1. INTRODUCTION
In this paper, we study the facility location games with the

property of dual preference. Its origin, the facility location
game, models the scenario where the government is going to
build a facility on a line segment where some self-interested
agents who tend to maximize their own utility are situated.
The agents are required to report their locations as private
information, which will then be mapped to a single facility
location by a mechanism, with the purpose of optimizing
the social utility. Dual preference property means that both
preferences of agents, staying as close as possible to and
staying as far away as possible from the facility(s), exist in
the facility location game. To the best of our knowledge,
this is the first time that the dual preference property is
introduced in the facility location game.

We find that dual preference property describes well the
fact in real life that apparent individual difference among
citizens exists in terms of life styles and individual demands,
and thus the emergence of distinct attitudes towards a
certain facility is quite natural and common. Consider the
case where the government plans to build a farmer’s market
on a line segment. Some agents may prefer living closer
to the farmer’s market for easy access to fresh vegetables,
while others would like to keep away from it because of
the garbage left by vegetable vendors as well as noise and
transport inconvenience caused by large amounts of people
and vehicles inside and around the market. For this case,
we formulate the dual character facility location game.

In addition, dual preference property would also be useful
to capture the scenarios where different characteristics of
facilities result in different preferences. This scenario is
possible to appear when several facilities, related but serving
diverse functions, are to be built by the government in order
to cooperate for a particular purpose. For example, to
maintain the public order in an area, the government is going
to build a police station along with a detention house to
detain criminals arrested by police. The agents in this area
would prefer a shorter distance towards the police station
for timely rescue from police in case of emergency. However,
they would wish to keep far away from the detention house
concerning its potential security risks such as prison break.
Besides, to guarantee the quick response and efficient control
from police when security incidents happen in the detention
house, the distance between two facilities should be limited.
Take, for instance, another similar case that on a line
segment where some factories are located, the government
plans to build a refuse collection point to collect garbage
and a waste treatment plant to dispose collected waste.
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Naturally, all factories would wish to stay closer to the
collection point for less cost in sending garbage, but keep
away from the waste treatment plant to alleviate the effect
of pollution in the process of waste disposal. Also, in order to
save the cost of transportation and enhance garbage disposal
efficiency, the government should set a limitation to the
distance between the two facilities. The distance limitation
mentioned in above examples reflects the relation between
two facilities, which will be incorporated as an important
element in our second formulated model called two-opposite-
facility location game.

In the scenarios mentioned above, assume all agents know
the mechanisms that the government will adopt to aggregate
agents’ information to the final locations of the facilities. An
agent may have a chance to improve its utility, i.e., shorten
or lengthen the distance to a certain facility according to
preferences, by misreporting. Therefore, we emphasize the
strategy-proofness of a mechanism, which guarantees that
an agent cannot acquire more utility from misreporting. We
also try to find group strategy-proof mechanisms, which
discourages the simultaneous misreporting of a group of
agents. In addition, we need to evaluate the mechanisms
in terms of optimization of social utility, usually defined
to be the sum of utilities of all agents. The evaluation is
mainly conducted by the approximation ratio for the social
utility of a mechanism, which is the worst ratio between the
social utility of the mechanism output and the optimal social
utility value among all possible profiles.

1.1 Related work
The classic facility location game where all agents on a

line segment only prefer staying close to the facility to be
built was firstly studied by Procaccia and Tennenholtz [17],
deriving from the work of single peaked preference problem
studied by Moulin [16] and extending its primary result
with the objectives of optimizing the social cost and the
maximum cost. For the problem where two facilities are to
be built, Procaccia and Tennenholtz [17], Lu et al. [15] [14]
gave and improved lower and upper bound of approxima-
tion ratios for deterministic and randomized strategy-proof
mechanisms in succession. For the k-facility location game,
Fotakis and Tzamos [9] showed that the addition of winner-
imposing constraint can guarantee the strategy-proofness of
Proportional Mechanism, and in [11], they extended the
study to the cases where concave cost functions between
agents and facilities exist. Other extended settings of the
classic facility location game are studied in [1] [10] [7] [6] [8]
[2] [19] [18].

Mechanism designs for the obnoxious facility location
game where all agents on a line segment have the preference
of staying as far away as possible from the facility was
initiated by Cheng et al. [4] and they gave deterministic
and randomized group strategy-proof mechanisms for it.
Cheng et al. [5] further studied the scenarios where agents
are located on circles and trees. Complete characterization
for deterministic (group) strategy-proof mechanisms in line
metric is presented in [13] and [12]. [3] further explored the
case where a service radius r is assigned to the obnoxious
facilities.

2. PRELIMINARIES
In this section, we introduce some notations and defini-

tions used in this paper. Let N = (1, 2, ..., n) be the set

of agents. In our setting, all agents are located on a line
segment. We denote the length of the line segment as l
(l > 0), the leftmost point of the line segment as 0 and the
rightmost point as l. For two points a, b on the line segment,
we use d(a, b) to denote the distance between two points.

We use bi to denote the information (e.g. position and/or
preference) of agent i which alternatively can represent the
bid from agent i if he tells the truth, and use the set b =
(b1, b2, ..., bn) to indicate the profile which contains bids of
all agents. A mechanism is a function f which maps the
profile to an output O containing locations of all facilities
to be built, which can be written as O = f(b). Notice that
due to the different natures of two games we study in this
paper, here we only use general notations for the concepts
of bid, profile and output. The specific form of notations
for these concepts will vary in the following sections. We
use SU(f,b) to indicate the social utility for the profile
b under the mechanism f and use su(O,b) to indicate the
social utility for the profile b with a given output. For
agent i, we use u(bi, O) to denote its utility with respect
to output O. In addition, for a profile b, we define the sub
profile which contains bids of all agents except bi as b−i,
and we use <> to connect two profile sets b1 and b2, i.e.
< b1,b2 >, to indicate the new profile set composed of bids
in b1 and b2. Using this notation, b can be expressed as
< b−i, bi >.

A mechanism f is strategy-proof if no agent can acquire
more utility by misreporting. That is, for any agent i ∈ N ,
suppose it misreports its information to b′i, we have u(bi, f(<
b−i, b

′
i >)) ≤ u(bi, f(b)).

A mechanism f is group strategy-proof if for any group
of agents, at least one of them cannot acquire more utility
if they misreport simultaneously. That is, for any group
G ⊆ N , suppose they misreport their profiles to b′G, there
exists an agent i ∈ G such that u(bi, f(< b−G,b

′
G >)) ≤

u(bi, f(b)), where b−G denotes the sub profile containing
bids of all agents not in G.

3. DUAL CHARACTER FACILITY LOCA-
TION GAME

In the dual character facility location game, all agents
are situated on a line segment with length l. Each agent
reports its location and preference, and the location of the
facility planned to be built on the same line segment will be
determined by the complete profile of all agents. Different
agents may have different preference values which indicate
whether the agents want to stay close to the facility (1) or
not (0). Let N = (1, ..., n) be a set of agents, in which each
agent i has its location xi, preference value pi and together
ci = (xi, pi). We use set x = (x1, ..., xn) as the location
profile, the set p = (p1, ..., pn) as the preference profile,
and the collection c = (x1, p1, ..., xn, pn) as the profile of
all agents. Assume the facility is built at y, then for an
agent i with preference value pi = 0, its utility u(ci, y) is
defined as the distance between the agent and the facility,
d(xi, y); if pi = 1, its utility is defined as the length of the
line segment minus the distance between the agent and the
facility, i.e. u(ci, y) = l−d(xi, y). Both types of agents tend
to maximize their utilities by misreporting.

The social utility when the facility is located at location
y is equal to the sum of utility values of all agents, i.e.
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su(y, c) =
∑n
i=1 u(ci, y). Denoting the optimal social utility

for profile c as OPT (c), we have the following fact.

Fact 1. For any profile c, OPT (c) > 0.

Proof. As for any agent the utility is not negative, the
social utility is not negative and OPT (c) ≥ 0.

Assume there exists a profile c with OPT (c) = 0. Con-
sider a location y such that su(y, c) = OPT (c). Obviously,
∀i ∈ [1, n], u(xi, y) = 0. As for every agent i, there can
be at most one location y such that u(xi, y) = 0, then
consider another location y′ 6= y, we have ∀i ∈ [1, n],
u(xi, y

′) > 0, which implies su(y′,x) > 0 = OPT (c),
causing a contradiction. Hence, we have OPT (c) > 0.

For a mechanism f , if there exists a number β such that

for any c, the output from f satisfies SU(f,c)
OPT (c)

≥ β, then we

say the approximation ratio for the social utility of f is β.
In real life, the utility for an agent defined above can

be a good way for the manager to measure the degree of
satisfaction of an agent in terms of the location for the
facility. In both groups, namely the group composed of all
agents with preference value 0 and the group containing all
other agents, the agents with higher utility values tend to
be more satisfactory in practical significance. Specially, by
the different expressions for two types of agents, the utilities
for both of them are in the range of [0, l], which makes it
possible to compare and deal with utility values for agents
of different types in real life.

Next, we will divide the problem into two scenarios
according to the extent to which agents can misreport.

3.1 Misreporting Only the Preference or Lo-
cation

In the first scenario, we assume that the explicit location
information for every agent in a profile has been acquired,
thus the only possible way for an agent to achieve a better
utility is to misreport its preference value.

Because of the given expression of social utility, the
optimal value only occurs at two end points of the line
segment or the point where an agent stands. Given a profile
c of n agents, define the positions of two end points as x0
(i.e. 0) and xn+1 (i.e. l) separately. Then, the mechanism
to achieve the optimal social utility value can be defined as
follows:

Mechanism 1. Locate the facility at the leftmost point j
such that su(xj , c) = maxi∈[0,n+1]su(xi, c).

Next we will prove that Mechanism 1 is a strategy-proof
mechanism for the dual character facility location game
when misreporting is limited to the preference value.

Theorem 2. Mechanism 1 is strategy-proof.

Proof. For a given profile c, assume agent i with ci =
(xi, pi) misreports its preference to be c′i = (xi, 1 − pi).
Denote the profile after misreporting as c′ and suppose that
the output for c and c′ are y and y′. We distinguish two
cases.

Case 1. pi = 0. Define g(y, c, i) =
∑
j∈[1,n]&j 6=i u(cj , y),

then su(y, c) = u(ci, y) + g(y, c, i) = g(y, c, i) + d(xi, y).
Similarly, su(y, c′) = u(c′i, y) + g(y, c′, i) = g(y, c′, i) + l −
d(xi, y). Define df(y) = su(y, c′) − su(y, c), as for every
agent j such that j 6= i, the bids are the same in c and c′,

g(y, c, i) = g(y, c′, i) and df(y) = l − 2 ∗ d(xi, y). Similarly,
df(y′) = l − 2 ∗ d(xi, y

′). By Mechanism 1, su(y, c) =
maxi∈[0,n+1]su(xi, c), so su(y, c) ≥ su(y′, c), similarly,
su(y′, c′) ≥ su(y, c′). Hence su(y′, c) + df(y′) ≥ su(y, c) +
df(y), which implies df(y′)−df(y) ≥ su(y, c)−su(y′, c) ≥ 0.
Hence 2 ∗ d(xi, y) − 2 ∗ d(xi, y

′) = df(y′) − df(y) ≥ 0.
Because pi = 0, agent i cannot gain more utility from the
misreporting.

Case 2. pi = 1. The proof for this case is similar.
Intuitively, one can interpret the proof in the following

way. If the agent prefers to stay close to the facility, then
lying to dislike the facility cannot move the facility towards
him. On the other hand, if the agent prefers to stay away
from the facility, then lying to like the facility cannot push
the facility further away from him.

If the misreporting is limited to the location value, a
special case of this is the obnoxious facility location game
(where all the agents prefer to stay as far away from the
facility as possible) where the best approximation ratio for
strategy-proof mechanisms is 1

3
[13][4]. We will prove in the

next subsection that even if the manipulation is on both the
location and the preference, we can provide a strategy-proof
mechanism with an approximation ratio of 1

3
. Therefore, we

do not elaborate this case.

3.2 Misreporting Both Preference and Loca-
tion

In this scenario, every agent on the line segment can
misreport both its preference value and its location. We can
find that Mechanism 1 is not strategy-proof in the following
profile of this setting.

Assume l = 2 and consider a profile with n = 4. The
agents profiles of four agents are x1 = 0, p1 = 1, x2 = 1

4
,

p2 = 0, x3 = 2
3
, p3 = 0, x4 = 1, p4 = 1, the output location

of the facility by Mechanism 1 should be 1 and u(c3, 1) = 1
3
.

However, if agent 3 misreports its location to x′3 = 1, then
the output location should be 0 and u(c3, 0) = 2

3
. Hence

agent 3 gains larger utility from its misreporting.
We propose another deterministic mechanism which is

strategy-proof in this case with approximation ratio 1
3
.

Before presenting the details of the mechanism, we will
introduce a new attribute transformed location x∗i for
every agent i in a profile. For an agent i, if pi = 0, x∗i = xi;
if pi = 1, x∗i = l− xi. Obviously, for an agent i with pi = 1,
x∗i and xi are symmetric about the middle point of the line
segment.

Mechanism 2. For a profile c, denote nl as the number
of agents with transformed locations in [0, l

2
), and nr as the

number of other agents. If nl ≤ nr, build the facility at 0,
otherwise, build the facility at l.

Theorem 3. Mechanism 2 is group strategy-proof.

Proof. Consider a profile c with output y from Mecha-
nism 2. Assume the agents in a group G ⊆ N misreport
their profiles to c′G. For agent i ∈ G, assume the bid
after misreporting is c′i = (x′i, p

′
i). For the new profile

< c−G, c
′
G > with output y′, denote the number of agents

with transformed locations in [0, l
2
) as n′l, and the number

of other agents as n′r. The discussion can be divided into
two cases.

Cases 1: y = 0, which indicates nl ≤ nr.
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If there exists an agent i ∈ G such that x∗i ≥ l
2
, then

pi = 0 and xi ≥ l
2

or pi = 1 and xi ≤ l
2
. In both conditions,

agent i has achieved the maximum utility from Mechanism
2, and cannot gain more utility by misreporting.

If ∀i ∈ G, x∗i <
l
2
, then every agent in G has been counted

in nl, we have n′l ≤ nl, and n′r ≥ nr. Hence, n′l ≤ n′r, and
y′ = 0 = y. Therefore the output cannot be changed and
agents in G cannot have more utility.

Case 2: y = l. The proof is similar.

In the following discussion, we will prove that the approx-
imation ratio for the social utility of Mechanism 2 is 1

3
.

Lemma 4. For any point y and two points a, b on the line
segment, if a and b are symmetric about the middle point of
the line segment, then l − d(y, a) ≥ d(y, b).

Proof. If a = b, then a, b must be the middle point of
the line segment and ∀y ∈ [0, l], d(y, a) = d(y, b) ≤ l

2
. We

can get l − d(y, a) ≥ l
2
≥ d(y, b).

If a < b, we have a < l
2
. The proof can be divided into

three subcases.
Case 1. y ≥ a and y ≤ b. In this case, we can get

l − d(y, a) = d(y, b) + 2 ∗ a ≥ d(y, b).
Case 2. y < a. In this case, we define y′ = l − y. We

can get d(y, b) = d(y′, a) and l − d(y, a) = d(y′, a) + 2 ∗ y =
d(y, b) + 2 ∗ y ≥ d(y, b).

Case 3. y > b. The proof is similar to that for Case 2.
If a > b, the proof is similar to that when a < b.

Lemma 5. Under Mechanism 2, if a profile c with output

y satisfies ∀i ∈ [1, n], pi = 1, then SU(f,c)
OPT (c)

= su(y,c)
OPT (c)

≥ 1
3

.

Proof. It is obvious that OPT (c) occurs when the
facility is built at the location of the middle agent (if n
is odd) or any location between two middle agents (if n is
even). Denote the agents as i1, i2,..., in from left to right.
Given yo such that su(yo, c) = OPT (c), for any integer
k satisfying k ≤ bn

2
c, we have xik ≤ yo ≤ xin+1−k , with

d(xik , yo) + d(xin+1−k , yo) = d(xik , xin+1−k ). Hence
u(cik , yo)+u(cin+1−k , yo) = l−d(yo, xik )+l−d(yo, xin+1−k ) =
2l − d(xik , xin+1−k ).

The proof can be further divided into two cases.
Case 1. y = 0, which indicates nl ≤ nr. We define the

number of agents in ( l
2
, l] as mr, and the number of other

agents as ml. As ∀i ∈ [1, n], x∗i = l − xi, we have mr = nl
and ml = nr, which implies ml ≥ mr. Hence, for any integer
k such that k ≤ bn

2
c, xik ≤ l

2
.

If n is even, we define ur(k) =
u(cik

,y)+u(cin+1−k
,y)

u(cik
,yo)+u(cin+1−k

,yo)
=

2l−2xik
−d(xik ,xin+1−k

)

2l−d(xik ,xin+1−k
)

. Obviously, ur(k) decreases as

d(xik , xin+1−k ) increases, and because d(xik , xin+1−k ) +

xik ≤ l, ur(k) ≥ 2l−2xik
−(l−xik )

2l−(l−xik )
=

l−xik
l+xik

. As xik ≤ l
2
,

we can get ur(k) ≥ l−xik
l+xik

≥ l− l
2

l+ l
2

= 1
3
. Hence, we have

u(cik , y) + u(cin+1−k , y) ≥ 1
3
∗ (u(cik , yo) + u(cin+1−k , yo)).

As su(y, c) =
∑bn

2
c

k=1(u(cik , y) + u(cin+1−k , y)) and

su(yo, c) =
∑bn

2
c

k=1(u(cik , yo) + u(cin+1−k , yo)), we have

su(y, c) ≥ 1
3
∗ su(yo, c) = 1

3
∗ OPT (c), which implies

SU(f,c)
OPT (c)

= su(y,c)
OPT (c)

≥ 1
3
.

If n is odd, as ml ≥ mr, the location of the middle point
xi(n+1)/2

≤ l
2
. Also, we have yo = xi(n+1)/2

, which gives

u(ci(n+1)/2
, yo) = l − d(yo, xi(n+1)/2

) = l and
u(ci(n+1)/2

,y)

u(ci(n+1)/2
,yo)

=
l−xi(n+1)/2

l
≥ l/2

l
= 1

2
> 1

3
. Similar to n is

even case, we can get∑bn2 c
k=1

(u(cik
,y)+u(cin+1−k

,y))∑bn2 c
k=1

(u(cik
,yo)+u(cin+1−k

,yo))
≥ 1

3
. As

u(ci(n+1)/2
,y)

u(ci(n+1)/2
,yo)

> 1
3
,

SU(f,c)
OPT (c)

=

∑bn2 c
k=1

(u(cik
,y)+u(cin+1−k

,y))+u(ci(n+1)/2
,y)∑bn2 c

k=1
(u(cik

,yo)+u(cin+1−k
,yo))+u(ci(n+1)/2

,yo)
> 1

3
.

Case 2. y = l. The proof is similar.

Theorem 6. The approximation ratio for the social util-
ity of Mechanism 2 is 1

3
.

Proof. Consider two profiles c0 and c1. To distinguish
these two profiles, we use c(0)i = (x(0)i, p(0)i) and c(1)i =
(x(1)i, p(1)i) to indicate the bids for agent i in c0 and c1. c0

and c1 satisfy the following conditions. Both of these two
profiles have n agents. For any integer i ∈ [1, n], p(1)i = 1. If
p(0)i = 1, x(1)i = x(0)i; if p(0)i = 0, x(1)i = l − x(0)i. Notice
that, under the above conditions, ∀i ∈ [1, n], x∗(0)i = x∗(1)i,
so the output for the two profiles will be the same. Denote
the common output as y.

Given an integer i ∈ [1, n], if p(0)i = 1, then x(0)i = x(1)i,
p(0)i = p(1)i, so u(c(0)i, y) = u(c(1)i, y); if p(0)i = 0, then
x(1)i = l − x(0)i, p(1)i = 1, as y can only be 0 or l, we
have d(y, x(1)i) = l − d(y, l − x(1)i) = l − d(y, x(0)i). Hence
u(c(1)i, y) = l− d(y, x(1)i) = l− (l− d(y, x(0)i)) = u(c(0)i, y).
As ∀i ∈ [1, n], u(c(1)i, y) = u(c(0)i, y), we have su(y, c0) =
su(y, c1).

Given an arbitrary point y0 on the line segment, for
any integer i ∈ [0, n], if p(0)i = 1, it is easy to see
that u(c(0)i, y0) = u(c(1)i, y0); if p(0)i = 0, u(c(0)i, y0) =
d(x(0)i, y0) and u(c(1)i, y0) = l − d(y0, x(1)i). Notice that
x(1)i and x(0)i are symmetric about the middle point of the
line segment, by Lemma 4, l − d(y0, x(1)i) ≥ d(y0, x(0)i),
which implies u(c(1)i, y0) ≥ u(c(0)i, y0). Therefore for the
social utility, we can also get su(y0, c1) ≥ su(y0, c0), which
implies OPT (c1) ≥ OPT (c0). Because in c1, ∀i ∈ [1, n],

p(1)i = 1, by Lemma 5, su(y,c1)
OPT (c1)

≥ 1
3
. Hence, in c0,

SU(f,c0)
OPT (c0)

= su(y,c0)
OPT (c0)

≥ su(y,c0)
OPT (c1)

= su(y,c1)
OPT (c1)

≥ 1
3
.

For any c0, we can find c1 satisfying the requirements de-
fined at the beginning, which then completes the proof.

The tight case for this approximation ratio occurs when
n = 2k, k ∈ N+, where k agents with preference value 1
are located at l

2
and k agents with preference value 0 are

located at l. For this profile, Mechanism 2 will output the
rightmost point with social utility 1

2
∗ kl, but the optimal

social utility could be 3
2
∗ kl when the facility is built at the

leftmost point.
Specially, the problem in this section has some relation-

ships with the obnoxious facility location game studied in
[13] and [4]. For the profiles studied in the obnoxious
facility location game, all agents tend to stay away from
the facility, which is actually one special kind of profiles in
the dual character facility location game. As implied by
the main results in [13], any deterministic strategy-proof
mechanism cannot achieve an approximation ratio better
than 1

3
for the obnoxious facility location game. Hence 1

3
is

also the best any deterministic mechanism can achieve for
our problem. In addition, for the obnoxious facility location
game, Cheng et al. [4] gives a strategy-proof mechanism
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with approximation ratio 1
3
. The length of the line segment

is set to 2 in the mechanism, and the mechanism is as follows:

Mechanism 3. Let n1 be the number of agents in [0, 1),
and n2 be the number of agents in [1, 2]. The mechanism
outputs 0 if n2 ≥ n1, and 2 otherwise.

We can see that Mechanism 3 can be regarded as a special
version of Mechanism 2 when c satisfies that ∀i ∈ [1, n], pi =
0. Because under this condition, ∀i ∈ [1, n], xi = x∗i , these
two mechanisms will have the same output. The conclusion
about the approximation ratio for Mechanism 3 proposed by
Cheng et al. [4] can be rewritten as the following lemma:

Lemma 7. Under Mechanism 2, if a profile c satisfies

that ∀i ∈ N , pi = 0, then SU(f,c)
OPT (c)

≥ 1
3

.

The reason why we use Lemma 5 instead of Lemma 7 in the
proof of Theorem 6 is as follows. In the proof of Theorem
6, if we use Lemma 7, we can set preferences of all agents in
c1 to be 0 and change the relationship between c0 and c1 to
be if p(0)i = 0, then x(1)i = x(0)i; otherwise, x(1)i = l−x(0)i.
Under this condition, similarly, c0 and c1 will have the same
output from Mechanism 2. Assume the common output
is 0, then we can get similar conclusion that su(0, c0) =

su(0, c1). Hence by Lemma 7, su(0,c0)
OPT (c1)

= su(0,c1)
OPT (c1)

≥ 1
3
.

However, in this case, we have OPT (c1) ≤ OPT (c0) and
SU(f,c0)
OPT (c0)

= su(0,c0)
OPT (c0)

≤ su(0,c0)
OPT (c1)

, which is not sufficient to

obtain a explicit relationship between SU(f,c0)
OPT (c0)

and 1
3
.

4. TWO-OPPOSITE-FACILITY LOCATION
GAME WITH LIMITED DISTANCE

In the two-opposite-facility location game with limited
distance, all agents are located on a line segment with length
l. Two facilities need to be built on the line segment based
on the location information reported by each agent. Let
N = (1, ..., n) be a set of agents. We use xi to indicate
the location of each agent i and the set x = (x1, ..., xn) to
represent the location profile of all agents. The two facilities
are of opposite characteristics for agents, which means all
agents want to stay as close as possible to one facility
(denoted as f1) and stay as far away as possible from the
other one (denoted as f0). Another important constraint for
the construction of two facilities is that the distance between
them cannot exceed a certain value C with 0 < C < l. In a
building scheme S = (y0, y1), we use y1 and y0 to indicate
the locations of f1 and f0 respectively. We define the length
of S as the distance between two facilities (i.e. |y0 − y1|)
and it can be denoted as |S|. For a certain location profile
with building scheme S used, the utility of agent i can be
defined as the difference between its distances towards f0
and f1, i.e., u(xi, S) = u(xi, y0, y1) = d(xi, y0) − d(xi, y1).
In this game, each agent tends to maximize its utility value
by misreporting its location information.

The social utility of this game is defined as the sum of
the utilities of all agents, i.e. su(S,x) = su(y0, y1,x) =∑n
i=1 u(xi, y0, y1) =

∑n
i=1(d(xi, y0) − d(xi, y1)). In this

game, we try to find a strategy-proof mechanism with the
objective of maximizing the social utility. Given a location
profile x, denote the optimal social utility for x as OPT (x).
For a mechanism f , if there exists a number β such that
for any location profile x with OPT (x) 6= 0, the building

scheme for x from f satisfies SU(f,x)
OPT (x)

≥ β, then we say the

approximation ratio for the social utility of f is β. The
following is an important fact about applicability of the
approximation ratio for the social utility.

Fact 8. Given a location profile x with n agents, if n =
2k, k ∈ N+, k agents are located at 0 and other k agents are
located at l, then OPT (x) = 0 and the approximation ratio
is not applicable; otherwise, OPT (x) > 0.

Proof. When n = 2k, k agents are located at 0 and other
k agents are located at l. Suppose the building scheme for
x is S = (y0, y1). If y0 ≤ y1, for any agent i with xi = 0,
u(xi, S) = −|S|; for any agent i with xi = l, u(xi, S) = |S|.
Therefore su(S,x) =

∑n
i=1 u(xi, S) = k∗(−|S|)+k∗|S| = 0.

If y0 > y1, similarly, we also have su(S,x) = 0. Hence,
OPT (x) = 0.

When the above condition is not satisfied, if we can find
a building scheme S such that su(S,x) > 0, as S is one
possible building scheme, we have OPT (x) ≥ su(S,x) > 0.
We should consider the following two cases.

Case 1. n = 2k − 1, k ∈ N+. Denote the location of the
middle agent in x as xm.

If xm < l, consider the building scheme S = (a, xm) with
|S| > 0 where a = min(xm + C, l). Define G to be the set
of all agents i with xi ≤ xm. Assume the number of agents
in G is nG. Obviously, nG ≥ k and nG > n − nG. ∀i ∈ G,
u(xi, S) = |S|, and ∀i /∈ G, u(xi, S) ≥ −|S|. Therefore,
su(S,x) =

∑
i∈G u(xi, S) +

∑
i/∈G u(xi, S) ≥ nG ∗ |S| − (n−

nG) ∗ |S| > 0.
If xm = l, consider the building scheme S = (l − C, l).

Define G to be the set of all agents i with xi = l. Assume
the number of agents in G is nG. We have nG > n − nG,
and similarly, su(S,x) ≥ nG ∗ |S| − (n− nG) ∗ |S| > 0.

Case 2. n = 2k, k ∈ N+. Denote the locations of the left
and right middle agents in x as xm1 and xm2 .

If there exists an agent in the first k agents not located
at 0, we have xm1 6= 0. Consider the building scheme S =
(a, xm1) where a = max(xm1 −C, 0). Define G to be the set
of all agents i with xi ≥ xm1 . Assume the number of agents
in G is nG. We have nG ≥ k + 1 > n − nG, and similarly,
su(S,x) ≥ nG ∗ |S| − (n− nG) ∗ |S| > 0.

If there exists an agent in the last k agents not located at l,
we have xm2 6= l. Consider the building scheme S = (a, xm2)
where a = min(xm2 + C, l). Define G to be the set of all
agents i with xi ≤ xm2 . Assume the number of agents in
G is nG. We have nG ≥ k + 1 > n − nG, and similarly,
su(S,x) ≥ nG ∗ |S| − (n− nG) ∗ |S| > 0.

We will continue discussion in these two cases.

4.1 n is Even
In this subsection, we consider the case when the total

number of agents n is even and we define n = 2k.
We give a deterministic strategy-proof mechanism with
approximation ratio 1

k
, which will also be proved to be

the best approximation ratio a deterministic strategy-proof
mechanism can achieve for any C and l. For a location profile
x, arranging agents from left to right, denote the location of
the left and right middle agents as xm1 and xm2 , then the
mechanism can be described as follows.

Mechanism 4. Define kl = min(xm1 , C) and kr =
min(l − xm2 , C). If kl ≥ kr, the output will be (0, kl);
otherwise, the output will be (l, l − kr).
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Before proving that Mechanism 4 is strategy-proof, we need
to give some definitions and a lemma. For a location profile
x, arranging agents from left to right, we define the first k
agents as left agents and the other agents as right agents.
We use left set to indicate the set of all left agents and
right set to indicate that of all right agents. Denote the
left set and the right set of x as NL and NR, obviously,
∀i ∈ NL, xi ≤ xm1 and ∀i ∈ NR, xi ≥ xm2 . For an agent i,
if it satisfies i ∈ NL and d(0, xi) = xi > C, or i ∈ NR and
d(l, xi) = l − xi > C, we define it as a free agent.

Lemma 9. Consider a location profile x with building
scheme S from Mechanism 4 and a group G ⊆ N . Suppose
agents in G misreport locations to x′G, and the location of
agent i after misreporting is x′i. Denote the location profile
after misreporting as xt =< x−G, x

′
G > with building scheme

St from Mechanism 4. If S = (0, kl) and ∀i ∈ G, xi < kl,
or S = (l, l−kr) and ∀i ∈ G, xi > l−kr, then for any agent
e ∈ G, u(xe, S) ≥ u(xe, St).

Proof. If S = (0, kl) and ∀i ∈ G, xi < kl, select an
arbitrary agent i0 ∈ G (i0 can be e or not) and denote
x′ =< x−i0 , x

′
i0 > with building scheme S′. Denote the

locations of the left and right middle agents in x′ as x′m1

and x′m2
, k′l = min(x′m1

, C) and k′r = min(l − x′m2
, C).

If x′i0 < xi0 , then xm1 = x′m1
, xm2 = x′m2

, kl = k′l, kr =
k′r, and output will not change after misreporting, which
implies u(xe, S

′) = u(xe, S). If x′i0 > xi0 , then x′m1
≥ xm1 ,

x′m2
≥ xm2 , so k′l ≥ kl ≥ kr ≥ k′r and S′ = (0, k′l). As

u(xe, S) = xe + xe − kl, u(xe, S
′) = xe + xe − k′l , we have

u(xe, S) ≥ u(xe, S
′).

Since k′l ≥ kl, for any agent i ∈ G, xi < k′l. Select
another agent i1 which has not been moved yet and repeat
the previous procedure. Then we can get the building
scheme S′′ for < (x′)−i1 , x

′
i1 > satisfying u(xe, S

′′) ≤
u(xe, S

′), implying u(xe, S
′′) ≤ u(xe, S). Continue moving

the agents staying at the original location in G until all
agents have been moved to misreported locations. Then we
get u(xe, S) ≥ u(xe, St).

If S = (l, l − kr) and ∀i ∈ G, xi > l − kr, the proof is
similar.

Theorem 10. Mechanism 4 is group strategy-proof.

Proof. Consider a building scheme S from Mechanism
4 for an arbitrary location profile x. Assume the agents
in a group G ⊆ N misreport their locations x′G and for
agent i ∈ G, the location after misreporting is x′i. The
building scheme for the new profile x′ =< x−G,x

′
G > is

S′ = (y′0, y
′
1) and the locations of the left and right middle

agents in x′ are x′m1
and x′m2

. Also, k′l = min(x′m1
, C) and

k′r = min(l − x′m2
, C). The proof requires analysis for the

following two scenarios.
Scenario 1. There are no free agents in x. In this

scenario, xm1 ≤ C and kl = min(xm1 , C) = xm1 ; similarly,
kr = min(l − xm2 , C) = l − xm2 . Hence the output of the
mechanism can only be (0, xm1) or (l, xm2).

If S = (0, xm1), we have xm1 ≥ l − xm2 . Under this
condition, we need to discuss three cases.

Case 1: Every agent in G is a left agent. In this case,
if there exists an agent i ∈ G, such that xi = kl, then
u(xi, S

′) ≤ u(xi, S). Brief proof is as follows:
If y′0 = 0, obviously, u(xi, S

′) = u(xm1 , S
′) ≤ xm1 =

u(xi, S). If y′0 = l, as the locations of all right agents remain
the same, x′m2 ≥ xm2 ≥ xi, so u(xi, S

′) = l − x′m2 ≤ l −
xm2 ≤ xm1 = u(xi, S).

If ∀i ∈ G, xi < kl, by Lemma 9, for any agent i ∈ G,
u(xi, S

′) ≤ u(xi, S).
Case 2: Every agent in G is a right agent. In this case,

consider an arbitrary agent i in G. If y′0 = l, then u(xi, S
′) ≤

l − xi ≤ l − xm2 ≤ xm1 . As u(xi, S) = xm1 , agent i cannot
get more utility. If y′0 = 0, as the locations of all left agents
remain the same, x′m1

≤ xm1 , which implies u(xi, S
′) =

x′m1
≤ xm1 = u(xi, S).

Case 3: Left and right agents coexist in G. Consider a
right agent i and a left agent j in G. Similar to the analysis
in Case 2, if u(xi, S

′) > xm1 = u(xi, S), then S′ must satisfy
that y′0 = 0 and y′1 > kl. However, if y′0 = 0 and y′1 > kl,
then for left agent j, u(xj , S

′) < u(xj , S). Therefore agent i
and agent j cannot get more utility at the same time.

If S = (l, xm2), the analysis is similar.
Scenario 2. There exist free agents in x. In this scenario,

at least one of the values of kr and kl is C.
If S = (0, kl), then kl must be C. We should discuss the

following two cases.
Case 1: ∀i ∈ G, xi < kl, by Lemma 9, for any agent i,

u(xi, S
′) ≤ u(xi, S).

Case 2: There exists agent i ∈ G such that xi ≥ kl.
For agent i, u(xi, S) = C which is the largest utility it can
achieve and agent i cannot get more utility by misreporting.

If S = (l, l − kr), we should consider two cases, the case
where ∀i ∈ G, xi > l − kr and the case where there exists
agent i ∈ G such that xi ≤ l − kr. The proof is similar.

Define a function g(y,x) =
∑n
i=1 d(xi, y) for a location

profile x and a point y ∈ [0, l]. Assume the building scheme
for x is S = (y0, y1), then su(y0, y1,x) =

∑n
i=1(d(xi, y0) −

d(xi, y1)) = g(y0,x) − g(y1,x). Considering the sample
graph of g(y,x) below, the optimal social utility must occur
when the building scheme is (0, kl) or (l, l − kr).
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C l −Cxm1 xm2
x1 x2 x5 x6

kl l−kr

Figure 1: g(y,x)=|y-1|+|y-2|+|y-5|+|y-6|+|y-7|+|y-
8| with C=4.5

Theorem 11. Mechanism 4 has approximation ratio 1
k

.

Proof. Consider an output building scheme S from
Mechanism 4 for a location profile x with OPT (x) 6= 0.

If S = (0, kl), which indicates kl ≥ kr, but the optimal
social utility occurs when (l, l−kr) is used. In this situation,
SU(f,x) = su(S,x) ≥ 2∗kl, and 2∗kl occurs when k−1 left
agents are located at 0 and only one is located at kl. Also,
OPT (x) = su(l, l − kr,x) ≤ 2 ∗ k ∗ kr and 2 ∗ k ∗ kr occurs
when all right agents are located at kr. As OPT (x) 6= 0,

it is easy to have kr > 0 and kl ≥ kr > 0. So SU(f,x)
OPT (x)

≥
2∗kl

2∗k∗kr = kl
k∗kr ≥

1
k

.
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If S = (l, l−kr) but the optimal social utility occurs when
(0, kl) is used, the proof is similar.

With respect to a given profile x, we define S = (y0, y1)
as left pattern if y0 ∈ [0, xm1) and y1 > y0, or we define
it as right pattern if y0 ∈ (xm2 , l] and y1 < y0. From
su(y0, y1,x) = g(y0,x) − g(y1,x) and the graph of g(y,x),
we can easily get that when y0 ∈ [0, xm1) and y1 ≤ y0, or
y0 ∈ (xm2 , l] and y1 > y0, or y0 ∈ [xm1 , xm2 ], su(y0, y1,x) ≤
0. Because the optimal social utility for any location profile
cannot be negative by Fact 8, we have the following lemma.

Lemma 12. Given a location profile x with OPT (x) 6= 0,

if a building scheme S for x satisfies su(S,x)
OPT (x)

> 0, then S

must be left pattern or right pattern.

Lemma 13. Assume a deterministic strategy-proof mech-
anism with positive approximation ratio is adopted. In a
location profile x0 with OPT (x0) 6= 0 and building scheme
S0, a right agent i with d(xm1 , xi) > C exists. If the building
scheme S1 for location profile x1 =< (x0)−i, l > is left
pattern and d(xi, l) < |S1|, then S0 should be left pattern
and |S0| = |S1|.

Proof. As a positive approximation ratio is guaranteed,
by Lemma 12, S0 must be left pattern or right pattern.
Denote the left pattern scheme S1 = (y0, y1).

Consider agent i in x0. Because agent i is a right agent
and d(xm1 , xi) = xi − xm1 > C, we have y0 < xm1 < xi
and y1 = y0 + |S1| < xm1 + C < xi. Then xi > y1 > y0,
which implies u(xi, S1) = |S1|. Assume S0 for x0 is right
pattern. As d(l, xi) < |S1|, u(xi, S0) ≤ d(l, xi) < |S1| =
u(xi, S1), implying that agent i will misreport its location
to l to gain larger utility, which contradicts the strategy-
proofness. Therefore the assumption is false and S0 must be
left pattern. As agent i is a right agent and d(xm1 , xi) > C,
u(xi, S0) = |S0|. For strategy-proofness, |S0| = u(xi, S0) ≥
u(xi, S1) = |S1|.

Consider agent i in x1 with location l. Denoting x′i = l,
we have u(x′i, S1) = |S1| and u(x′i, S0) = |S0|. If agent
i misreports its location to xi, then S0 will be used, for
strategy-proofness, |S1| = u(x′i, S1) ≥ u(x′i, S0) = |S0|.
Combining with |S0| ≥ |S1|, we have |S0| = |S1|.

To represent the location profile effectively, we use another
notation in the form of (d1 ∗ n1, d2 ∗ n2, d3 ∗ n3, ..., dm ∗
nm|dm+1 ∗ nm+1, dm+2 ∗ nm+2, ..., dw ∗ nw). The ′|′ symbol
separates the location profile for left agents (including
distance to left endpoint di and occurrence number ni) and
that of right agents (including distance to right endpoint
di and occurrence number ni). Specially, in the expression,
di appears in an ascending order in the left part and in a
descending order in the right part. Define function ck(x, a)
for three numbers k, x and a as ck(x, a) = x

k∗a . Specially, if
k is clear in the context, we simplify the expression of the
function to be c(x, a).

Lemma 14. Assume a deterministic mechanism with pos-
itive approximation ratio β is adopted. For any positive
numbers x and m, if m > c(x, β), x < l−m and x,m < C,
then the building scheme S for the location profile x =
(0 ∗ (k − 1), x ∗ 1|m ∗ k) must be right pattern.

Proof. Obviously, 0 < β ≤ 1 and m > 0. By Fact 8,
OPT (x) 6= 0. As β > 0, by Lemma 12, S can only be left
pattern or right pattern.

As m > c(x, β), m ∗ 2k ∗ β > c(x, β) ∗ 2k ∗ β = 2x. For
x, because x,m < C, we have kl = x, kr = m and the
optimal social utility must occur when building scheme is
S0 = (0, x) or S1 = (l, l − m). Because su(S0,x) = 2x,
su(S1,x) = m ∗ 2k, we have su(S1,x) ≥ su(S1,x) ∗ β >
su(S0,x). Hence, the optimal social utility OPT (x) should
be m ∗ 2k. Assume S is left pattern, SU(f,x) = su(S,x) ≤
su(S0,x) = 2x < m∗2k∗β = OPT (x)∗β. As OPT (x) 6= 0,
SU(f,x)
OPT (x)

< β, which contradicts the approximation ratio of

β. Therefore S must be right pattern building scheme.

Further, we define a function t(x, a) = c(x,a)+x
2

. When

a > 1
k

and x > 0, c(x, a) = x
k∗a < x, we have t(x, a) > c(x, a)

and t(x, a) < x.
Now we define a special number P with respect to l and

C as P = min( l−C
2
, C). Notice that P < l

2
, P ≤ C and

d(P, l−P ) ≥ C. If a > 1
k

, then t(P, a) < P and l− t(P, a) >

l − P > l
2
> P . This inequality is the basis for the location

profile x0 defined in the following lemma. Also, because P 6=
0, we can guarantee the applicability of the approximation
ratio for the social utility in the following lemma.

Lemma 15. Assume a deterministic strategy-proof mech-
anism with approximation ratio β > 1

k
is adopted. Given a

location profile x0 = (0∗(k−1), P |t(P, β)∗m, 0∗(k−m))(1 ≤
m ≤ k), if the building scheme S0 for x0 is a right pattern
building scheme, then the building scheme S1 for location
profile x1 = (0 ∗ (k− 1), P |t(P, β) ∗ (m− 1), 0 ∗ (k−m+ 1))
is right pattern.

Proof. Consider a right agent i in x0 with xi = l −
t(P, β). As S0 is a right pattern building scheme, we have
u(xi, S0) ≤ d(xi, l) = t(P, β).

Assume S1 = (y0, y1) is left pattern. If agent i misreports
its location to l, as < (x0)−i, l >= x1, S1 will be used.
Because t(P, β) < P , d(xm1 , xi) = d(P, l−t(P, β)) > d(P, l−
P ) ≥ C, which means xm1 + C < xi. As S1 is left pattern,
we have y0 < xm1 = P < l − t(P, β) = xi and y1 = y0 +
|S1| < xm1 + C < xi. Hence u(xi, S1) = |S1|. For strategy-
proofness, |S1| = u(xi, S1) ≤ u(xi, S0) ≤ t(P, β). Also,
t(|S1|, β) < |S1| ≤ t(P, β).

Then consider another location profile x2 = (0 ∗ (k −
1), P |t(P, β) ∗ (m − 1), t(|S1|, β) ∗ 1, 0 ∗ (k −m)). For right
agent j in x2 with xj = l − t(|S1|, β), d(xm1 , xj) = d(P, l −
t(|S1|, β)) > d(P, l − t(P, β)) > C. Because < (x2)−j , l >=
x1, the building scheme for < (x2)−j , l > is left pattern
S1. As d(l, xj) = t(|S1|, β) < |S1|, then by Lemma 13,
the building pattern S2 for x2 should be left pattern, and
|S2| = |S1|.

Repeating the procedure in the last paragraph, we can
find that the building patterns for (0 ∗ (k − 1), P |t(P, β) ∗
(m−1), t(|S1|, β)∗2, 0∗(k−m-1)), (0∗(k−1), P |t(P, β)∗(m−
1), t(|S1|, β)∗3, 0∗(k−m-2)) until xt = (0∗(k−1), P |t(P, β)∗
(m− 1), t(|S1|, β) ∗ (k−m+1)) are all left patterns and the
length of all these building schemes including St for xt are
the same as |S1|. Because |St| = |S1|, su(St,xt) ≤ 2 ∗ |S1|
and as |S1| ≤ t(P, β) < P , the maximum for the social
utility can occur when St = (P−|S1|, P ). However, consider
building scheme S′t = (l, l − t(|S1|, β)), |S′t| = t(|S1|, β) <
|S1| < C, and su(S′t,xt) = 2k ∗ t(|S1|, β) > 2k ∗ c(|S1|, β) =

2k ∗ |S1|
k∗β = 2 ∗ |S1|

β
. As S′t is one possible building scheme,

we have OPT (xt) ∗ β ≥ su(S′t,xt) ∗ β > 2∗|S1|
β
∗ β = 2 ∗

|S1| ≥ su(St,xt). Hence SU(f,xt)
OPT (xt)

= su(St,xt)
OPT (xt)

< β and it
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contradicts that β is the approximation ratio for the social
utility. Therefore S1 for location profile x1 cannot be left
pattern. As β > 0 is guaranteed and OPT (x1) 6= 0, by
Lemma 12, S1 is right pattern.

Theorem 16. When n = 2 ∗ k(k ∈ N∗), any determinis-
tic strategy-proof mechanism cannot have an approximation
ratio for the social utility larger than 1

k
.

Proof. Assume there exists a deterministic strategy-
proof mechanism with approximation ratio β > 1

k
and it

is adopted.
For location profile x0 = (0 ∗ (k − 1), P |t(P, β) ∗ k) =

(0∗(k−1), P |t(P, β)∗(k−0), 0∗0), we have t(P, β) > c(P, β),
l − t(P, β) > P and P, t(P, β) < C. By Lemma 14, the
building scheme S0 for x0 should be right pattern. Then
by Lemma 15, we can know that the building scheme for
(0 ∗ (k− 1), P |t(P, β) ∗ (k− 1), 0 ∗ 1), (0 ∗ (k− 1), P |t(P, β) ∗
(k−2), 0∗2) until St for xt = (0∗(k−1), P |t(P, β)∗(k−k), 0∗
k) = (0 ∗ (k− 1), P |0 ∗ k) should be right pattern. However,
because the right middle point is located at l in xt, by the
definition of right pattern building scheme, St cannot be
a right pattern, which causes a contradiction. Therefore,
any deterministic strategy-proof mechanism cannot have an
approximation ratio for the social utility larger than 1

k
.

4.2 n is Odd
In this subsection, the total number of agents is odd and

we denote it as n = 2 ∗ k − 1. We will give a deterministic
mechanism similar to Mechanism 4 and the approximation
ratio for the social utility of the new mechanism is 1

n
. For a

location profile x, define the location of the middle agent as
xm. The mechanism can be described as follows.

Mechanism 5. Define kl = min(xm, C), kr = min(l −
xm, C). If kl ≥ kr, the output will be (0, kl), otherwise, the
output will be (l, l − kr).

In this subsection, a newly constructed function with a
special form is introduced. Due to the space constraints, we
will list core theorems but only the proof for the second one.

Theorem 17. Mechanism 5 is group strategy-proof.

Theorem 18. The approximation ratio of Mechanism 5
is 1

2k−1
.

Proof. Consider an output building scheme S from
Mechanism 5 for a location profile x. Based on the similar
analysis to that in the case when n is even, we can know that
the optimal social utility must occur when building scheme
is (0, kl) or (l, l − kr).

If S = (0, kl), which indicates kl ≥ kr, but the optimal
social utility occurs when (l, l−kr) is used. In this situation,
SU(f,x) = su(S,x) ≥ kl, and kl occurs when all first k-1
agents are located at 0 and the middle agent is at kl. Also,
OPT (x) = su(l, l − kr,x) ≤ (2k − 1) ∗ kr and (2k − 1) ∗ kr
occurs when all last k-1 agents are located at l − kr. As

OPT (x) > 0, kr > 0 and kl ≥ kr > 0, we have SU(f,x)
OPT (x)

≥
kl

(2k−1)∗kr ≥
1

2k−1
.

If S = (l, l − kr), but optimal social utility occurs when
(0, kl) is used, the proof is similar.

Theorem 19. When n = 2 ∗ k − 1(k ∈ N+), any
deterministic strategy-proof mechanism cannot have an ap-
proximation ratio for social utility larger than 1

2k−1
.

The difference of the approximation ratios in even and
odd cases comes from the different worst location profiles.
As shown in the proof of Theorem 11, for the even case, the
worst approximation ratio is achieved when k−1 agents are
at 0, one agent is at kl, k agents are at l − kr and kl =
kr. For the odd case, the only difference is that the worst
profile, given in the proof of Theorem 18, contains one less
agent at l−kr. For both profiles, the optimal social utilities
occur with the building scheme (l, l− kr), and both optimal
social utilities are equal to kl multiplied by the number of all
agents (2k and 2k−1 separately). Also, the building schemes
output by our mechanisms for two profiles are both (0, kl).
With this building scheme, the utilities of k − 1 agents at 0
are kl, and that of remaining agents (we call them non-zero
agents) are kl. Because for the even case, there is one more
non-zero agent than that for the odd case, the social utility
of the even case (2 ∗ kl) is kl more than that of the odd case
(kl), which finally leads to different approximation ratios.

5. CONCLUSION AND FUTURE WORK
In this paper, we investigate the property of dual pref-

erence in facility location games and propose two extended
games, the dual character facility location game and the two-
opposite-facility location game with limited distance, which
are modelled from general scenarios in real life.

For the dual character facility location game, we first
consider the case that only preference is regarded as private
information for each agent. Under this condition, we
prove that the mechanism to build the facility at the
optimal location for the social utility is strategy-proof.
Then we explore a more general case that both preference
and location of each agent are private information and
find that the previous mechanism is not strategy-proof
anymore. Then we give a deterministic group strategy-proof
mechanism and prove its approximation ratio for the social
utility is 1

3
. We further study the relationship between this

game and the obnoxious facility location game studied in
[4], and show that the obnoxious facility location game can
be regarded as a special case of the dual character facility
location game when only agents tending to keep away from
the facility exist. Our mechanism is also a generalization of
the mechanism proposed in [4].

For the two-opposite-facility location game with limited
distance, we divide it into two cases based on the parity of
the number of agents. When the number of agents is even,
we give a deterministic group strategy-proof mechanism
with approximation ratio 1

k
where the number of agents

on the line segment is 2k. When the number of agents is
odd, another deterministic group strategy-proof mechanism
is given and its approximation ratio is proved to be 1

2k−1
,

where 2k − 1 is the number of agents on the line segment.
We further prove that the approximation ratios for both
mechanisms are the best any deterministic strategy-proof
mechanism can achieve in their settings.

As a possible future work, it would be interesting to
extend our model on a line segment to more complicated
and general metric spaces such as circles and trees.
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